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A B S T R A C T

In image communication systems, images are often contaminated by multiple types of distortions. However,
most existing image quality assessment (IQA) methods mainly focused on a single type of distortions. In this
paper, we proposed a no-reference (NR) IQA method for images with multiple distortions. Image distortions
not only destroy the intensity of low-level image features, but also alter their distribution, to both of which
the human vision system (HVS) is sensitive. Based on these observations, low-level features are represented
by phase congruency (PC) which is consistent with human perception. The distribution of low-level features is
extracted using local binary pattern (LBP) in PC domain at multiple scales, which can effectively characterize
the impact of multiple distortions on images. Given that PC is contrast invariant while the contrast does affect
perceptual image quality of the HVS, image gradient magnitude (GM) is employed as a weighting factor for
LBP histogram creation. Finally a support vector regression model is trained to map the gradient-weighted LBP
histograms in PC domain at multi-scale to quality scores. Experimental results on two benchmark databases
demonstrate that the proposed method achieves high consistency with subjective perception and performs
better than other state-of-the-art full-reference (FF) and NR IQA methods.

1. Introduction

With the exponential growth of image and video data, there is a
need to assess the image quality for any system that processes images
and videos for human viewing [1]. The performance of image quality
assessment (IQA) has become a critical metric for these systems such as
image restoration, image/video compression [2], image forensics, and
so on. During image acquisition, processing, transmission and storage,
multiple types of distortions are introduced into the images (i.e., images
are often distorted by more than two types of noises, such as Gaussian
blur + additive white Gaussian + JPEG compression) [3,4]. Assessing
the quality of such contaminated images effectively and efficiently has
gained attention over the past several years.

Subjective quality assessment is the most reliable way to assess
image quality, but it is labor-intensive and time-consuming. Therefore
automatic IQA methods are in great demand. According to the avail-
ability of reference data, the objective IQA methods can be classified
into three categories [5]: Full-Reference (FR), No-Reference (NR), and
Reduced-Reference (RR). FR methods [6] require the whole reference
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image (high-quality) for quality assessment. RR methods are designed
to predict the perceptual quality by using partial information of the
reference image. However, the reference image or reference data is not
always available in practice and NR methods [7,8] are expected to pre-
dict quality of distorted image without using any external information,
making NR IQA an extremely challenging task. In this work, we mainly
focus on developing an effective NR IQA.

Although many NR IQA methods are proposed, most of them are
specially designed for images that are corrupted by only one of many
possible distortions. However, in image communication systems, im-
ages usually undergo acquisition, processing, compression, transmis-
sion, storage, etc. In this pipeline, multiple types of distortions may
be induced, resulting in contaminated images with blockiness and blur
artifacts of JPEG compression, blurring due to processing and noise
injection due to AD conversion [9]. Therefore, it is more practical to
assess the quality for multiply-distorted images.

In fact, some of the state-of-the-art NR IQA methods show satisfac-
tory performance on single distortion databases, such as TID2013 [10],
LIVE [11] and CSIQ [12], in which the images are contaminated by a
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single type of distortions. But when these methods are confronted with
the multiply-distorted databases, such as MLIVE [13], MDID2013 [14],
they show very poor performance. Moreover, Chandler [15] pointed
out that multiply-distorted images are a big challenge for IQA, because
an IQA method must consider both the joint effects of distortions on
the image and the effects of distortions on each other. In this paper, we
focus on building an effective NR IQA method for multiple distortions.

It is well known that the human vision system (HVS) is highly
adapted to extract structure for image perception and understand-
ing [16] and is extremely sensitive to the changes of the structure [17].
Image structure is composed of low-level features, such as edges, lines,
corners, zero-crossings and other local features, which consist of two
aspects: intensity of structure and distribution of structure. Moreover,
the distribution of these low-level features (structure) makes the visual
content have its own distinctiveness. Visual content that low-level
features contain is hidden behind the intensity of structure and distri-
bution of structure. Accordingly, when an image is deteriorated, we
believe that the intensity and distribution of low-level features would
vary as a function of distortions (i.e., distortions would not only destroy
the intensity of these low-level features but also alter the distribution
of these low-level features). This motivates us to explore the use of low-
level features and their distribution, on which the understanding of an
image the HVS mainly depends, for image quality prediction.

However, what kinds of features could be used in designing an IQA
method is an open question. According to phase congruency [18], low-
level image features such as edges, lines, corners, zero-crossings and
other local features all give rise to points where the Fourier components
of the image are maximally in phase, and PC is a dimensionless measure
of low-level feature significance. In other words, we can extract highly
informative features of an image by PC approach. So in this work,
PC map is employed to represent low-level image features. Given that
PC is contrast invariant, but local image contrast does affect percep-
tual image quality of the HVS, image gradient magnitude (GM) is
employed as complementary features for PC to represent the contrast
information. PC and GM can reflect different aspects of the HVS in
evaluating the quality of image, so they play complementary roles in
characterizing the image features. Specifically, low-level image features
are represented by PC, and their distribution is extracted by local binary
pattern (LBP) histogram in PC domain at multiple scales. Then GM is
employed as complementary feature for PC to build gradient-weighted
LBP histogram, where the contrast degradation is considered. Finally a
support vector regression model is trained to map histograms to quality
scores, outperforming the state-of-the-art methods.

