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ABSTRACT The single-gimbal control moment gyros (SGCMGs) steering law has been a standing topic in
the field of spacecraft attitude control for several decades. A practical steering law should meet the following
requirements simultaneously: powerful singularity avoidance ability, high precision torque output ability
and fast singularity escape ability. Moreover, the angular velocity commands generated by the steering law
should not jitter sharply. In this paper, a vector control-based singularity avoidance and escape steering law
for SGCMGs is proposed to satisfy these goals. In addition, a system angular momentum state evaluation
function for command torque is defined for the first time, which can be used to effectively evaluate the
remaining angular momentum resources for the command torque. We demonstrate the effectiveness and
superiority of the proposed steering law with detailed comparisons to existing efforts.

INDEX TERMS Steering law, SGCMG, satellite attitude control.

I. INTRODUCTION
As a spacecraft attitude control unit, single gimbal control
moment gyro (SGCMG) has significant torque magnification
capability. It is of great importance to engineering application
on large spacecraft and small smart satellites. However, there
are geometric singularity problems inherent in the system
with single gimbal control moment gyros (SGCMGs). When
the output torque direction of all SGCMG is in the same
plane or even the same line, the SGCMGs system will not
have the torque output capacity of the three axes in the space,
so that the spacecraft will lose the control ability of the
three-axis attitude which is called the singular state. In order
to avoid singularity, the SGCMGs usually adopt redundancy
design. The minimum system is usually composed by four
SGCMGs. Under redundant design, the singularity analysis
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and the steering algorithm of SGCMGs have become the
focus of research in this field [1]–[31].

The existing steering laws can be roughly classified into
three categories: singularity avoidance steering law, singular-
ity escape steering law, and hybrid steering law. The hybrid
steering law is designed based on the first two methods [22].

The main purpose of the singularity avoidance steering
laws is to prevent the system from encountering the singular
state. Most of these methods avoid the singular state of the
system by adding appropriate null motion in advance, while a
few avoid singularity by introducing torque error. The typical
singularity avoidance steering laws include local gradient
method (LG) [4], [22], non-directional null-motion algorithm
(ND) [4], preferred gimbal angles method [7], and global
avoidance methods [3], [6], [8]–[10]. They can be further
divided into two categories: real-time singularity avoidance
steering law and non-real-time singularity avoidance steer-
ing law. The real-time singularity avoidance algorithms are
relatively small in computation, but they cannot evade all the
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singular gimbal angles. Moreover, these algorithms often fail
to make the system escape from the singularity quickly when
the system falls into an inescapable internal singularity. The
non-real-time singularity avoidance steering laws can avoid
all the singularities. However, they cannot be applied to real-
time tasks.

The main purpose of the singularity escape steering laws
is to make the system escape from the singular state quickly.
The typical singularity escape steering laws include singu-
larity robust steering law (SR) [11], generalized singularity
robust inverse method (GSR) [11], singular direction avoid-
ance steering law (SDA) [13]–[15], and singularity escape
steering laws based on singular surface [16]–[19]. Since these
methods cannot avoid the singularity, they mainly rely on
the torque error to make the system escape from singularity.
However, the use of the torque error will reduce the overall
performance of SGCMGs system.

The hybrid steering algorithm combines the advantages
of the above two steering methods. It avoids the singularity
through the null-motion or torque error. When the above
process fails, it adopts the singularity escape strategy [12],
[20]–[23]. Therefore, the hybrid steering law is more appli-
cable to the engineering applications [25].

Despite decades of research, the steering law still has room
for improvement. The ideal steering law should have strong
singularity avoidance ability, high precision of moment out-
put, fast singularity escape ability, and stable angular velocity
command. However, most of the existing steering laws cannot
possess these properties simultaneously.

To meet the above requirements simultaneously, a new
hybrid steering method named vector-control based singular-
ity avoidance and escape steering law (VCBSAE) is proposed
in this paper. The proposedmethod defines the effective resid-
ual angular momentum evaluation function of each SGCMG
for the desired torque. Based on this evaluation function,
we design a set of desired gimbal angular velocity that can
avoid singularity effectively. In the singularity avoidance
process, the angular velocity command given by the steer-
ing law is approximated to the desired angular velocity by
adding appropriate null motion in real time. If the singu-
larity avoidance algorithm fails or the system is started at
a singular state, the proposed steering law will switch to
the singularity escape process automatically and smoothly.
In this process, the algorithmwill introduce a torque error and
directly integrate the desired angular velocity into the com-
mand angular velocity, so that the system can quickly escape
from singularity. In addition, a function used to evaluate the
angular momentum state of the system for the command
torque is defined. It can be used to judge whether the angular
momentum resources of the system are sufficient for the
command torque. If the system angular momentum reserve is
sufficient, it is valuable to carry out singularity escape control
when the system encounters the singularity. Otherwise the
system angular momentum desaturation manipulation should
be considered. If the angularmomentum reserve of the system
has been exhausted, desaturation manipulation should also be

enabled. The effectiveness and superiority of the proposed
algorithm are verified by comparing it with pseudo-inverse
(PI) steering law, ND steering law [4], GSR steering law [11],
ODSR steering law [12] and DSEA steering law [23].

The paper is organized as follows. Section II gives the
system model of SGCMGs. Section III analyses the steering
laws of ND, GSR, ODSR and DSEA. In section IV, we define
the desired angular velocity of SGCMGs and explain the pro-
posed VCBSAE steering law in details. Experimental results
are provided in Section V. We then briefly conclude on the
method and the performance in Section VI.

II. MODELING SYSTEMS WITH SGCMGs
A. SYSTEM MODEL
The schematic diagram of the SGCMG is shown in Fig. 1.
It consists a gimbalmotor and a spinning rotor. The characters
τin, δ̇g, and g denote the input torque, rotation speed, and
gimbal axis of the gimbal motor, respectively. The characters
wr and hr denote the angular speed and angular momentum
of the spinning rotor, respectively. O is the output torque of
the SGCMG, Wb is the rotation speed of the SGCMG under
the action of O.

FIGURE 1. Schematic diagram of SGCMG.

For the design of the steering law, we only focus on the
relationship between O and δ̇g, as expressed in (1).

O = lim
1t→0

−
1ĥr
1t
= lim
1t→0

−
1t δ̇g × ĥr

1t
= −δ̇g × ĥr (1)

τ out = o1 + o2 + o3 + o4
= −

(
δ̇1 × h1 + δ̇2 × h2 + δ̇3 × h3 + δ̇4 × h4

)
= −(ô1( ˆ̇δ1 · ĝ1)δ̇1h1 + ô2( ˆ̇δ2 · ĝ2)δ̇2h2

+ ô3( ˆ̇δ3 · ĝ3)δ̇3h3 + ô4( ˆ̇δ4 · ĝ4)δ̇4h4)

= h0
[
−ô1 −ô2 −ô3 −ô4

]

( ˆ̇δ1 · ĝ1)δ̇1
( ˆ̇δ2 · ĝ2)δ̇2
( ˆ̇δ3 · ĝ3)δ̇3
( ˆ̇δ4 · ĝ4)δ̇4


= h0Jδ̇ (2)
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FIGURE 2. Pyramid configuration SGCMGs.

Fig. 2 shows a pyramid-configured SGCMGs. Many doc-
uments have chosen this configuration, which is convenient
for the subsequent experiments. Compared with other con-
figurations such as roofs, pyramid configuration contains all
kinds of singularity types, which can test the performance of
the proposed steering law better.

In this paper, for a vector h, its unit vector and modulus
are represented by ĥ and h, respectively. The characters ĝi,
ĥi, ôi, and δi denote the unit vector of the gimbal axis, unit
vector of rotor momentum, unit vector of output torque, and
gimbal angles of a SGCMGwhere i=1,2,3,4. The skew angle
of the pyramid is denoted by β. In Fig. 2, the system is in
the initial position, δ1 = δ2 = δ3 = δ4 = 0◦. We define
the counter-clockwise rotation direction of the gimbal motor
as the positive direction, and the rotation direction shown
in Fig. 2 is clockwise. According to Fig. 2, the total output
moment of pyramid SGCMGs is expressed as (2). Note that
h1 = h2 = h3 = h4 = h0, and J is the Jacobian matrix.

