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Abstract: A temperature probe has been proposed by inserting a microfiber taper into a silica hollow
core fiber with a microsphere end. The sealed air cavity in the microsphere and the inserted microfiber
acted as the two reflectors of a Fabry-Perot interferometer, respectively. The contribution of both
microfiber diameter and cavity length on the interference spectra was analyzed and discussed in
detail. The temperature change was experimentally determined by monitoring the wavelength
location of the special resonance dip. By filling the air cavity with poly-dimethylsiloxane (PDMS),
a high temperature sensitivity of 3.90 nm/◦C was experimentally demonstrated. This temperature
probe with the diameter of 150 µm and length of 10 mm will be a promising candidate for exploring
the miniature or implantable sensors.
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1. Introduction

Temperature monitoring plays a very important role during chemical reaction, life health,
industrial production, and environmental protection [1–3]. Fiber temperature sensors have always
been a research hotspot, due to their many advantages compared with the traditional electrical
temperature sensors, such as their light weight, small size, intrinsically safe, long-distance transmission,
electromagnetic interference immunity, chemical corrosion resistance, high temperature resistance,
etc. [4,5]. These unique properties pave their way to the possible applications in harsh environments
and small space [6]. Fiber Fabry-Perot interferometers have been widely studied and used for
temperature monitoring attributing to their smart structures and high resolution [7–10]. External
temperature information can be obtained by demodulating the Fabry-Perot interference fringes formed
by two optical signals with the phase difference depending on temperature change. Some works
reported the Fabry-Perot interferometer temperature sensor and determined the temperature by the
light intensity with the sensitivity of 60.79 nW/◦C and a resolution of 0.5 ◦C, where the intensity was
easily affected by the output stability of the light source [7]. The temperature sensitivity has been
improved by using novel demodulation techniques, such as cursor effect, where two interference
structures with different sensitivity or mechanics will be used to demodulate a sensitivity difference
coefficient. Although the high sensitivity of 19.55 nm/◦C was experimentally demonstrated by
using liquid crystals and the Vernier effect, the demodulation process is complex, in which the
locations of two resonance peaks/dips need to be traced and distinguished at the same time [8]. Fiber

Micromachines 2019, 10, 773; doi:10.3390/mi10110773 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0001-9658-8184
http://www.mdpi.com/2072-666X/10/11/773?type=check_update&version=1
http://dx.doi.org/10.3390/mi10110773
http://www.mdpi.com/journal/micromachines


Micromachines 2019, 10, 773 2 of 10

Fabry-Perot temperature sensors were implemented by mining different cavity or fusing different
fibers. Two cascaded Fabry-Perot interferometers were fabricated by femtosecond laser, the sensitivities
were experimentally demonstrated with 9.91 pm/◦C during 100 ◦C to 400 ◦C and 15.88 pm/◦C during
400 ◦C to 1100 ◦C [9]. Different kinds of fibers were cascaded fused together to form the Fabry-Perot
interferometer, whose reflectors were played by the flat end-faces of fibers. A temperature sensor was
reported by cascading a 200 µm thick silicon Fabry-Perot interferometer with another 10 µm thick
silicon Fabry-Perot interferometer, where the sensitivity of 84 pm/◦C was obtained [10]. By spliced
one cut of fiber Bragg gratting (FBG) on one end of single mode fiber, a temperature sensitivity of
81.0 pm/◦C was measured with the assumed resolution of 0.001 ◦C [11]. The Fabry-Perot cavities were
fabricated at the fibers end by digging a hole or connecting a capillary and using the polymer film as the
reflectors [12]. In some works, one of the reflectors was carried out using a flexible film coating at the
end of open cavity, where the expansion of the film was easily affected by other environment parameters,
such as humidity. For example, a Nafion film was prepared in the capillary to construct a Fabry-Perot
structure to measure the temperature with the sensitivity of 2.71 nm/◦C [13]. However, the environment
humidity also exerted an impact on the wavelength shift. Mutilayers of the graphene diaphragm were
covered as the reflector of one Fabry-Perot interferometer and experimentally demonstrated with a
temperature-induced cavity length change of 352 pm/◦C [14], but it will be difficult to precisely measure
this length to explore the temperature values. Without introducing the sensitive materials, the fiber
Fabry-Perot temperature sensors can operate at a temperatures up to 1200 ◦C with the sensitivity of
15.61 pm/◦C [15]. However, the thermo-optic coefficient of the fiber materials was limited and resulted
in a low sensitivity (13.6 pm/◦C) [16]. The temperature sensitive materials will be used to fill the
air cavity packaging temperature sensitive materials in the Fabry-Perot cavity [17]. These sensitive
materials cover gas, liquid and cured solid ones, where the refractive index of gas or liquid will change
significantly with the temperature change and cause the change in the light transmission distance,
corresponding to the effective cavity length of Fabry-Perot interferometer [18], which is beneficial to
improve the sensitivity and resolution of the fiber temperature sensor. The liquid polymer and the
refractive index liquid contributed the sensitivities of 877 pm/◦C [19] and 14.72 nm/◦C [20], respectively.
However, for the later one, the liquid was filled in a photonic crystal fiber. The liquid sensitive materials
allow fiber sensors to have better temperature-sensitive characteristics, but also increase the cost and
manufacturing difficulty. Poly-dimethylsiloxane (PDMS) has a high transparent and low refractive
index, which results in its little impact on the incident light. Its high thermal expansion coefficient will
enable a high sensitivity for monitoring the temperature change. Furthermore, it can be used as the
filling materials in the liquid form and become solid later. The high sensitivity of up to 11.86 nm/◦C
was earlier reported in another work by using PDMS to fill the air gap [21].