To the best of our knowledge, this is the first work that combining
gradient magnitude (GM) and LBP in phase congruency domain at mul-
tiple scales to design the NR IQA method for multiply distorted images.
Although PC and LBP are not new to IQA, the related methods often
employ PC or LBP separately for full reference or reduced reference
IQA, and only focus on a single type of possible distortions, making
little contribution to multiply-distorted IQA which is regarded as a
big challenge in NR IQA area. In this paper, we proposed that image
distortions not only destroy the intensity of low-level features, but also
alter their distribution, while other methods only notice one of the two
aspects. Taking both into consideration, we developed an effective NR
IQA method for multiply-distorted images, and the proposed method
outperformed the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, Related
Work is presented. In Section 3, phase congruency and its computation
are introduced, and then image gradient magnitude (GM) is extracted.
In Section 4, our NR IQA method based on PC and GM is detailed.
Experimental results and analysis of the proposed NR IQA method are
presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Related work

2.1. NR IQA methods for single distortion

The last several years have seen a surge of NR IQA methods for
single distortion, which can be classified roughly into three categories.
The first category of NR IQA methods for single distortion is mainly
motivated by the characteristics of the HVS or the recent findings in
brain science, such as free energy theory and orientation selectivity
mechanism (OSM). Inspired by OSM, Wu [19] designed a new set of
visual patterns for image content representation and proposed a new
NR IQA based on the visual patterns. The image quality is predicted
with a regression procedure. However, the computational complexity
of this method is very high due to large number of the visual patterns.
Based on the fact that the HVS is sensitive to luminance change and
texture information for image perception, Fang [20] proposed a novel
NR IQA method by incorporating statistical luminance and texture fea-
tures for screen content images (SCIs) with both local and global feature
representation. Zhai [21] developed RR free-energy-based distortion
metric (FEDM) and NR free-energy-based quality metric (NFEQM).
The premise of the two methods is that visual cognition is an active
inference process, fitting brain model to visual sensory data. The quality
of the image is quantified using the free energy. Gu [22] proposed NR
Free energy and Structural degradation model based Distortion Metric
(NFSDM) by integrating a pair of RR IQA algorithms (FEDM) [21] and
structural degradation model (SDM) [23].

Inspired by NFSDM, Gu [24] extracted 23 features from the image,
including free-energy-based features and the HVS-inspired features. A
support vector regression (SVR) model is utilized to predict the image
quality score (NFERM). Xie [25] introduced a novel application-driven
IQA model for multiply-distorted dermoscopy images. Blur and uneven
illumination are separately evaluated by taking the two single distor-
tion levels as inputs. The overall image quality is predicted by a fuzzy
neural network. Xue [26] utilized the joint statistics of the gradient
magnitude (GM) and the Laplacian of Gaussian (LOG) responses. The
image quality score is predicted by the SVR model trained by GM
and LOG features (GMLOG). Ye [27] employed raw-image-patches as
local descriptors and soft-assignment coding with max pooling to obtain
effective image representation for quality estimation (CORNIA).

The second category of NR IQA methods for single distortion is
targeted to predict image quality via natural scene statistics (NSS).
Moorthy [28] proposed a new two-step framework for NR IQA based
on NSS (BIQI), which identified the type of distortions in the image and
then quantified the distortion using a trained SVR model. Based on two-
step framework NR IQA, Moorthy [29] proposed NR IQA method called
DIIVINE, relying on the hypothesis that natural scenes possess certain
statistical properties which are altered in the presence of distortion.
However, DIIVINE operates based on real-valued wavelet coefficients,
whereas the visual appearance of an image can be strongly determined
by both the magnitude and phase information. Saad [30] develop an
efficient NR IQA method (BLIINDS-II) using NSS model of discrete
cosine transform (DCT) coefficients based on Bayesian inference model.
This method employed a probabilistic prediction model to predict
image quality score with a small number of computationally convenient
DCT-domain features.

Mittal [31] proposed NSS based distortion NR IQA method
(BRISQUE) in spatial domain. The method used scene statistics of
locally normalized luminance coefficients to quantify possible losses of
‘naturalness’ in the image due to the presence of distortions. Mittal [32]
proposed NR IQA (NIQE) based on the construction of a ‘quality aware’
collection of NSS features extracted from the image domain. The image
quality is expressed as the distance between a multivariate Gaussian
(MVG) fit of the NSS features and a MVG model. Inspired by NIQE,
Zhang [33] presented a complex extension of the DIIVINE (C-DIIVINE),
which analyzed distorted images by using a complex version of the
steerable pyramid wavelet transform. Three types of quality-aware
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statistical features are extracted by the statistical features. C-DIIVINE
blindly assessed image quality based on a complex Gaussian scale mix-
ture. Zhang [34] extracted five types of NSS features from a collection
of pristine naturalistic images and used them to learn a multivariate
Gaussian (MVG) model of pristine images to predict the image quality
(ILNIQE).

The third category of NR IQA methods for single distortion is de-
voted to specific distortion types. Li [35] proposed NR IQA method for
deblocked images by simultaneously evaluating blocking artifacts and
blur with a sharpness module and a blockiness module. This method
evaluated the quality of deblocked images by combining the two mod-
ules. Considering that the current distortion-based IQA methods are
very limited in the quality evaluation of enhanced images, Li [36]
proposed a new quality method for enhanced images by simultaneously
measuring non-structural information, sharpness and naturalness. A
total of 42 perceptual features are extracted and used to train SVR
model to predict the image quality. More recently, Li [37] presented
NR IQA method for deblured images based on NSS features with SVR
procedure. NSS features are extracted in both the spatial and frequency
domains to account for both the global and local aspects of distortions
in deblurred images.