B. SINGULARITY PROBLEM
Refer to Fig. 2, ôi are defined in three-dimensional space,
it is a function of δi and can span a three-dimension space
at most. Equation (2) shows that the output torque τ out of the
SGCMGs is located in the space spanned by ôi, and ôi is the
column of J. Therefore, the rank of J can be used to determine
whether the system is in a singular state. If rank(J) = 3,
τ out can be any vector in the three-dimension space, and the
system is nonsingular. Otherwise, τ out is limited to a certain
plane or a certain straight line, the system falls into a singular
state.

According to different combinations of gimbal angles,
singularities can be divided into elliptic singularities and
hyperbolic singularities. Elliptic singularities include inter-
nal elliptic singularities and external saturation singularities.
Hyperbolic singularities include nondegenerate hyperbolic
singularities and degenerate hyperbolic singularities. Ellip-
tic singularity and degenerate hyperbolic singularity are not
passable or they cannot be escaped by null motion [2],
[25], [27]. Singular surfaces are a set of points in angular

momentum space corresponding to one singular gimbal angle
at least. It can help satellite attitude-control designer to know
all angular momenta that risk a singular Jacobian a-priori so
that he or she may design an algorithm to escape or avoid
such points [26]. The singular surfaces of the pyramid array
are shown in Fig. 3.

FIGURE 3. Singular surfaces in angular momentum space for four SGCMG
pyramid array (Cited from reference [26]).

In SGCMGs with redundant design, such as the pyramid
configurations, the mapping from gimbal angular space to
angular momentum space is multi-shot except for the bound-
ary of momentum envelope [2], [19], [26], [27]. Therefore,
we think all the singular surfaces except the outermost sin-
gular surface are possibly passable. An example is given as
follows:



δ =
(
δ1 δ2 δ3 δ4

)T
δsa =

(
δsa1 δsa2 δsa3 δsa4

)T
Ha =

(
hax hay haz

)T
H (δ) = h1 (δ1)+ h2 (δ2)+ h3 (δ3)+ h4 (δ4) = Ha

(3)

Suppose δsa is corresponding to an internal elliptic sin-
gularity, and Ha is the angular momentum corresponding
to δsa. Due to (3) is undetermined, the number of δ satisfying
H(δ) = Ha is infinite. However, there is no theory that can
directly judge whether an infinite number of δ values are
singular. In the infinite number of values of δ, Ha is locally
passable [26] as long as there is one value corresponding to a
non-singular state or non-degenerate hyperbolic singularity.
An excellent steering law should have the ability to pass
through this type of singular surface. The following simula-
tion experiment (Fig. 30) verifies that the proposed steering
law can pass though such a singular surface.

C. GENERAL FORM OF STEERING LAW BASED ON
SINGULAR VALUE DECOMPOSITION

τ d = h0Jδ̇ (4)
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Refer to (2), in order to output the desired torque τ d,
the command angular velocity of the gimbal motor should be
solved from (4). According to the singular value decompo-
sition theory, J can be decomposed into the product of three
matrices, that is J = USVT where U =

(
û1 û2 û3

)
and V =

(
v̂1 v̂2 v̂3 v̂4

)
. U and V are 3×3 and

4×4 unitary matrix, respectively. S is a 3×4 matrix. Suppose
rank(J) = 3, δ̇ can be derived as follows.

S =

 σ1 0 0 0
0 σ2 0 0
0 0 σ3 0

 S∗ =



1
σ1

0 0

0
1
σ2

0

0 0
1
σ3

0 0 0


τ d = h0Jδ̇ = h0USVT δ̇

⇒ δ̇ =
1
h0

VS∗UT τ d =
1
h0

3∑
i=1

v̂i
1
σi
ûTi τ d

=
v̂1
h0σ1

τ du1 +
v̂2
h0σ2

τ du2 +
v̂3
h0σ3

τ du3

= δ̇du1 + δ̇du2 + δ̇du3

(5)

Fig. 4a is the geometric interpretation of equation (5)
û1, û2, û3constitute a set of orthogonal basis in three-
dimensional space, and τ dui = ûTi τ d denotes the coordinates
of τ d . v̂i/ (h0σi) is the angular speed of the gimbal motors
which can make the SGCMGs output the unit torque along ûi.
Fig. 4b shows the relationship between δ̇, v̂i, τ out , σi, and ûi
from another aspect. v̂4 is the basis of the null space of J, that
is h0Jv̂4 = h0USVT v̂4 = 0. It is also known as the solution of
zero-motion. Based on aforementioned analysis, the general
form of δ̇ which is solved from (4) is expressed as follows:

δ̇τ =
1
h0

3∑
i=1

v̂i
1
σi
ûTi τ d

ˆ̇δz = v̂4
δ̇ = δ̇τ + λ

ˆ̇δz

(6)

where λ is an arbitrary constant.

III. A BRIEF INTRODUCTION AND ANALYSIS OF SOME
TYPICAL STEERING LAWS BASED ON THE ABOVE
THEORETICAL FRAMEWOK
A. SINGUL·ARITY MEASUREMENT
Singularity measurement is used to measure the singularity of
the system. The smaller the singularity measure is, the more
likely the system falls into singularity. At present, there are
mainly two singular measurement methods, one is using σ3
to measure the singularity, the other is using

√
det

(
JJT

)
to

measure the singularity.
σ3 is the smallest singular value, refer to Fig. 4b, the singu-

lar state of the pyramid configured SGCMGs system means
σ3 = 0. Therefore, σ3 has been used as a singular metric for

FIGURE 4. (a) The Geometric interpretation of (5). (b) The Geometric
interpretation of U, S, V.

SGCMGs in many documents. This is the most intuitive way
to measure singularity.√

det
(
JJT

)
equals to σ1σ2σ3. As shown in Fig. 4b, it repre-

sents the volume of a geometry. When the system approaches
singularity, the geometric body will be flattened and the vol-
ume will be reduced. When the system falls into singularity,
the geometric body will be compressed into a plane and the
volume will be zero.

B. NON-DIRECTIONAL NULL-MOTION ALGORITHM

δ̇ND = δ̇τ + λδ̇z =
1
h0

3∑
i=1

v̂i
1
σi
ûTi τ d + λv̂4

λ
(
δ̂
)
=

{
m6 if m ≥ 1
m−6 if m < 1

m = σ1σ2σ3

(7)

This is a torque error free singularity avoidance steering law
and it was proposed in reference [4]. This method adds null
motion directly according to the singular measure value of
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the system as shown in (7). It is not easy to fall into local
extremum and it can avoid an internal elliptic singularity.
However, there are two obvious drawbacks of this steering
law. One is that substantial null motion is introduced even
when the system is far from being singular. This will not
only result in the waste of system resources, but also make
the system close to singularity [4]. The other one is that this
method adds null motion only according to the singularity
measure of the system, without considering whether null
motion is effective or not. These two defects directly weaken
the singularity avoidance ability of this steering law.

C. OFF-DIAGONAL SINGULARITY-ROBUST STEERING LAW

δ̇ODSR =
1
h0

WJT
[
JWJT + V

]−1
τ d (8)

W =


w1 µ µ µ

µ w2 µ µ

µ µ w3 µ

µ µ µ w4

 > 0 (9)

V = µ

 1 ε3 ε2
ε3 1 ε1
ε2 ε1 1

 > 0 (10)

µ = µ0 exp(−κ det
(
JJT

)
) (11)

εi = ε0 sin (wt + φi) (12)

This is a hybrid steering law, which has excellent ability
to escape from the singularities [12]. W helps the system to
avoid singularity. V makes (8) generate deterministic dither
signals, thus enabling the system to have excellent singularity
escape capability. However, the parameters wi, µ0, ε0, w, κ ,
and φi are selected by trial and error for each maneuver. The
ODSR method is more suitable to be used for maneuvers
known in advance, which are tuned and tested to ensure
feasibility. This makes it difficult to use in practice [12], [23].