This paper proposes a low-cost, simple and fast method for preparing fiber Fabry-Perot
interferometer with miniature structures, which is composited by a microfiber taper, a hollow microtube
sphere and PDMS. The Fabry-Perot interferometer was constructed by using the endface of a microfiber
taper and the cone cavity surface of hollow microsphere fiber as its two reflectors. These two kinds of
fiber structures can be easily fabricated using a burner or fiber splicer by flame melt drawing method
and arc melting method, respectively. The temperature probe was fabricated by inserting the microfiber
taper into the microtube hollow sphere and filling the PDMS solution into the air cavity. The length of
the Fabry-Perot cavity was adjusted flexible by moving the microfiber taper in the microtube after
filling the liquid formed PDMS. The perfusion and solidification of PDMS in the Fabry-Perot air cavity
contributed to a high temperature sensing performance. A high temperature sensitivity of 3.9 nm/◦C
was experimentally demonstrated in this paper. Furthermore, the closed chamber of the hollow sphere
can effectively eliminate the influence of gas and humidity in the environment to be measured.
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2. Materials and Methods

2.1. Temperature Probe Design and Fabrication

The designed Fabry-Perot interferometer structure is mainly composed of a microfiber taper and a
hollow-core fiber, as shown in Figure 1. The two reflectors of the Fabry-Perot interferometer are acted
by the end face of the microfiber taper and the cone surface of the hollow microsphere. When light
is launched into the microfiber, a part of light signal will be reflected on the end face of the tapered
microfiber, and another part of the reflection occurs on the cone surface of the spherical structure.
These two-parts of reflected light beams have a different transmission distance (twice the cavity length)
and interferes to each other forming an interference spectrum. The intensity and phase of the reflected
light from the microfiber taper will be analyzed later by a spectrometer to explore their relationship
with the temperature change.
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Figure 1. Schematic of microfiber-microsphere Fabry-Perot interferometer with a tunable cavity length
by moving microfiber in a hollow core fiber based on micro-manipulation technique.

Figure 1 indicates that the main parameters of this temperature sensor are the diameter of the
tapered microfiber and the length of the cavity. The parameters selection will greatly affect the sensing
performance. Therefore, it is necessary to compare and optimize the geometry parameters through
experiments. The fiber Fabry-Perot structure will be packaged with the temperature sensitive material
(PDMS), where the PDMS will be poured into the hollow fiber to fill the air cavity between the two
reflective surfaces of the Fabry-Perot interferometer. Meanwhile, the microfiber taper will be fixed in
the hollow core fiber. During the calibration of the temperature sensor, the packaged sensor needs to
be placed in different temperature environments. When the temperature rises or changes, the cured
PDMS is thermally expanded due to the thermo-optic effect and the elastic-optic effect, resulting in the
cavity length change of the Fabry-Perot interferometer, as well as the reflecting spectra. By using this
temperature sensor, the ambient temperature can be determined by tracking the phase change of the
special resonance dips.