Fang [38] proposed NR IQA method for contrast-distorted images
based on NSS. This method extracted moment and entropy features
from images and built NSS models upon them using a large-scale image
database. The SVR model is adopted to map the features to image
quality. Gu [39] devised a new NR IQA method of contrast distor-
tion based on the concept of information maximization. The method
generated an overall quality score of a contrast-distorted image by
combining the entropy of unpredicted areas and uniformly distributed
histogram. Li [40] proposed a novel NR image blur assessment metric,
which is based on the observation that blur distortion changes the
shape of an image. Shape changes can be represented using discrete
Tchebichef moments, and image blur score is generated by normalizing
the moment energy using the block variances with the guidance of a
visual saliency model.

2.2. NR IQA methods for multiple distortions

Compared with IQA for single type distorted images, IQA for
multiply-distorted images has thus far received less attention. Until
now, research on NR IQA for multiply-distorted images has been very
limited due to not only being a more challenging task, but also the
lack of benchmark databases. And there are only a few papers that
focus on NR IQA for multiply-distorted images. Inspired by the early
human visual model and free energy based brain theory, Gu [14,41]
proposed a SIx-Step BLInd Metric (SISBLIM) and a FIve-Step BLInd
Metric(FISBLIM) for both singly and multiply distorted images and built
a new multiply distorted image database (MDID2013) for IQA.

Li [42] proposed NR IQA method (GWH-GLBP) for
multiply-distorted images based on structural degradation, using local
binary pattern (LBP) to characterize image structure and predict the
quality by measuring the degradation on image structure. The LBP
feature was extracted from the image gradient map, which is effective
to describe the complex degradation pattern introduced by multiple
distortions. Lu [43] proposed NR IQA model for multiply-distorted im-
ages based on an improved Bag-of-Words (BoW) model using selected
features. The features are selected from NSS features selected based on
the correlation analysis, then an improved BoW model is applied to
encode the selected features. Finally, the linear combination is used to
map the features to the quality score.

Dai [44] proposed NR IQA method (BQASD, denoted by this pa-
per) based on the fact that the HVS is sensitive to image structural
information. Quality-aware features are extracted from both the first-
and high-order image structures by LBP. The first-order feature set is
extracted from the gradient maps of distorted images. The high-order
feature set is calculated in the normalized luminance maps of distorted

images. The SVR model is used for mapping two feature sets to quality
score. Based on BQASD, Dai further improve the performance of IQA
by making use of redundancy of features (first- and high-order feature
sets) with random subspace method. With random subspace method,
the proposed method [45] (IBQASD, denoted by this paper) can avoid
overfitting. Li [46] proposed NR IQA (SHANIA) based on the statistical
characterization in the shearlet domain and employed the most natural
parts of an image to predict the natural tendency of other vulnerable
parts. The predicted parts act as ‘reference’ and the difference between
the reference and distorted parts is used as an indicator to predict the
image quality.

3. Phase congruency and image gradient

According to the characteristics of the HVS, human eyes are highly
adapted to extract low-level features for image perception [17]. To
some extent, these low-level features can characterize image structures,
which include intensity and distribution. It is the low-level features
and their distribution that convey the main visual information. In this
section, we introduce phase congruency which can be used to extract
low-level image features. Considering that PC is contrast invariant, we
propose using image gradient magnitude as complementary features to
jointly represent image structures.

3.1. Phase congruency (PC) and its computation

Phase is an important signal component, which is often ignored
in favor of magnitude, but phase is sufficient for image feature de-
tection [18]. The significance of the phase information proved by
the experiment of Oppenheim [47] played an important motivation
factor for using PC as a low-level feature descriptor to represent image
structures for IQA. This experiment showed that the phase of an image
carries more structural information than the amplitude does. The PC ap-
proach can be used to detect and localize significant low-level features
of an image better than traditional gradient operators. Moreover, based
on physiological and psychophysical evidences, the PC theory provides
a simple but biologically plausible model of how mammalian visual
systems detect and identify features in an image [48,49]. Furthermore,
PC can be considered as a dimensionless measure for the significance of
local structure [50]. So in this paper, we employ PC map to characterize
low-level image features.

There are many ways to compute PC. In this paper, the method
developed by Kovesi [51] is employed, which was based on a local
energy model. To compute the PC of the 2-D image 𝐼 (𝑥, 𝑦), a transfer
function of 2-D log-Gabor filter is needed. A 2-D log-Gabor filter is
constructed by using Gaussian as the spreading function [52] in several
orientations, which is given as follows.