D. DIRECTIONAL SINGULARITY ESCAPE AND
AVOIDENCE STEERING LAW

δ̇dsea =
1
h0

JT (JJT + αû3ûT3 )
−1τ d

+

(
I4 − JT (JJT + αû3ûT3 )

−1J
)

δ̇s

=
1
h0

(
1
σ1

v̂1ûT1 +
1
σ2

v̂2ûT2 +
σ3

σ 2
3 + α

v̂3ûT3

)
τ d

+

(
α

σ 2
3 + α

v̂3v̂T3 + v̂4v̂T4

)
δ̇s (13)

α = σ 2
mine

η
(
σ 2min−σ

2
3

)
(14)

This hybrid steering lawwas proposed in reference [23],α is a
function of σ3. δ̇s is the desired angular velocity used to avoid
or escape singularity. η is a scale factor. σmin is a constant.
When σ3 � σmin, α → 0, (13) becomes (15). Equation (15)

is a singularity avoidance steering law based on zero motion.

δ̇desa =
1
h0

(
1
σ1

v̂1ûT1 +
1
σ2

v̂2ûT2 +
1
σ3

v̂3ûT3

)
τ d + v̂4v̂T4 δ̇s

(15)

When σ3 � σmin, the system is close to a singular state,
meanwhile σ3/α → 0, σ3/

(
σ 2
3 + α

)
→ 0, α/

(
σ 2
3 + α

)
→

1. On this condition, (13) becomes (16), the system cannot
output the torque along û3, and v̂3 is also used as a part of
null motion, which increases the possibility of singularity
avoidance and escape.

δ̇desa =
1
h0

(
1
σ1

v̂1ûT1 +
1
σ2

v̂2ûT2

)
τ̂ d +

(
v̂3v̂T3 + v̂4v̂T4

)
δ̇s

(16)

δ̇s is the desired gimbal angular velocity that need to be
carefully designed to help the system to avoid the singulari-
ties. The design of δ̇s is the core of DSEA steering law. For
a detailed description of this design method, please refer to
reference [23]. Here we briefly list the design method of δ̇s.
σacp, τmax, and τmin are constants.

I =
{
i|ĥTi τ d > 0

}
(17)

RAf̂i =


ĝi × τ̂ d∥∥ĝi × τ̂ d

∥∥ if ĥTi τ d > 0

−
ĝi × τ̂ d∥∥ĝi × τ̂ d

∥∥ if ĥTi τ d < 0
(18)



kj = σ 2
acpe

η
(
σ 2acp−σ

2
j

)

zj =
σ 2
j

σ 2
j + kj

δtrack = 1−

√√√√ 3∑
j=1

(1− zj)2(ûTj τ̂ d )2

(19)

∣∣δ̇s,i∣∣ = d0

∥∥∥∥ τ d

τmax

∥∥∥∥ξ ‖τ d‖
3

‖τ d‖
3
+ τ 3min

di (1− δtrack) (20)

di =
(
max

(
ĥTi τ̂ d , 0

))2
(21)

RA ∣∣δ̇s,i∣∣ =

d0

∥∥∥∥ τ d

τmax

∥∥∥∥ξ ‖τ d‖
3

‖τ d‖
3
+ τ 3min

·

(
τTd τ d −

(
gTi τ d

)2) if ĥTi τd > 0

0 otherwise
(22)

θ =
[
θ1 θ2 θ3 θ4

]
θi ∈ {−1, 0, 1} (23)

RAτ s (θ) =
∑
I
hiθiRA f̂iRA

∣∣δ̇s,i∣∣ (24)

θ̃ = argmin
∥∥∥RAτ s (θ)∥∥∥ (25)

δ̇s (θ) =
[
θ1
∣∣δ̇s,1∣∣ θ2

∣∣δ̇s,2∣∣ θ3
∣∣δ̇s,3∣∣ θ4

∣∣δ̇s,4∣∣ ]
(26)

This steering law operates with less moment error, less
delay in singularity escape, and lower peak gimbal rates,
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Algorithm 1 Selecting Optimal δ̇s
1: if I = ∅ or ‖τ d‖ < τmin, then F Eq. (17)
2: δ̇s = 0
3: else
4: for all i ∈ I, do
5: Evaluate RA f̂i,

∣∣δ̇s,i∣∣, and RA
∣∣δ̇s,i∣∣ F Eq. (18), (20)

and (22)
6: for all 2nanti possible vectors θ , do
7: Evaluate

∥∥RAτ s (θ)
∥∥ F Eq. (25)

8: From these options, take θ̃ = argmin
∥∥RAτ s (θ)

∥∥
9: θ∗ = PreventChattering

(
θ̃
)

F Algorithm 2

10: δ̇s = δ̇s
(
θ∗
)

F Eq. (26)

Algorithm 2 Evaluation of θ∗ = PreventChattering
(
θ̃
)

1: Denote 1 =
∥∥∥RAτ s

(
θ̃
)∥∥∥− ∥∥∥RAτ s

(
θ∗tk−1

)∥∥∥
2: if Itk = Itk−1 , and |1| < τmin, then
3: θ∗tk = θ∗tk−1
4: else
5: if

∥∥∥δ̇s (θ̃)− δ̇s,tk−1

∥∥∥ < ∥∥∥δ̇s (θ̃)+ δ̇s,tk−1

∥∥∥, then
6: θ∗tk = θ̃

7: else
8: θ∗tk = −θ̃

without tuning the controller separately for each maneu-
ver. In addition, this method can efficiently deal with all types
of singularities, using a single set of control parameters that
can be selected based on physical and intuitive considera-
tions. However, the strong singularity avoidance ability of
this steering law depends partly on the introduction of torque
error, which sacrifices the control accuracy.

δ̇s is used to enhance the singularity avoidance ability of
the system. However, in the process of designing δ̇s, there
was no overall consideration combined with the information
of 1/h0JT (JJT +αû3ûT3 )

−1τ d . This will result in a relatively
small improvement in the ability of avoiding or escaping the
singularity of the system, because part of the addition from
δ̇s is likely to be offset by 1/h0JT (JJT + αû3ûT3 )

−1τ d .

e = τ d − τ out = τ d − h0Jδ̇desa
=

α

σ 2
3 + α

(
ûT3 τd − h0σ3v̂

T
3 δ̇s

)
û3 (27)

According to [23], the torque error of this steering law is
expressed as (27). If α is a constant equal to zero, the norm
of e will also be equal to zero, under which condition (13)
will be converted to (15). Equation (15) is a simple steering
law similar to the local gradient method [4], [22], and it does
not have good singularity avoidance ability. If α is defined
as (14), the value of torque error under this condition is
related to (14) and is no longer equal to zero. Therefore,
it can be considered that the excellent singularity avoidance
capability of DSEA steering law is obtained at the expense of
the accuracy of output torque.

IV. VECTOR CONTROL BASED STEERING LAW DESIGN
A. EFFECTIVE RESIDUAL ANGULAR
MOMENTUM EVALUATION
The concept of effective residual angular momentum eval-
uation for each SGCMG of command torque is similar to
the concept of gimbal potential which is proposed in [23].
However, in reference [23], the gimbal potential is only used
to judge whether the angular momentum of the system is
saturated. Inspired by this idea, we design a novel evaluation
measure with similar function in reference [23] and further
expand the application of this measure.

FIGURE 5. SGCMG singular state diagram.