The complete fabrication process for the proposed Fabry-Perot interferometer is shown in Figure 2,
including the fabrication of microfiber taper (Figure 2a), the diameters choice of tapered fiber (Figure 2b),
the hollow core fiber pretreatment (Figure 2c), the preparation of the hollow spherical cavity (Figure 2d)
and the PDMS filling and curing (Figure 2e).

To fabricate the microfiber taper, a normal single mode fiber (SMF, SMF-28, Corning Inc., Coring
NY, USA) after removing the coating layer was fixed by two claps, point-heated by oxyhydrogen
flame and stretched by a fiber melting-drawing system (IPCS-5000-ST, Idealphotonics Inc., Hong
Kong, China). The diameter and length of the microfiber taper can be controlled by adjusting the
flame temperature, gas volume and ratio, heating time and stretching speed. The microfiber taper
was placed on the operation plate of a homemade fiber micromanipulation system to measure its
diameter and precisely cut it at the desired region using a cutting pen under a microscope. The end
face and diameter of the tapered microfiber were measured and recorded later. The hollow core fiber
was chosen to prepare the hollow spherical structure by high-temperature melting method. Since the
melting process needs to be completed in the fusion splicer, the size of the hollow fiber is limited. In our
experiment, the outer diameter of the hollow core fiber is 150 µm (after removing the coating layer),
and the inner diameter is only 100 µm (TSP100150, Polymicro Technologies, Inc., Phoenix AZ Arizona,
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USA). The coating layer (polyimide, melting point 350 ◦C) was firstly removed by the flame heating
using a Bunsen burner, and then cleaned and placed in a fusion splicer. By using the manual welding
operation model, the end of the hollow core fiber was located in the discharge zone, where the hollow
spherical structure formed after arc discharge. The hollow core fiber was then cut at its other end
with a suitable length to facilitate insertion of the microfiber taper. Finally, the temperature sensitive
material PDMS was poured into the hollow core fiber to fill the Fabry-Perot cavity. The microfiber
Fabry-Perot temperature probe was obtained after the PDMS becoming solidified.
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Figure 2. Fabrication process of a microfiber-microsphere Fabry-Perot interferometer temperature
probe: (a) fiber drawing; (b) Microfiber taper preparing; (c) Silica hollow core fiber pre-treatment;
(d) Microsphere fabrication; (e) PDMS filling and curing.

The microfiber Fabry-Perot interferometer structure has two main parameters, namely the
microfiber taper diameter and the cavity length. The experimental results reveals that a thinner
diameter (<20 µm) of the microfiber taper produces the multiple optical modes, which will increase the
difficulty of demodulation process. The temperature will be determined by recording the wavelength
shift of the resonance dip (finding the lowest intensity point in a free-spectra-range (FSR)), where the
over-lapped dips will be difficult to distinguish. In this experiment, this diameter was controlled during
30–60 µm to obtain the ideal Fabry-Perot interference spectrum. The cavity length refers to the distance
from the end face of the tapered fiber to the cone surface of hollow sphere. Here, it was precisely
manipulated by moving the microfiber taper continually using a three-dimension fiber adjustment
(APFP-XYZ, adjusting precision <2 µm, Zolix Instruments Co., Ltd., Beijing, China). The reflected
spectra as a function of the cavity length were studied when the microfiber was fixed as a constant.