𝐺
(

𝜔, 𝜃𝑜
)

= exp

(

−
(

log
(

𝜔∕𝜔0
))2

2𝜎2𝑟

)

⋅ exp

(

−
(

𝜃 − 𝜃𝑜
)2

2𝜎2𝜃

)

(1)

where 𝜔0 is the filter’s center frequency, 𝜎𝑟 controls the filter’s band-
width. 𝜃𝑜 = 𝑜𝜋∕𝑂, 𝜃𝑜 = 𝑜𝜋∕𝑂, 𝑜 = {0, 1,… , 𝑂 − 1} is the orientation
angle of the filter, 𝑂 is the number of orientations and 𝜎𝜃 is the
standard deviation of the Gaussian function in angular orientation,
which determines the filter’s angular bandwidth. Assuming that 𝑀𝑜

𝑛𝑜
and 𝑀𝑒

𝑛𝑒 are the odd symmetric and even symmetric components of
the 2-D log-Gabor filter (Eq. (1)) at scale 𝑛 and orientation 𝑜, and they
form a quadrature pair. The response vector at scale 𝑛 and orientation
𝑜 is obtained by the convolution of each quadrature pair with the input
image 𝐼 (𝑥, 𝑦), and is given as follows.
[

𝑒𝑛𝑜 (𝑥, 𝑦) , 𝑜𝑛𝑜 (𝑥, 𝑦)
]

=
[

𝐼 (𝑥, 𝑦) ∗ 𝑀𝑒
𝑛𝑜, 𝐼 (𝑥, 𝑦) ∗ 𝑀𝑜

𝑛𝑜
]

(2)

The amplitude of the response 𝐴𝑛𝑜 and the phase angle 𝜑𝑛𝑜 at scale 𝑛
and orientation 𝑜 are given by as follows.

𝐴𝑛𝑜 =
√

𝑒2𝑛𝑜 (𝑥, 𝑦) + 𝑜2𝑛𝑜 (𝑥, 𝑦) (3)
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Fig. 1. Advantage of PC map over gradients map.

𝜑𝑛𝑜 = tan−1
(

𝑜𝑛𝑜 (𝑥)
𝑒𝑛𝑜 (𝑥)

)

(4)

Hence, the PC of an image 𝐼 (𝑥, 𝑦) can be computed over various
scales and orientations as follows.

𝑃𝐶 (𝑥, 𝑦) =

∑

𝑜

√

(
∑

𝑛 𝑒𝑛𝑜 (𝑥, 𝑦)
)2 +

(
∑

𝑛 𝑜𝑛𝑜 (𝑥, 𝑦)
)2

𝜀 +
∑

𝑜
∑

𝑛 𝐴𝑛𝑜 (𝑥, 𝑦)
(5)

where 𝜀 is a small number to avoid division-by-zero. To some extent,
PC is sensitive to distortion. This is conducive to IQA. In essence, IQA
evaluates how the noise affects human perception. When the noise
(distortion) is introduced, low-level features extracted by PC would be
changed. For example, Gaussian blur smooths edges and corners, and
corresponding values of PC would become lower from relatively high
values. Meanwhile, the corresponding LBPs of PC would be changed
from one type to another in their own ways, determining by the charac-
teristics of low-level features. Besides, for other types of distortions, the
LBPs will be changed accordingly. As a result, exploiting the sensitivity
to distortion of PC and extracting LBP in PC domain will benefit IQA.

In the experiments, the number of scales is set as 4 and the number
of filter orientations is set as 6 for more low-level features. The range
of PC lies between the values 0 and 1. In order to visualize the PC map
for friendly-viewing and calculate the LBP in PC map, we normalized
the values of PC to range [0,255]. Although PC is contrast invariant, we
still utilize PC to represent low-level image features (structure) rather
than image gradients. The reason is that PC can capture more fine
details of image structure, which are instrumental for improving the
accuracy of quality prediction, while image gradients cannot. Fig. 1
shows advantages of PC map over gradient map in capturing finer
features. Fig. 1(a) is original image, coming from MLIVE database,
Fig. 1(b) is PC map, and Fig. 1(c) is gradient map. As shown in Fig. 1,
the PC map has more fine details than gradient map, for example, the
roof tiles of the building, tree leaves and mountains in the top are very
clear (for better viewing, please zoom in the pictures).

Although PC and GM maps look a bit alike, they have different
meanings. In PC, low-level features are represented by moment of
PC covariance which includes not only edge strength but also corner
strength and other features. PC believed that features are not simple
step changes (discontinuity) in luminance [49], while gradient-based
methods extract features based on step changes and do not correctly de-
tect and localize features. So PC can extract more features that are finer.
Moreover, feature detection and identification in the image represented
by PC are more consistent with the HVS perception. Therefore, the
characteristics of the PC are instrumental for improving the accuracy
of quality prediction. However, PC is contrast-invariant which is not
conducive to IQA. GM is contrast sensitive which can contribute to IQA.
Therefore, GM can compensate for the contrast invariance of PC. We
only use the different characteristics of PC and GM. In the next section,
GM is exploited for LBP histogram creation in PC domain.

3.2. Image gradient magnitude

The HVS is sensitive to low-level features represented by PC. Such
features often attract eye’s attention at first sight, and these features can

Fig. 2. Image gradient filters.

reflect image structure. However, using PC map to characterize image
structure has limitations due to its contrast invariance. Therefore,
we propose that using image gradient magnitude as complementary
features to capture the changes of image contrast. When more than
two stimuli are in an image whose response values are greater than
eyes’ response threshold, the eyes would be attracted to the stimulus
which has the largest response value automatically and rapidly due to
foveation [53] according to the visual attention principle. In this paper,
a more complex image gradient computation method is used, which is
the same as in [45].