In Fig. 5, ôsi and ô
′s
i are collinear, ĥ′si , τ̂ d , ĝi, and ĥ

s
i are all

located in the plane perpendicular to ôsi and ô
′s
i . The characters

ĝi, τ̂ d , and ĥi represent the gimbal axis, direction of the
desired torque, and real-time orientation of rotor angular
momentum, respectively. The characters ĥsi and ĥ′si indicate
saturation singular locations and internal singular locations of
rotor angular momentum corresponding to τ̂ d , respectively.
If the gimbal motor rotates clockwise as indicated in the
figure, the output torques corresponding to ĥsi and ĥ′

s
i are

along ôsi and ô
′s
i . ô

s
i and ô

′s
i are perpendicular to τ̂ d . Angle αi is

the acute or right angle between τ̂ d and the straight line where
ĝi lies, it ranges from 0 to π/2. Angle γi is the angle between
ĥi and τ̂ d which ranges fromπ/2−αi toπ/2+αi. The interval
length of γi isπ/2+αi−(π/2− αi) = 2αi, where 2αi belongs
to 0 to π . For τ̂ d , we use 2αi/π to evaluate the maximum
effective angular momentum reserve each SGCMG can have.

SGCMG is an angular momentum exchange component.
If SGCMG outputs the torque in the direction of τ̂ d , then
the final position of ĥi is ĥsi , where γi = π/2 + αi, and
the remaining effective angular momentum reserve of the
SGCMG for τ̂ d is 0%. If ĥi is located at h′si , then γi =
π/2−αi, the remaining effective angular momentum reserve
of the SGCMG for τ̂ d is 100%.

In order to avoid the internal singular state of SGCMGs,
ĥi should rotate away from h′si and towards ĥsi to avoid
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approaching or stopping at ĥ′
s
i . We use the value of γi to

express the change of ĥi relative to τ̂ d . The angular distance
between γi and its maximum value π/2+αi is π/2+αi−γi.
Because the interval length of the value range of γi is 2αi,
we use (π/2+ αi − γi) / (2αi) to represent the proportion
of the remaining angular distance to the value range of γi.
Combinedwith themaximum effective angularmomentumof
each SGCMG (2αi/π ), the complete expression to evaluating
the effective residual angular momentum of a single SGCMG
is as (28).

erami =
1
2π + αi − γi

2αi

2αi
π
=

1
2π + αi − γi

π
(28)

According to (28), if ĥi is located at ĥ′
s
i , then γi =

π/2 − αi, erami takes the maximum value equals to 2αi/π .
If ĥi is located at hsi , then γi = π/2 + αi, erami takes the
minimum value equals to 0. If αi = 0, then γi = π/2,
erami = 0, any rotation of this SGCMG cannot produce any
torque component along τ̂ d .

B. SYSTEM STATE EVALUTATION
The residual resources of SGCMGs system can be evaluated
by rrss =

∑
i erami [23]. When rrss → 0, the angular

momentum resources of the systemwill be exhausted. In such
a situation, if σ3 � 0, the system can continue to run
without singularity, and rrss continues to approach zero until
σ3 approaches zero. Because both rrss and σ3 are approach-
ing zero, the angular momentum of the system has reached
saturation. Under this condition, the system should stop out-
putting τ d and start the desaturation control scheme. When
σ3 approaches zero, the system will encounter singularity.
If the value of rrss is still large, the system will encounter
an internal singularity. It is valuable to escape the singularity
under this assumption. If the value of rrss is already small or
equal to zero, the system will encounter internal singularity
nears external saturation singularity or external saturation
singularity. It is meaningless to escape singularity under this
assumption. The above analysis can be summarized as (29).

sse = rrss+ σ3

×



sse > ε1 Sufficient angular momentum
reserve

ε < sse < ε1 In the middle
sse < ε Angular momentum reserves are

exhausted
(29)

ε and ε1 are the constants. sse is used to evaluate the total
momentum state of the system. The larger ε is, the smaller
the available angular momentum envelope is.

C. DESIGN OF DESIRED GIMBAL ANGULAR VELOCITY
In order to output the desired torque τ d , each SGCMG’s
momentum tends to rotate from h′si to hsi [3], [6], [23]. If the
SGCMG with more effective residual angular momentum is

assigned a larger gimbal angular velocity toward the satura-
tion singularity direction, the possibility of the system falling
into singularity will be reduced. Based on this idea, we design
vector Ĝ, which gives the expected relationship between the
gimbal angular velocities of each SGCMG in (30).

fi =


0.01 if ĥi = ĥ′si and δ̇i = 0∣∣∣ĥi · ô′si + d∣∣∣− ∣∣∣ĥi · ô′si − d∣∣∣

2d
otherwise

n =


f1eξ∗eram1

f2eξ∗eram2

f3eξ∗eram3

f4e
ξ∗eram4


Ĝ =

{
n/ ‖n‖ if ‖n‖ 6= 0
0 if ‖n‖ = 0

(30)

Each element in n is the product of eξ∗erami and fi. eξ∗erami
gives the amplitude of the gimbal angular velocity where ξ
is a stretching factor greater than 1. The exponential form
of erami can enhance the singularity avoidance ability of the
system. fi gives the rotational direction. fi equals -1 for clock-
wise rotation and fi equals 1 for counterclockwise rotation.
In order to avoid the influence caused by the jump of its
value, we make it to take values continuously from -1 to 1.
When

∣∣∣ĥi · ô′si ∣∣∣ > d , fi = sign
(
ĥi · ô′

s
i

)
. when

∣∣∣ĥi · ô′si ∣∣∣ < d ,

fi = ĥi ·ô′si /d . d is a positive constant. This design can prevent
the jump of n caused by ĥi passing through ĥ′si . However,
the above design will cause another problem. If a certain ĥi
happens to be located at ĥ′si , then unless τ d is parallel to ĝi,
eξ∗erami is greater than one. However, at this time ĥi · ô′

s
i =

0, and then fi is equal to zero, the information brought by
eξ∗erami will be completely erased by the multiplication of
fi. Under the above conditions, if the rotating speed of the
SGCMG is not zero, ĥi will normally pass through ĥ′si , and
the influence of fi being equal to zero will not be too great.
If the rotating speed of the SGCMG (δ̇i) is exactly equals to
zero, fi being equal to zero will easily make ĥi stuck at ĥ′si .
In order to avoid the above unfavorable situation and ensure
the continuity of fi as much as possible, when ĥi = ĥ′si and
δ̇i = 0, fi is forced to be equal to 0.01.

D. SINGULARITY AVOIDENCE CONTROL STRATEGY
Inspired by the references [3] and [6], we propose a novel
singularity avoidance control strategy that only depends on
adding zero motion. Using moment motion δ̇τ and reference
quantity Ĝ, we derive a new zero motion addition formula.
In addition, we also deeply analyzed the influence of zero
motion amplitude on the algorithm performance from the
perspective of geometry, and proposed a new adaptive zero
motion amplitude limitation method. These core innovations
will make our algorithm achieve good performance.
According to (6), δ̇ can be decomposed into δ̇τ and λ ˆ̇δz,

where λ is an arbitrary constant. The value of parameter λ
can adjust the direction of δ̇ to minimize the included angle
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FIGURE 6. Pseudo-inverse solution and null-motion.

θ between δ̇ and Ĝ.This strategy avoids the singularity of the
system by selecting a suitable λ in real time. The schematic
diagram of the geometric relationship between δ̇τ , λ ˆ̇δz and
δ̇ is shown in Fig. 6, where δ̇τ is perpendicular to λ ˆ̇δz. θ is
defined by (31).