2.2. Cavity Length Optimization

The cavity length of the proposed Fabry-Perot temperature probe is easy to control before
packaging. One can optimize it to meet the actual application needs (such as working range, sensitivity,
sensor size) and obtain the desired optical properties, according to the quality of the reflection spectrum
and the timely structure through CCD system equipped on a microscope (DMM-300C, Shanghai Caikon
Optical Instrument Co., Ltd., Shanghai, China). The simple preparation process greatly saves costs and
time. The appropriate cavity length range was selected based on analyzing the FSR and their extinction
ratios (i.e., the ratio of the peak maximum power to the lowest power in the spectrum). To explore the
impact of the cavity length of the F-P interferometer, the same microfiber with the diameter of 36 µm
was used, and its position was adjusted in the hollow fiber to obtain the different cavity length. Figure 3
shows the reflectance spectra of a microfiber Fabry-Perot interference structure with the different cavity
lengths of 61 µm, 128 µm, 181 µm, and 227 µm, respectively. Here, the cavity lengths were measured
by the 2D micro-image measurement and analysis software (DMM-300, Shanghai Caikon Optical
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Instrument Co., Ltd., Shanghai, China). The light source is an amplified spontaneous emission (ASE,
ASE-C light source, 1520–1560 nm, Shenzhen Golight Technology Co., Ltd.).
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128 µm; 181 µm; 227 µm) by fixing microfiber taper in silica hollow core fiber.

The spectra indicate that for a longer cavity length, the FSR becomes smaller, decreasing from
3.5 nm to 1.95 nm. Too small FSR will limit the operating range of the sensor. The temperature change
information must be demodulated from resolving the wavelength position of a particular peak (dip).
Therefore, a wavelength (phase) demodulation based sensor usually has one characteristic peak (dip)
in its working range. In order to measure the temperature, one must find the peak (dip) position in
the desired working range, also named FSR. During the wavelength (phase) demodulation process,
the peak (dip) position in a FSR was determined by searching the highest (lowest) intensity point.
The experimental results of Figure 3 indicate that a longer cavity will result in a short FSR and a sharp
peak (dip) in the transmission spectra, which will further contribute a limited working range and a
higher precision of a sensor. Conversely, a shorter cavity based sensor will have a wider working range,
but the position of the peak (dip) will be more difficult to distinguish. Therefore, the cavity length
should be balanced for designing a temperature probe. In this experiment, a temperature sensing
probe with high sensitivity and precision is desired to prepare, whose cavity length will be minimized
within the controllable range. The cavity length is controlled by ~40 µm, which makes it easier to fill in
the PDMS solution.

2.3. Temperature Probe Package

After fixing the geometry parameters of the Fabry-Perot interference structure, the temperature
sensitive material PDMS was filled to explore the temperature probe. During the initial stage of our
experiment, the PDMS solution was configured using the ratio of the main agent: hardener: catalyst
= 10:1:0.3. It is impossible to complete the filling process since the PDMS solution became solidified
in a short time after the catalyst was added. Then, the PDMS solution with a ratio of primary agent:
hardener = 10:1 was selected and poured into the microfiber Fabry-Perot structure. The catalyst was
separately added later into the hollow core fiber and be heated at 80 ◦C for 1 h to cure it. Unfortunately,
different defects or air bubbles were observed after curing the PDMS, as shown in Figure 4a–c, because
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it is difficult to evenly disperse the catalyst in the PDMS solution, resulting in the poor consistency
of sensor fabrication, low sensitivity for temperature sensing (only 0.7569 nm/◦C), and poor stability
of structure.Micromachines 2019, 10, x FOR PEER REVIEW 6 of 10 
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Potting gel PDMS (SYLGARD 184, Dow Corning Co., Ltd., Michigan, USA) was finally used
with a weight ratio of main agent: curing agent = 10:1. Unlike the original PDMS solution, it can be
cured at 24 ◦C for 24 h or 80 ◦C for 1 h. Therefore, the time is sufficient to encapsulate the sensing
structure at room temperature. This gel PDMS is a transparent fluid before curing and becomes a
tough transparent elastomer after solidification with the excellent stability over a wide temperature
range (−50 ◦C to 200 ◦C). The thermal conductivity is 0.17 ± 0.01 W/(m·K), and the elastic coefficient
is 960 × 10−6. The good physical properties make it suitable as a temperature sensitive material for
encapsulating the sensing structure proposed herein. After the PDMS solution was poured into the
hollow core fiber, the position of the microfiber taper was adjusted in both radial and axial direction.
By the assistance of the reflected spectra observing and geometry structure monitoring, the microfiber
taper was finally fixed along the central axis of the hollow core fiber with the desired cavity length.
The filled Fabry-Perot structure was placed in an incubator for 1 h at 80 ◦C to cure PDMS and obtain
the temperature probe. As seen from Figure 4d, no small bubbles or other defects were generated in
the filled cavity region. The microfiber Fabry-Perot temperature probe was finally obtained, containing
a microfiber taper with the diameter of 50 µm, a cavity length of 41 µm, and a PDMS filling package
length of 976 µm. The center axis of the microfiber taper coincided with that of the hollow core fiber.
The interference spectrum was demonstrated with a good extinction ratio and FSR.