𝐺 = max( 1
16

𝐼 ∗ 𝐹𝑛=1,2,3,4) (6)

𝐹𝑛=1,2,3,4 are four gradient filters, shown in Fig. 2. The star sign (*)
denotes the convolution operation. 𝐼 denotes the image. 𝐺 denotes the
image gradients magnitude map. Here, Sobel or Prewitt filters are not
used since these filters are small (3 × 3) and only have horizontal and
vertical directions, resulting in insufficient structure information in the
neighborhood. Instead, we use 4 directions, larger size filters to obtain
a better image gradients map which is more consistent with the HVS.

In order to integrate IQA on image gradient into IQA on distribution
of low-level features in a single representation form, image gradients
are accumulated on each bin of the LBP histogram in PC domain in the
next section.

4. The proposed NR IQA method

In this section, we first represent distribution of low-level image
features (structure) with local binary pattern (LBP) in PC domain. Then
an image gradient magnitude map is employed as a weighting factor
to build the LBP histogram to represent the distribution of low-level
features (structure), which overcomes the limitation of PC contrast
invariance. Finally, gradient-weighted LBP histograms at multi-scale
are combined as the input of support vector regression (SVR) to predict
quality.

4.1. LBP based structure extraction in PC domain

The spatial correlations between the central pixel and its neigh-
borhood are analyzed with the relative intensity relationship. Local
binary pattern (LBP) [54] is designed for structure description. And LBP
achieves great success in structure description for texture classification.
In this paper we employ the LBP to describe the distribution of structure
in PC domain. According to the relative intensity relationship between
the central pixel𝑥𝑐 and its circularly symmetric neighbor pixels𝑥𝑖, the
LBP of 𝑥𝑐 is defined as follows.

𝐿𝐵𝑃𝑃 ,𝑅
(

𝑥𝑐
)

=
𝑃−1
∑

𝑖=0
𝑠
(

𝐼𝑖 − 𝐼𝑐
)

2𝑖 (7)

𝑠
(

𝐼𝑖 − 𝐼𝑐
)

=
{

1,𝐼𝑖 − 𝐼𝑐 ≥ 0
0,𝐼𝑖 − 𝐼𝑐 < 0

(8)

where 𝐼𝑖 and 𝐼𝑐 are the values of the central pixel 𝑥𝑐 and its neighbor
𝑥𝑖 in PC map, P is the number of neighbors, and R is the radius of
the neighborhood. Meanwhile, Ojala [55] also investigated the uniform
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Fig. 3. Illustration of changes of LBPs.

LBP patterns, which can provide majority structural information (al-
most 90%), and the uniform and rotation invariant pattern is defined
as follows.

𝐿𝐵𝑃 𝑢𝑟
𝑃 ,𝑅

(

𝑥𝑖
)

=

⎧

⎪

⎨

⎪

⎩

𝑃−1
∑

𝑖=0
𝑠
(

𝐼𝑖 − 𝐼𝑐
)

, 𝑖𝑓𝜇
(

𝐿𝐵𝑃𝑃 ,𝑅
(

𝑥𝑖
))

≤ 2

𝑃 + 1, 𝑒𝑙𝑠𝑒

(9)

where 𝜇
(

𝐿𝐵𝑃
(

𝑥𝑖
))

= |

|

|

𝑠
(

𝐼𝑃−1 − 𝐼𝑐
)

− 𝑠
(

𝐼0 − 𝐼𝑐
)

|

|

|

+
∑𝑃−1

𝑖=1
|

|

|

𝑠
(

𝐼𝑖 − 𝐼𝑐
)

−𝑠
(

𝐼𝑖−1 − 𝐼𝑐
)

|

|

|

.

With (9), the LBP value of each pixel in PC map can be calculated.
For R = 1, P = 8, there are 10 types of LBPs. In the latter experiments,
we found that for greater values of P and R, the computational com-
plexity significantly increases, and only make little contribution to the
performance of IQA. So in this paper, R and P are set as 1 and 8. After
getting PC-based LBPs, a gradient-weighted LBP histogram is built to
represent image structure distribution.

With image distortions, the PC-based LBP of a pixel can change
from one type to another (as to be elaborated in experimental section).
Different PC-based LBPs denote different local structure. Moreover,
different kinds of distortions result in different changes to the structure
with the accompanying changes to its PC-based LBPs. For example,
Gaussian blur mainly degrades edges in the image. As a result, an
edge pattern may be distorted into a flat pattern. On the other hand,
JPEG compression mainly causes blockiness artifact. As a result, a flat
pattern may be distorted into an edge pattern. Specifically, the PC-
based LBP ‘00001111’ of a pixel may represent an edge feature, as
shown in Fig. 3. When distortions are present, the PC-based LBP pattern
would be altered, resulting in ‘00011111’ which represents corner
feature or ‘00111111’ which represents line end feature. In summary,
based on the analysis above, LBPs in PC domain can effectively capture
image degradation due to multiple distortions via describing the spatial
correlations between the central pixel and its neighborhood in PC
domain.

4.2. Gradient-weighted LBP histogram in PC domain at multi-scale

In Sections 2.2 and 3.1, image gradient magnitude and LBP in PC
domain are introduced. Due to the limitation of contrast invariance
of PC, image gradient features are investigated to compensate for PC.
In order to highlight the pixels with severe degradation on contrast
while weaken the pixels with minor degradation on contrast, we em-
ploy image gradient magnitude as a weighting factor for LBP-based
histogram creations in PC domain (i.e., image gradient of each pixel
is accumulated on each bin).