θ = arctan

 ∥∥δ̇τ∥∥∥∥∥λ ˆ̇δz∥∥∥
 = arctan

(
δ̇τ

λ ˆ̇δz

)
== arctan

(
δ̇τ

λ

)
(31)

dθ
dλ
=
−
∥∥δ̇τ∥∥

λ2 +
∥∥δ̇τ∥∥2 (32)

According to (31), the derivative of the included angleθ
to λ is (32), and its norm becomes smaller and smaller with
the increase of λ, that is, the larger the value of parameter λ,
the weaker its ability to adjust the direction of δ̇. For example,
if λ changes from 0 to δ̇τ , θ changes from 90 to 45 degrees,
λ continues to change from δ̇τ to 10δ̇τ , then θ changes from
45 to 5.71 degrees, finally λ changes from 10δ̇τ to infinity,
and θ changes only from 5.71 to zero degree. Besides, there
is a physical limit to the amplitude of the gimbal angular
velocity, so it is of limited significance to take the amplitude
of λ to infinity. More importantly, if λ takes the value to
infinity, the slight change of θ between 5.71 to 0 degree
will lead to the drastic change of λ, which will make the
gimbal angular velocity given by the steering law unstable.
Therefore, it is necessary to limit the magnitude of λ properly.

λ =

∥∥δ̇τ∥∥
Ĝ · ˆ̇δτ

Ĝ · ˆ̇δz
(
Ĝ · ˆ̇δτ > 0

)
(33)

λ =

∥∥δ̇τ∥∥
max

(
ς, Ĝ · ˆ̇δτ

) Ĝ · ˆ̇δz(Ĝ · ˆ̇δτ > 0
)

(34)

We determine the value of λ from the perspective of min-
imizing the angle between δ̇ and Ĝ. If the angle between δ̇τ

and Ĝ is an acute angle, i.e. Ĝ · ˆ̇δτ > 0, the angle between δ̇

and Ĝ is the smallest when δ̇ is at the orthographic projection
position of Ĝ on the plane spanned by δ̇τ and λ ˆ̇δz. In this
case, the value of λ is determined by (33). Considering that
it is necessary to limit the amplitude of λ, we modify (33) to
(34), and ς is a constant greater than zero and less than one.

λ =

∥∥δ̇τ∥∥
max

(
ς,−Ĝ · ˆ̇δτ

) Ĝ · ˆ̇δz (Ĝ · ˆ̇δτ < 0
)

(35)

If the angle between δ̇τ and Ĝ is obtuse, i.e. Ĝ · ˆ̇δτ < 0,
then δ̇τ and λδ̇z will no longer be able to form the pro-
jection of Ĝ on the plane they determined. To ensure the
continuity of the value of λ and considering the correlation
between Ĝ and ˆ̇δz, we design (35) to determine the value
of λ. Equation (34) and (35) guarantee the continuity of λ
together. In addition, Ĝ · ˆ̇δz measures the correlation between
Ĝ and ˆ̇δz. The bigger the value of

∣∣∣Ĝ · ˆ̇δz∣∣∣, the stronger the

correlation between Ĝ and ˆ̇δz. Finally, we integrate (34) and
(35) into (36).

λ =

∥∥δ̇τ∥∥
max

(
ς,

∣∣∣Ĝ · ˆ̇δτ ∣∣∣) Ĝ · ˆ̇δz (36)

The purpose of adding zero motion is to adjust the tra-
jectory of SGCMGs in the space of the gimbal angle so
that the system can avoid the singularity nearby. When
the system is far away from the internal singularity, e.g.
min (γ1, γ2, γ3, γ4) > π/2, it is not necessary to continue
adding zero motion in order to save the system energy. There-
fore, we further adjusted (36) to (38).

si =


0 if γi >

π

2
|π/2− γi + d | − |π/2− γi − d |

2d
otherwise

(37)

λ = maxi (si)

∥∥δ̇τ∥∥
max

(
ς,

∣∣∣Ĝ · ˆ̇δτ ∣∣∣) Ĝ · ˆ̇δz (38)

si is a switching function. If γi > π/2 (i=1,2,3,4),
the SGCMG has been far away from the internal singularity,
the zero motion does not need to be added. On this condition,
we set si = 0 (i=1,2,3,4), λ is equal to 0. If π/2− d < γi <

π/2, the SGCMG is in the transitional region, then si takes
a value of 0 to 1. If γi < π/2 − d , the SGCMG is in the
singular escape region, then si = 1, the zero motion λ should
be added.

E. SINGULARITY AVOIDANCE AND ESCAPE
CONTROL STRATEGY
In order to deal with the potential singularity avoidance fail-
ure and enhance the robustness of the algorithm, the singular-
ity escape steering law based on torque error is also needed
as a supplementary strategy. The singularity escape control
strategy is valuable only when the system has sufficient resid-
ual angular momentum, otherwise the system desaturation
control strategy is adopted to reset the system. Based on the
above analysis, we design a supplementary singularity escape
steering law and integrate it with the aforementioned singu-
larity avoidance steering law. The complete hybrid steering
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law is given by (39).

δ̇ =



1
h0

3∑
i=1

v̂i
1
σi
ûTi τ d + λ

ˆ̇δz

σ3 ≥ σc, sse ≥ ε

1
h0

2∑
i=1

v̂i
1
σi
ûTi τ d +

1
h0

v̂3

(
σ3

σc

)2 1
σc

ûT3 τd

+

(
σ3

σc

)2

λ ˆ̇δz +

(
1−

(
σ3

σc

)2
)
Ĝ

σ3 < σc, and sse ≥ ε1
Desaturation Steering Strategy

sse < ε or (σ3 < σc, and sse < ε1)

(39)

For (39), σc is a constant to distinguish singularity. If
σ3 ≥ σc and sse > ε, the system does not fall into singularity
and the angular momentum of the system is not exhausted.
The singularity avoidance steering law based on zero motion
is applied. If σ3 < σc and sse ≥ ε1, the system has sufficient
residual angular momentum. The singularity escape strategy
is adopted to make the system escape from the singularity.
If σ3 < σc and sse < ε1, the system has insufficient residual
angular momentum. It is of little significance to escape from
singularity and the desaturation steering strategy should be
adopted. If sse < ε, the angular momentum of the system has
been exhausted, in this case the desaturation steering strategy
should be adopted.

For sse ≥ ε1, the switching point between the singularity
avoidance steering law and singularity escape steering law is
at σ3 = σc, and the values of δ̇ on both sides of this switching
point are continuous. If σ3 continues to decrease and is less
than σc, then the singularity escape steering law is activated.
With the decrease of σ3, the output torque of the system in û3
becomes smaller and smaller, the added zero motion becomes
smaller and smaller, and the component of Ĝ in δ̇ becomes
larger and larger. The system can quickly escape from the
singular state by using Ĝ.

V. SIMULATION COMPARISON AND DISCUSSION
The experimental parameters of SGCMGs with pyramid con-
figuration are listed as follows. The amplitude of rotor angu-
lar momentum is h0 = 1Nms, pyramid inclination is β =
54.73◦, maximum gimbal angular velocity is δ̇max = 180◦/s,
simulation step is 0.01s and total simulation time is 10s.
ε = 0.2, when sse < ε, the simulation is terminated. Desat-
uration control strategy is beyond the scope of discussion in
this paper. The simulation is divided into two parts, singular-
ity avoidance simulation and singularity escape simulation.
For the simulation of singularity avoidance, the initial gimbal
angle is δ =

[
0 0 0 0

]
, and the following three

typical torque are selected, τ d1 =
[
1 1 1

]T Nm, τ d2 =[
0.5 0.4 0.1

]T Nm, and τ d3 =
[
− 1 0 0

]T Nm.
There is no singularity in direction τ d1, and there is singular-
ity in direction τ d2 and direction τ d3, of which the singularity
in direction τ d3 is an internal elliptic singularity [4]. For the

simulation of singularity escape, the initial gimbal angle is
δ =

[
−π/2 0 −π/2 0

]
, this is an internal elliptical sin-

gularity [4], the desired torque is τ d =
[
− 1 0 0

]T Nm.
Under the action of τ d , the systemwill move towards an inter-
nal impassable singular surface. On this condition, the system
can only escape singularity by introducing a moment error.
The simulation results are shown in Fig. 7 to Fig. 31,

each figure consists six subgraphs. From left to right, top
to bottom, they are the output torque, norm of the total
angular momentum, gimbal angular speed, gimbal angular
position, effective residual angular momentum, and singu-
larity measurement of the SGCMGs system, respectively.
The ideal result of the simulation for singularity avoidance
need to satisfy the following two points. First, the system
can give relatively smooth angular velocity or position com-
mands. Second, it should utilize all the angular momen-
tum resources as quickly as possible and output the desired

FIGURE 7. Simulation results of singularity avoidance of PI steering law
for τd1.