3. Results

To explore the temperature sensing performance, the microfiber Fabry-Perot temperature probe
was placed in an incubator. When the temperature rises or falls, the cured PDMS will expand and its
refractive index will change due to the thermo-optic effect and the elastic-optic effect, causing the change
in both the Fabry-Perot cavity length and the cavity refractive index. Then the interference spectra
will undergo red-shift or blue-shift. By tracing the shift direction and value of the special resonance
peak/dip and demodulate its phase information, the according temperature change will be obtained.
Figure 5 reveals the spectrum shift when the temperature changes from 30 ◦C to 31 ◦C. A resonance
dip was chosen and continually traced to study its relationship depending on temperature change.
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Figure 5. Resonance dip in the reflected spectra of microfiber Fabry-Perot cavity red-shifted for 3.51 nm
when temperature increased from 30 ◦C to 31 ◦C.

When the temperature increased from 30 ◦C to 31 ◦C, the resonance dip red-shifted continually
from 1537.57 nm to 1541.08 nm with the sensitivity of 3.51 nm/◦C, which means that the resolution of
the temperature probe can reach 0.005 ◦C using the experimental equipment in this paper (AQ6370,
600–1700 nm, resolution 20 pm, Yokogawa Electric Corp., Tokyo, Japan). Here, the temperature
resolution of the proposed sensor was obtained by dividing the spectral resolution of the spectra
analyzing equipment by the corresponding temperature sensitivity, that was (20 pm)/(3.51 nm/◦C) ≈
0.005 ◦C. For FBG sensors, the sensing parameters can be obtained by wavelength demodulation with
the aid of commercial wavelength demodulator, whose wavelength resolution can reach up to 1 pm.
It means that the temperature resolution of our proposed sensor is promising to be further improved
to less than 0.0003 ◦C by using the commercial fiber demodulator.

In Figure 6, it is shown a temperature sensing characteristic curve of the proposed fiber Fabry-Perot
temperature probe. When the temperature was raised from 30 ◦C to 40 ◦C by a step of 1 ◦C, the average
temperature sensitivity was determined as 3.90 nm/◦C, and the linearity for the experimental data
was 0.99648. This sensitivity is a little higher than the former sensitivity of 3.51 nm/◦C during the
temperature increasing process from 30 ◦C to 31 ◦C. This difference can be attributed to the uneven
expansion of PDMS, resulting in a 10% uncertainty in the sensitivity. Here, a resonance dip was traced
and its wavelength locations were recorded as the experimental data points. The working range will be
limited by the FSR of the interference spectra, the output wavelength range of the light source, and the
wavelength limitation of the spectra analyzer. For example, the light source has the output wavelength
of 1520 nm to 1560 nm, which means that once a resonance dip is chosen, its wavelength shift can only
be recorded no longer than 40 nm due to the high temperature sensitivity (3.90 nm/◦C × 10 ◦C = 39 nm).
However, the temperature sensing performance for a wider temperature change range is possible to be
calibrated by recording the relative wavelength shift of the whole spectra using the different resonance
dips in the particular wavelength ranges. For the actual application usage, the temperature sensing
probe can work near a desired temperature point to monitor its fluctuation in an FSR.
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4. Discussion

The temperature sensing performance of the Fabry-Perot (FP) interferometer fiber sensors reported
in the references have been compared in Table 1.

Table 1. Sensing performance comparison for some typical Fabry-Perot temperature fiber sensors.