𝐻𝐿𝐵𝑃 (𝑏) = 1
𝑀𝑁

𝑀−1
∑

𝑖=0

𝑁−1
∑

𝑗=0
𝜔
(

𝐿𝐵𝑃 𝑢𝑟
𝑃 ,𝑅

(

𝑥𝑖𝑗
)

, 𝑏 − 1
)

, 𝑏 ∈ [1, 10] (10)

𝜔
(

𝐿𝐵𝑃 𝑢𝑟
𝑃 ,𝑅

(

𝑥𝑖𝑗
)

, 𝑏 − 1
)

=

{

𝐺𝑖𝑗 , 𝑖𝑓 (𝐿𝐵𝑃 𝑢𝑟
𝑃 ,𝑅(𝑥𝑖𝑗 )) = 𝑏 − 1

0, 𝑒𝑙𝑠𝑒
(11)

where 𝐻𝐿𝐵𝑃 (𝑏) denotes gradient-weighted LBP histogram of distorted
images in PC domain. 𝑏 is the index of bin of the histogram. The number
of bins is 10. In such a way, we emphasize image regions with high

contrast changes and take both the structural and contrast information
in a single representation.

The perceivability of image details depends on the sampling density
of the image, the distance from the image plane to the observer and the
perceptual capability of the observer’s visual system. In practice, the
subjective evaluation of images varies when these factors vary [56].
A single-scale gradient-weighted LBP histogram may be appropriate
only for specific settings. Multi-scale methods are a convenient way
to incorporate image details at different resolutions. Here, we extract
gradient-weighted LBP histogram features in PC domain at multiple
scales for IQA, and a combined gradient-weighted LBP histogram is
defined as follows.

𝐻𝐿𝐵𝑃
𝑚 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑛_𝑠𝑐𝑎𝑙𝑒

𝑖=1

(

(

𝐻𝐿𝐵𝑃
𝑖

)𝛽𝑖
)

(12)

where 𝐻𝐿𝐵𝑃
𝑚 denotes the combined histogram. n_scale denotes the

number of scales and ‘concat’ operator denotes combining all the LBP
histograms in PC domain at multi-scale into a larger histogram. 𝛽𝑖 is
used to adjust the relative importance of different scales, 𝛽1, 𝛽2, 𝛽3,
𝛽4, 𝛽5 = 0.0448, 0.2856, 0.3001, 0.2363, 0.1333 [56]. Besides the
original image scale, the coarser scale is formed by down sampling by
a factor of 2 in each dimension. In the latter experiments, we found
that when n_scale is set as 5 can get better results for IQA, resulting
in a combined gradient weighted LBP histogram vector to characterize
the image structure. The number bin of the combined histogram is 50
in total (i.e., we use 50 features to evaluate the quality of an image).

4.3. Image quality assessment

With Eq. (12), we can extract a histogram-based feature vector
from a given distorted image with 50 dimensions. However, how to
effectively pool feature vectors from distorted images to predict their
quality scores with high consistency with the subjective perception
is an open problem. Since 50-D histogram-based feature vectors can
represent different structure with different degradations on low-level
image features (structure), leading to different level quality scores.
Moreover, pooling the histogram-based feature vectors for quality score
is a crucial step in our method. Support vector regression (SVR) based
pooling features method is a good choice, and we learn SVR model us-
ing histogram-based vectors extracted from image databases to predict
quality scores.

Given training dataset {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑟, 𝑦𝑟)}, where 𝑥𝑖 is the
50-D feature vector and 𝑦𝑖 is ground truth (quality scores from image
database), the SVR model is employed to map the feature space to
quality score. The SVR [57] can be formulated as follows.

min
𝑤,𝛿,𝑣,𝑣∗

1
2
𝜔𝑇𝜔 + 𝐶(

𝑟
∑

𝑖=1
𝑣𝑖 +

𝑟
∑

𝑖
𝑣∗𝑖 )

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

𝑦𝑖 − 𝜔𝑇𝜙(𝑥𝑖) − 𝛿 ≤ 𝜀 + 𝑣𝑖,
𝜔𝑇𝜙(𝑥𝑖) + 𝛿 − 𝑦𝑖 ≤ 𝜀 + 𝑣∗𝑖 ,
𝑣𝑖, 𝑣∗𝑖 ≥ 0, 𝑖 = 1, 2,… , 𝑟.

(13)

where 𝜔 is the weight vector, 𝛿 is the bias parameter, 𝑣𝑖, 𝑣∗𝑖 are the slack
variables, 𝐶 is a hyper-parameter. 𝐾(𝑥𝑖, 𝑥𝑗 ) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗 ) is the kernel
function. In this paper, the radial basis function (RBF) kernel 𝐾(𝑥𝑖, 𝑥𝑗 ) =

exp(𝛾 ‖‖
‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

2
) is employed, 𝛾 is the parameter of the kernel. After

training SVR model, the output of the regression model is the predicted
quality score. In the experiments, we adopt the LibSVM [57] to train
the SVR model as follows. The grid search technique with 10-fold
cross-validation is employed to tune the hyper-parameters.