FIGURE 8. Simulation results of singularity avoidance of PI Steering Law
for τd2.
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FIGURE 9. Simulation results of singularity avoidance of PI steering law
for τd3.

FIGURE 10. Simulation results of singularity escape of PI steering law
for τd .

torque accurately. The premise of accurate output torque of
the system is that the system does not approach the singu-
lar state before it makes full use of all angular momentum
resources (reaching saturated singularity), that is, the singular
measure cannot approach zero before the end of the simu-
lation. The simulation results of the ideal singularity escape
steering law should have the following characteristics: first,
the steering law can give smooth angular velocity instruc-
tions; second, the negative impact caused by the introduced
torque error should be as small as possible; and finally,
the system can escape from the singular state as soon as
possible. Next, we will elaborate on the experimental results
of five different steering laws.

A. PSEUDO-INVERSE STEERING LAW
In order to avoid the ill-conditioned solution of pseudo-
inverse steering law, minor modifications are made to this

FIGURE 11. Simulation results of singularity avoidance of ND steering law
for τd1.

FIGURE 12. Simulation results of singularity avoidance of ND steering law
for τd2.

law.

δ̇PI =


1
h0

3∑
i=1

v̂i
1
σi
ûTi τ d σ3 > 0.0001

1
h0

(
2∑
i=1

v̂i
1
σi
+ v̂3

1
0.0001

)
ûTi τ d otherwise

(40)

The simulation results are shown in Fig. 7 to Fig. 10.
PI steering law does not possess the ability of singularity
avoidance and escape. Fig. 7 shows that there is no singu-
larity in the direction of τ d1. At the end of the simulation,
because the maximum gimbal angular velocity is limited,
the magnitude of the command gimbal angular velocity is
scaled down, so the magnitude of output torque decreases.
Fig. 8 and Fig. 9 shows the system falls into internal sin-
gularities when it outputs τ d2 and τ d3. This verifies that
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FIGURE 13. Simulation results of singularity avoidance of ND steering law
for τd3.

there are the internal singularities in the direction of τ d2
and τ d3. Fig. 10 shows that PI steering law cannot make
the system escape from the internal elliptical singularity at
δ =

[
−π/2 0 −π/2 0

]
.

B. NON-DIRECTIONAL NULL-MOTION ALGORITHM
The non-directional null-motion algorithm is a torque error
free singularity avoidance steering law.We select this steering
law for comparison because it is more successful in avoiding
an elliptic-type internal singularity in the direction of τ d3 [4].
The simulation results are shown in Fig.11 to Fig. 13.

As shown in Fig. 11 to Fig. 13, in the process of the
system approaching saturation singularity, the gimbal angu-
lar velocity oscillates sharply, while the norm of the total
angular momentum is almost unchanged. The reasons for this
result are as follows. When the system is close to saturation
singularity, the singular measurement value of the system is
close to zero, then the steering law will add a very large zero
motion. Because the maximum gimbal angular velocity is
limited, the velocity components of the non-zero motion part
will be greatly compressed, this results in almost no change in
the amplitude of the total angular momentum of the system
in the final stage. At the end of the simulation, the angular
momentum resources of the system are almost exhausted,
the singular measurement of the system is always greater than
zero. The experimental result shows that the steering law has
good singularity avoidance ability. However, both the angular
velocity command and the torque fluctuate greatly.

C. OFF-DIAGONAL SINGULARITY-RUBUST STEERING LAW
The control parameters of ODSR steering law is shown
in Table 1. According to the different settings of wi parame-
ters, we have done three different groups of experiments. The
first group of experiments illustrates the singularity escape
performance of the ODSR steering law, while the second and
third groups illustrates the singularity avoidance and escape
performance of the ODSR steering law.

TABLE 1. The control parameters of ODSR steering law.

FIGURE 14. Simulation results of singularity avoidance of GSR steering
law for τd1.

1) THE FIRST GROUP OF EXPERIMENTS
When w1 = w2 = w3 = w4 = 1, the ODSR steering
law becomes the GSR steering law [11], [12]. The sim-
ulation results of the GSR steering law are shown from
Fig. 14 to Fig. 17. When the system is far from singularity,
the GSR steering law is equivalent to the PI steering law [11],
which can be verified by comparing Fig. 7 with Fig. 14. This
means that the GSR steering law is as easy to encounter
singularity problems as the PI steering law. The PI steering
law always falls into singularity, and the GSR steering law
can escape singularity by introducing a torque error, and this
is verified by comparing Fig. 8 with Fig. 15 and Fig. 9 with
Fig. 16. However, theGSR steering law takes some time to get
the system out of the singular state, and the angular velocity
curve changes steeply, as shown in Fig. 16. Fig. 17 shows
that the steering law can make the system escape from the
singularity of internal ellipse.

2) THE SECOND AND THIRD GROUPS OF EXPERIMENTS
The corresponding parameters of the second group of exper-
iments are as follows: w1 = 0.01, w2 = w3 = w4 = 1.
The singularity avoidance simulation results are shown
in Fig. 18 to Fig. 20. The corresponding parameters of the
third group of experiments are as follows: w2 = 0.01,
w1 = w3 = w4 = 1. As shown in Fig. 21 to Fig. 23, the
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FIGURE 15. Simulation Results of singularity avoidance of GSR steering
law for τd2.

FIGURE 16. Simulation results of singularity avoidance of GSR steering
law for τd3.

experimental results are shown in Fig. 21 to Fig. 23. Some
experimental results are analyzed as follows.

In the case of no singularity, corresponding to τ d1, Com-
pared with Fig. 18 and Fig. 21, the simulation results obtained
in Fig. 14 are the best, which can be drawn from two aspects
of the torque error and the angular velocity curve.

The comparison of the three figures (Fig. 15, Fig. 19 and
Fig. 22) shows that Fig. 22 has the smallest torque error.
Besides, under the parameters set in Fig. 22, the system does
not encounter the singular state during the simulation. That is
to say, in the direction of τ d2, the third set of parameters has
a better singularity avoidance capability.

Compared with Figs. 16 and 23, the simulation results
obtained in Fig. 20 achieve the best performance. Under
the parameters set in Fig. 20, the system has not encoun-
tered singularity problems. This verifies that the second set
of parameters has better singularity avoidance capability in
direction of τ d3. In addition, the angular velocity curves of
the three groups change drastically.

FIGURE 17. Simulation results of singularity escape of GSR steering law
for τd .

FIGURE 18. Simulation results of singularity avoidance of ODSR1 steering
law for τd1.

From the above analysis, it can be concluded that the
ODSR steering law is a hybrid steering law with singularity
avoidance and escape capability. However, its singular avoid-
ance ability depends heavily on the design of parameters. The
torque error is often introduced in the process of singularity
avoidance or escape. In addition, velocity curve generated by
ODSR often has steep changes.

D. DIRECTIONAL SINGULARITY ESCAPE AND
AVOIDANCE STEERING LAW
We set the same experimental parameters as Reference [23],
except for τmax. We modify τmax from 10 to 2Nm according
to the simulation conditions in this paper, as shown in Table 2.
The simulation results are shown from Fig. 24 to Fig. 27.

The simulation results from Fig. 25 to Fig. 27 show that the
gimbal angular velocity curve is smooth and the singularmea-
surement never equals to zero. However, torque error exists
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FIGURE 19. Simulation results of singularity avoidance of ODSR1 steering
law for τd2.

FIGURE 20. Simulation results of singularity avoidance of ODSR1 steering
law for τd3.