Structure or Materials Sensitivity Range Reference

TiO2 film/PDMS overlay 0.13 dB/◦C 22–60 ◦C [4]
SMF/Capillary −60.79 nW/◦C 20–35 ◦C [7]

Cascaded Fabry-Perot interferometers/Liquid crystal
filling/Vernier effect 19.55 nm/◦C 30–120 ◦C [8]

Silicon/UV glue 84.4 pm/◦C −50–130 ◦C [9]

Air cavity 9.91 pm/◦C
15.88 pm/◦C

100–400 ◦C
400–1100 ◦C [10]

FBG/UV glue 81.0 pm/◦C −60–140 ◦C [11]
Cr/Capillary/Ni jacket ~7.7 mrad/◦C −25–950 ◦C [12]

Nafion film 2.71 nm/◦C −15–65 ◦C [13]
Graphene films 352 pm/◦C 20–60 ◦C [14]

Photonics crystal fiber (PCF) 15.61 pm/◦C 300–1200 ◦C [15]
Microfiber tip 13.6 pm/◦C 25–1000 ◦C [16]

Gas filled capillaries 74.6 pm/◦C 127–327 ◦C [17]
Ho3+ doped fibers 75 pm/◦C 20–50 ◦C [18]

Liquid polymer 877 pm/◦C 30–60 ◦C [19]
Refractive index liquid/PCF ~14.72 nm/◦C 18–21 ◦C [20]

Microfiber/PDMS 11.86 nm/◦C 43–50 ◦C [21]
Microfiber/Microsphere/PDMS 3.9 nm/◦C 30–40 ◦C This work

Comparing with the current state of the art of Fabry-Perot temperature sensors, the manufacturing
process of the proposed temperature sensor is simple and convenient, the cost is low and the technology
requirements are not very high. Its integrated reflector end enables its application in some special areas,
especially for the high humidity environment. Since most open-end typed Fabry-Perot structures were
usually constructed by coating film as the reflector. Compared with the common fiber Fabry-Perot
temperature probe with open-cavities, the front section of the probe is closed, which can avoid the
influence of ambient humidity on temperature sensing performance. In this paper, the influence of
microfiber taper diameter and cavity length on the interference spectrum is studied, and the possibility
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of using it as a temperature sensing probe is preliminarily studied. Its long-term operational stability
and repeatability need to be further verified by experiments.

Furthermore, it is desirable to obtain a spherical reflecting end face when a hollow core fiber is
melted using a fusion splicer. However, it is found that, during the actual production process, it is
difficult to obtain a perfect spherical structure by melting, but instead of a cone inner-face. When the
central axis of the microfiber taper is not aligned with that of the hollow core fiber, the optical signal
passing through the Fabry-Perot cavity is difficult to propagate along the axis, resulting in the multiple
interference modes in the reflection spectrum. On the other hand, when the perfect spherical reflecting
end face is prepared, the inner and outer surfaces of the spherical cavity will form another reflection,
and the three beams of light propagating along the central axis of the fiber interfere to each other
and generate the superposition of two interference spectra, forming a cursor effect. Since this effect
can effectively improve the sensitivity of the sensor, it provides a new research direction for the
sensing probe.

5. Conclusions

In this paper, a microfiber taper was fabricated by flame scanning drawing method, and a spherical
hollow fiber was obtained by arc discharge melt technique using a fiber fusion splicer. These two
structures were later used to construct a microfiber Fabry-Perot structure. The impact of cavity
length on the transmission spectra has been experimentally studied, where a shorter cavity length
contributes to a smaller FSR and a sharper dip. Different formed PDMS solution and cured methods
have been studied and compared to fill the air cavity. Finally, a microfiber Fabry-Perot structure with
the cavity length of 41 µm and a microfiber diameter of 50 µm was fabricated. By filling with the
PDMS with high thermo-optic and elastic-optic coefficients, a temperature probe was obtained and
experimental demonstrated with a high temperature sensitivity of 3.9 nm/◦C, compared to many highly
sensitive Fabry-Perot temperature sensors proposed recently. The manufacturing process is simple
and convenient, the cost is low and the technology requirements are not high. Comparing with the
current state of the art of Fabry-Perot temperature sensors, it indicates the better sensing performance
and it is expected to be applied in electromagnetic interference and humidity fields. Due to its high
sensitivity and miniature structure, the proposed temperature probe will be used in precision medicine
and fine chemistry as a promising candidate for monitoring the slight temperature fluctuation during
biological interaction process and chemical reaction.
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