𝑆𝑉 𝑅𝑚𝑜𝑑𝑒𝑙 = 𝑆𝑉 𝑅𝑡𝑟𝑎𝑖𝑛

(

𝐻𝐿𝐵𝑃
𝑚,𝑡𝑟𝑎𝑖𝑛(𝐼), 𝐺𝑡𝑟𝑢𝑡ℎ

)

(14)

where 𝐻𝐿𝐵𝑃
𝑚,𝑡𝑟𝑎𝑖𝑛(𝐼) denotes histogram-based feature vectors extracted

from the train dataset, Gtruth denotes ground truth of the quality
score (DMOS, Difference Mean Opinion Score) and 𝑆𝑉 𝑅𝑚𝑜𝑑𝑒𝑙 denotes
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a trained model. An image quality score can be calculated using the
trained model.

𝑄 (𝐼) = 𝑆𝑉 𝑅𝑚𝑜𝑑𝑒𝑙

(

𝐻𝐿𝐵𝑃
𝑚,𝑡𝑒𝑠𝑡(𝐼)

)

(15)

𝐻𝐿𝐵𝑃
𝑚,𝑡𝑒𝑠𝑡(𝐼) denotes histogram-based feature vectors extracted from test

dataset. 𝑄 (𝐼) denotes the predicted quality score.

5. Experimental results and discussions

To quantitatively validate the performance of the proposed method,
experiments are conducted with regards to three aspects using bench-
mark databases. (1) Performance comparison with the state-of-the-art
FR IQA methods. (2) Performance comparison with the state-of-the-
art NR IQA methods. (3) The computational cost compared with IQA
methods. The Matlab source code and validation results can be found
at https://github.com/miaoxikui/.

5.1. Experiment protocol

In order to make a comprehensive analysis on the performance,
we first compare the proposed method with existing FR IQA meth-
ods and then compare the proposed method with existing NR IQA
methods to demonstrate the performance on two multiply-distorted
image databases (MLIVE [13], MDID2013 [14]). MLIVE database has
450 distorted images and consists of two parts. The first part includes
15 reference and 225 contaminated images which are distorted by
GB+JPEG (Gaussian Blur followed by JPEG compression). The second
part includes the same 15 reference and 225 contaminated images
which are distorted by GB+WN (Gaussian Blur followed by white
noise). The MDID2013 database has 12 reference and 324 distorted
images which are successively corrupted by three types of distortions
(GB+JPEG+WN).

The performance of an IQA method is evaluated as the correla-
tion between the predicted scores and the subjective qualities (Dif-
ference MOS (DMOS) values). In this paper three criteria are em-
ployed: Spearman rank-order correlation coefficient (SRCC) for predic-
tion monotonicity, Pearson linear correlation coefficient (PLCC) and
root-mean-squared error (RMSE) for prediction accuracy. The latter two
criteria are calculated after the nonlinear logistic mapping function [6]
defined below. A good IQA algorithm returns high PLCC/SRCC values
and a low RMSE value.

𝑞 (𝑥) = 𝛽1

(

1
2
− 1

1 + exp
(

𝛽2
(

𝑥 − 𝛽3
))

)

+ 𝛽4𝑥 + 𝛽5 (16)

where 𝑥 is the objective quality score and 𝑞 (𝑥) is the mapped score to
the range of subjective scores. 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 are five parameters to be
fitted.

In the experiments, an 80%/20% training-testing split is used on
each database (MLIVE or MDID2013). In order to eliminate the perfor-
mance bias, training-testing split is repeated 100 times, and the average
performance is calculated for the final result.

5.2. Performance comparison with FR IQA methods

We compare the proposed method with SSIM [16], GMSD [17],
IW-SSIM [58], OSS-SSIM [59], MAD [60], ADM [61], FSIM [62],
GMS [63], IGM [64], VSI [65], VIF [66], VSNR [67]. The performance
of the proposed method and compared methods (FR) on two databases
is listed in Table 1. To avoid mistakes during implementation, the
results of MAD is obtained from original author’s paper. Others are
obtained through demos provided by the authors.

In our proposed method, the number of scales and filter orientations
are set as 4 and 6 for low-level features in PC computation. For LBP,
uniform and rotation invariant LBP is chosen, and R = 1, P = 8 for
high accuracy and efficiency, resulting in 10 bins in the histogram at
each scale (i.e. 50 bins in the combined histogram at five scales). SVR

Table 1
Compared performance with FR IQA methods.

Methods MLIVE(450 images) MDID2013(324 images)

SRCC PLCC RMSE SRCC PLCC RMSE

SSIM 0.902 0.926 6.969 0.622 0.656 0.037
IW-SSIM 0.911 0.931 6.626 0.890 0.890 0.022
OSS-SSIM 0.919 0.931 6.681 0.763 0.729 0.033
VIF 0.915 0.932 6.761 0.905 0.915 0.020
VSNR 0.828 0.880 8.881 0.636 0.652 0.037
MAD 0.894 0.914 7.608 0.856 0.860 0.025
ADM 0.909 0.924 7.051 0.830 0.848 0.026
FSIM 0.895 0.917 7.307 0.749 0.770 0.031
GMS 0.887 0.913 7.429 0.785 0.804 0.029
IGM 0.889 0.923 7.195 0.878 0.882 0.022
VSI 0.877 0.910 7.658 0.730 0.744 0.032
GMSD 0.880 0.911 7.656 0.877 0.902 0.021
Proposed 0.955 0.963 5.431 0.923 0.929 0.018

model training process is employed on both MLIVE and MDID2013
databases respectively. That is, SVR model is trained and evaluated for
each database separately. For training, the grid search technique with
10-fold cross-validation is employed on each training dataset to tune
the hyper-parameters 𝐶, 𝛾 in Eq. (13) for higher accuracy of quality
score prediction.