TABLE 2. The experimental parameters of DSEA steering law.

in all three kinds of torques. Fig. 27 shows that the DSEA
steering law can make the system out of the internal elliptical
singularity. As theoretically analyzed in the previous chapter,
DSEA steering law sacrifices the precision of the output
torque for the singularity avoidance performance.

FIGURE 21. Simulation results of singularity avoidance of ODSR2 steering
law for τd1.

FIGURE 22. Simulation results of singularity avoidance of ODSR1 steering
law for τd2.

TABLE 3. The control parameters of the proposed VCBSAE steering law.

E. VECTOR-CONTROL BASED SINGULARITY AVOIDANCE
AND ESCAPE STEERING LAW
The control parameters of the proposed VCBSAE steering
law are given in Table 3. The simulation results are shown
from Fig. 28 to Fig. 31.

The results of Figs. 28 and 29 are very ideal, with no
torque error, no singularity, and very flat angular velocity
command. In Fig. 30, due to the limitation of the maximum
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FIGURE 23. Simulation results of singularity avoidance of ODSR2 steering
law for τd3.

FIGURE 24. Simulation results of singularity avoidance of DSEA steering
Law for τd1.

gimbal angular velocity, the amplitude of the speed command
signal is compressed. Although the amplitude of the output
torque is compressed in the same proportion, the direction of
the output torque can remain unchanged. In addition, when
the command torques are τ d2 and τ d3, the system does not
encounter singularities and the angular velocity curves are
relatively flat. Fig. 31 shows the VCBSAE steering law can
make the system escape from the internal elliptical singular-
ity. The experimental results show that the proposed steering
law has strong singularity avoidance and escape ability.

F. SUMMARY
1) SINGULARITY AVOIDANCE
The experimental comparison of singular avoidance is sum-
marized in Tables 4 to 6. For different command torques,
we summarize the performance of the different steering laws
from five aspects: torque error, gimbal velocity, singular mea-
surement, total time of simulation and momentum reserve.
If the direction of the output torque is different from that of the

FIGURE 25. Simulation results of singularity avoidance of DSEA steering
law for τd2.

FIGURE 26. Simulation results of singularity avoidance of DSEA steering
law for τd3.

TABLE 4. The performance of different steering laws in the direction
of τd1.

command moment in the simulation, that is, there is a torque
error, then fill in Y in the corresponding cell, otherwise fill in
N. If the gimbal angular velocity changes dramatically, then
fill in Y in the corresponding cell, otherwise fill in N. If the
minimum value of singular measure is zero, then Y is filled
in the corresponding cell, otherwise N is filled.
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FIGURE 27. Simulation results of singularity escape of DSEA steering law
for τd .

FIGURE 28. Simulation results of singularity avoidance of VCBSAE
steering law for τd1.

From Table 4 to Table 6, it can be concluded that for
different desired torques, only the proposed steering law
can simultaneously have torque error free, relatively stable
angular velocity and strong singularity avoidance ability. The
time consumed for the VCBSAE steering law is the shortest
except for PI steering. In addition, in all simulations lasting
less than 10 seconds, the angular momentum of the system is
almost exhausted and the system does not fall into saturation
singularity. This proves the validity of sse.

2) SINGULARITY ESCAPE
We measure the singular escape performance of the steering
law from the following aspects: total time, impulse moment
deviation introduced by X and Y direction error moments,
and total impulse moment deviation. Table 7 shows the simu-
lation results of singularity escape for GSR, DSEA and VCB-
SAE steering laws. The GSR steering law has the shortest

FIGURE 29. Simulation results of singularity avoidance of VCBSAE
steering law for τd2.

FIGURE 30. Simulation results of singularity avoidance of VCBSAE
steering law for τd3.

TABLE 5. The performance of different steering laws in the direction
of τd2.

total time and the smallest total impulse moment deviation,
it achieves the best escape performance, followed by our
algorithm, and finally DSEA algorithm. This verifies that
the steering law designed in this paper can make the system
escape from singularity, and its performance is between GSR
and DSEA steering laws.
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FIGURE 31. Simulation results of singularity escape of VCBSAE steering
law for τd .

TABLE 6. The avoidance performance of different steering laws in the
direction of τd3.

TABLE 7. The escape performance of different steering laws.

VI. CONCLUSION
By comparing with PI steering law, ND steering law, GSR
steering law, ODSR steering law and DSEA steering law,
we verify that the proposed steering law is the only one
possess the following four advantages at the same time.

a. It can reach the angular momentum boundary almost
as fast as pseudo-inverse steering law in the absence of
singularity.

b. It has the strongest singularity avoidance ability.
c. On the premise of introducing moment error, it can

make the system quickly escape from the internal elliptic
singularity.

d. The angular velocity command given by the proposed
steering law will not produce severe oscillation.

REFERENCES
[1] J. Crenshaw, ‘‘2-SPEED, a single-gimbal control moment gyro attitude

control system,’’ Proc. AIAA, Aug. 1973, pp. 73–895.
[2] G. Margulies and J. N. Aubrun, ‘‘Geometric theory of single-gimbal

control moment gyro systems,’’ J. Astron. Sci., vol. 26, no. 2, pp. 159–191,
1978.

[3] D. E. Cornick, ‘‘Singularity avoidance control laws for single gimbal
control moment gyros,’’ in Proc. Guid. Control Conf., vol. 1698, 1979,
pp. 255–267.

[4] N. Bedrossian, J. A. Paradiso, E. Bergmann, and D. Rowell, ‘‘Steering law
design for redundant single-gimbal control moment gyroscopes,’’ J. Guid.
Control Dyn., vol. 13, no. 6, pp. 1083–1089, 1990.

[5] H. Leeghim, H. Bang, and J.-O. Park, ‘‘Singularity avoidance of control
moment gyros by one-step ahead singularity index,’’ Acta Astronautica,
vol. 64, nos. 9–10, pp. 935–948, 2009.

[6] C. Li, Y. Guo, and G. Ma, ‘‘Singularity analysis and steering law design
for single-gimbal control moment gyroscopes,’’ J. Astronautics, vol. 31,
no. 10, pp. 2346–2353, 2010.

[7] S. R. Vadali, H. S. Oh, and S. R. Walker, ‘‘Preferred gimbal angles for
single gimbal control moment gyros,’’ AIAA J. Guid. Control Dyn., vol. 13,
no. 6, pp. 1090–1095, 1990.

[8] J. A. Paradiso, ‘‘Global steering of single gimballed control moment
gyroscopes using a directed search,’’ AIAA J. Guid. Control Dyn., vol. 15,
no. 5, pp. 1236–1244, 1992.

[9] W. Zhang, Y. Zhang, and W. Li, ‘‘Path Planning for Rapid Large-Angle
Maneuver of Satellites Based on the Gauss Pseudo spectral Method,’’
Math. Problems Eng., vol. 2016, Feb. 2016, Art. no. 1081267.

[10] Z. Sun and S. Ding, ‘‘SGCMG non-singularity steering based on adap-
tive Gauss pseudospectral method,’’ in Proc. IEEE ICCSS, Oct. 2014,
pp. 96–101.

[11] B. Wie, C. Heiberg, and D. Bailey, ‘‘Singularity robust steering logic for
redundant single-gimbal control moment gyros,’’ J. Guid. Control Dyn.,
vol. 24, no. 5, pp. 865–872, Sep./Oct. 2001.

[12] B. Wie, ‘‘Singularity escape/avoidance steering logic for control moment
gyro systems,’’ AIAA J. Guid. Control Dyn., vol. 28, no. 5, pp. 948–956,
Sep./Oct. 2005.

[13] K. A. Ford and C. D. Hall, ‘‘Singular direction avoidance steering
for control-moment gyros,’’ J. Guid., Control, Dyn., vol. 23, no. 4,
pp. 648–656, 2000.

[14] T. Meng and S. Matunaga, ‘‘Modified singular-direction avoidance steer-
ing for control moment gyros,’’ AIAA J. Guid. Control Dyn., vol. 34, no. 6,
pp. 1915–1920, 2011.

[15] Y. Guo, H. Cui, G. Ma, and C. Li, ‘‘Singular direction escape steering law
for control moment gyros,’’ J Aerosp. Eng, vol. 30, no. 5, 2017.

[16] K. Takada, H. Kojima, andN.Matsuda, ‘‘Control moment gyro singularity-
avoidance steering control based on singular-surface cost function,’’ AIAA
J. Guid. Control Dyn., vol. 33, no. 5, pp. 1442–1450, Sep./Oct. 2010.

[17] K. Yamada and I. Jikuya, ‘‘Directional passability and quadratic steering
logic for pyramid-type single gimbal Control Moment Gyros,’’ Acta Astro-
nautica, vol. 102, pp. 103–123, Sep./Oct. 2014.

[18] Y. Geng, Z. Hou, and J. Guo, ‘‘Rapid singularity-escape steering strategy
for single-gimbal control moment gyroscopes,’’ AIAA J. Guid. Control
Dyn., vol. 40, no. 12, pp. 3199–3210, 2017.

[19] J. Guo, B. Wu, Y. Geng, X. Kong, and Z. Hou, ‘‘Rapid SGCMGs
singularity-escape steering law in gimbal angle space,’’ IEEE Trans. Ind.
Electron., vol. 54, no. 5, pp. 2509–2525, Oct. 2018.

[20] O. Tekinalp and E. Yavuzoglu, ‘‘A new steering law for redundant con-
trol moment gyroscope clusters,’’ Aerosp Sci Technol, vol. 9, no. 7,
pp. 626–634, 2005.

[21] L. Wang, Y. Guo, L. Wu, and Q. Cheng, ‘‘Improved optimal steering law
for SGCMG and adaptive attitude control of flexible spacecraft,’’ J. Syst.
Eng. Electron., vol. 26, no. 6, pp. 1268–1276, Dec. 2015.

[22] F. A. Leve and N. Fitz-Coy, ‘‘Hybrid steering logic for single-gimbal
control moment gyroscopes,’’ AIAA J. Guid. Control Dyn., vol. 33, no. 4,
pp. 1202–1212, 2010.

[23] L. Valk, A. Berry, and H. Vallery, ‘‘Directional singularity escape and
avoidance for single-gimbal control moment gyroscopes,’’ AIAA J. Guid.
Control Dyn., vol. 41, no. 5, pp. 1107–1195, 2018.

[24] H. Kurokawa, ‘‘Survey of theory and steering laws of single-gimbal control
moment gyros,’’ J. Guid. Control Dyn., vol. 30, no. 5, pp. 1331–1340,
2007.

[25] F. A. Leve, ‘‘Evaluation of steering algorithm optimality for single-gimbal
control moment gyroscopes,’’ IEEE Trans. Control Syst. Technol., vol. 22,
no. 3, pp. 1130–1134, May 2014.

175742 VOLUME 7, 2019



N. Mao et al.: Vector Control-Based Singularity Avoidance/Escape Steering Law for Single Gimbal Control Moment Gyros

[26] F. A. Leve, A. L. Frederick, B. J. Hamilton, and M. A. Peck, ‘‘Singular-
ities of control moment gyroscopes,’’ in Spacecraft Momentum Control
Systems. Switzerland: Springer, 2015, pp. 95–131.

[27] Z. L. Hou, Y. H. Geng, B. L. Wu, and S. M. Huang, ‘‘Spacecraft angular
velocity trajectory planning for SGCMG singularity avoidance,’’ Acta J.
Astronaut, vol. 151, pp. 284–295, 2018.

[28] J. Zhang, K. Ma, G. Meng, and S. Tian, ‘‘Spacecraft maneuvers via
singularity-avoidance of control moment gyros based on dual-mode model
predictive control,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 4,
pp. 2546–2559, Oct. 2015.

[29] K. Yamada, T. Asai, and I. Jikuya, ‘‘Inverse kinematics in pyramid type
single-gimbal control moment gyro system,’’ AIAA J. Guid. Control Dyn.,
vol. 39, no. 8, pp. 1897–1907, 2016.

[30] T. Kanzawa, M. Haruki, and K. Yamanaka, ‘‘Steering law of control
moment gyroscopes for agile attitude maneuvers,’’ AIAA J. Guid. Control
Dyn., vol. 39, no. 4, pp. 952–962, 2016.

[31] J. Guo, Y. Geng, B. Wu, and X. Kong, ‘‘Vibration suppression of flexible
spacecraft during attitude maneuver using CMGs,’’ Aerosp. Sci. Technol.,
vol. 72, pp. 183–192, Jan. 2018.

NING MAO was born in Heilongjiang, China,
in 1993. He received the B.E. degree from the
Harbin Institute of Technology, in 2015. He is
currently pursuing the Ph.D. degree with the Uni-
versity of Chinese Academy of Sciences and
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
China.

His research interests include satellite attitude
and control, modeling, parameter identification,

as well as electric machine drives and control.

TAO ZHANG was born in Jilin, China, in 1964.
He received the B.E. degree from Zhejiang Uni-
versity, in 1987.

From 1987 to 2008, he has served as a
Deputy Researcher of the Photoelectric Engineer-
ing Department, the Deputy Director of the Sci-
entific Research Department, the Director of the
Optical Engineering Center, the Deputy Direc-
tor of the Photoelectric Engineering Department,
a Researcher, as well as the Director of the

Aviation Surveillance Department and the General Manager of the Opp Pho-
toelectric Technology Company, Ltd., Changchun Institute of Optics, Fine
Mechanics and Physics, Chinese Academy of Sciences. From 2008 to
2012, he has served as the Deputy Group Leader of the Preparation Team,
Suzhou Institute of Biomedical Engineering Technology (preparatory),
Chinese Academy of Sciences, the Director of the Medical Image Technol-
ogy Research Department (concurrently: Assistant Director of Changchun
Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sci-
ences, in 2010), and the Vice President of the Changchun Optical Machinery
Institute, since 2012. His research interests include detection and imaging
technology and stability control technology.

Dr. Zhang has won two second-class prizes for scientific and technological
progress of the Chinese Academy of Sciences, one third-class prize for
scientific and technological progress of the Chinese Academy of Sciences,
as well as one National Invention Patent Award, and enjoys the government
subsidy of the State Council.

KAI XU was born in Heilongjiang, China, in 1982.
He received the B.E. degree from Jilin University,
in 2004, and the M.S. and Ph.D. degrees from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
China, in 2009.

From 2009 to 2015, he was a Deputy Researcher
of the Spaceborne Technology Research Labora-
tory, Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences.

From 2015 to 2018, he was the Director of the Research Laboratory of
Attitude and Orbit Control Technology, Chang Guang Satellite Technology
Co., Ltd. Since 2018, he has been with the Minister of Scientific Research
Quality, Chang Guang Satellite Technology Company, Ltd. His research
interests include satellite dynamics modeling, attitude and orbit control, and
so on.

MAO-SHENG CHEN was born in Jiangsu, China,
in 1985. He received the B.S. degree from the
Nanjing University of Science and Technology,
in 2007, and the M.S. and Ph.D. degrees from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
China, in 2012.

From 2012 to 2015, he was a Deputy Researcher
with the Spaceborne Technology Research Lab-
oratory, Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Sciences. Since 2015, he has
been the Director of the Integrated Electronics Research, Chang Guang
Satellite Technology Company, Ltd. His research interests include embedded
system design and motor servo control.

CHAO DONG was born in Jilin, China, in 1992.
She received the B.E. degree from Jilin Univer-
sity, in 2015. She is currently pursuing the Ph.D.
degree with the University of Chinese Academy
of Sciences and the Changchun Institute of Optics,
Fine Mechanics and Physics, Chinese Academy of
Sciences, China.

Her research interests include satellite earth
observation and satellite data analysis.

VOLUME 7, 2019 175743