The best three IQA criteria are highlighted in boldface in Table 1.
Most of existing FR IQA methods show poor quality prediction accu-
racy on both MLIVE and MDID2013, because they are designed for
single type of distortions. Whereas, our proposed method outperforms
the other FR IQA methods in terms of SRCC, PLCC, RMSE (i.e., the
proposed method has greater PLCC, SRCC values and smaller RMSE
value than others). Moreover, the proposed method is NR IQA while the
other methods need reference image. Overall, the performance of the
proposed method on MLIVE is better than that on MDID2013 due to the
more complex distortions on MDID2013, and results are in line with the
experimental results given by Chandler [15], confirming that multiply
distorted databases(MLIVE and MDID2013) challenge most existing FR
IQA methods.

5.3. Performance comparison with NR IQA methods

A. Overall Performance on Individual Databases: In order to
demonstrate the effectiveness of the proposed method compared with
existing NR IQA methods on the databases, we select both NR IQA
methods which are designed for single type of distortions and NR IQA
methods which are developed for multiply-distorted images. NFERM
[24], GMLOG [26], CORNIA [27], BIQI [28], DIIVINE [29], BLIINDS-
II [30], BRISQUE [31], NIQE [32], ILNIQE [34] are designed for single
type of distortions. SISBLIM [14], FISBLIM [41], GWH-GLBP [42],
LU [43], BQASD [44], IBQASD [45], and SHANIA [46] are developed
for multiply-distorted images. Most of the results of the existing NR
IQA methods are obtained from the original papers or the source codes
downloaded from original authors’ website, some results on databases
are not listed. The performance of the proposed method and NR IQA
methods on MLIVE and MDID2013 is listed in Table 2. The best three
IQA criteria are also highlighted in boldface.

BRISQUE, BLIINDS-II, DIIVINE, GMLOG, NFERM, BIQI, SISBLIM,
GWH-GLBP, and our proposed method are based on SVR, and the RBF
kernel is chosen as their original papers suggested. The grid search
technique with 10-fold cross-validation is employed on each training
dataset to tune the hyper-parameters. For NIQE, ILNIQE, and CORNIA,
we configure them according to the original papers. Due to unavailabil-
ity of the codes of LU, FISBLIM, SHANIA, BQASD and IBQASD, we take
the results from their original or related papers.

In Table 2, IBQASD1 denotes that the corresponding method em-
ploying traditional SVR training (one SVR model). IBQASD2 denotes
that the corresponding method trained M (M = 5) SVR models and
combine these SVRs to construct a more powerful model to solve the

59



X. Miao, H. Chu, H. Liu et al. Signal Processing: Image Communication 79 (2019) 54–62

Table 2
Compared performance with NR IQA methods.

IQA method MLIVE(450 images) MDID2013(324 images)

SRCC PLCC RMSE SRCC PLCC RMSE

NIQE 0.789∗ 0.858 9.489 0.614∗ 0.645 0.037
ILNIQE 0.900∗ 0.914 7.538 0.707∗ 0.709 0.034
BLIINDS-II 0.887∗ 0.904 7.981 0.808∗ 0.844 0.027
DIIVINE 0.866∗ 0.898 8.257 0.836∗ 0.848 0.026
CORNIA 0.900∗ 0.916 7.586 0.898∗ 0.904 0.020
BRISQUE 0.900∗ 0.924 7.143 0.819∗ 0.833 0.027
GMLOG 0.833∗ 0.872 9.164 0.824∗ 0.830 0.027
NFERM 0.898∗ 0.917 7.459 0.855∗ 0.871 0.024
BIQI 0.883∗ 0.905 7.833 0.863∗ 0.883 0.023
GWH-GLBP 0.944∗ 0.949 5.873 0.908∗ 0.913 0.019
FISBLIM 0.857∗ 0.880 8.979 – – –
SISBLIM 0.907∗ 0.925 7.194 0.885∗ 0.885 0.023
BQASD 0.952∗ 0.956 5.479 0.923∗ 0.935 0.017
IBQASD1 0.952∗ 0.956 5.552 0.923∗ 0.935 0.017
IBQASD2 0.958 0.960 5.445 0.929 0.940 0.017
SHANIA 0.777∗ 0.735 – – – –
LU 0.908∗ 0.942 – – – –
Proposed 0.955 0.963 5.431 0.923 0.929 0.018

overfitting problem as well as reducing the time complexity. As shown
in Table 2, the best NR IQA method on MLIVE is our proposed method,
followed by IBQASD2, IBQASD1, BQASD, GWH-GLBP, LU, SISBLIM
and BRISQUE. The best NR IQA method on MDID2013 is IBQASD2,
followed by IBQASD1, BQASD, our proposed method, GWH-GLBP,
CORNIA, SISBLIM and BIQI. The performance of our proposed method
is very close to the IBQASD2 (best method). Because IBQASD2 applied
the random subspace method in the feature space, and constructed a
powerful model using several trained SVRs, this strategy can improve
the performance of the method.

It should be noted that the results of some NR IQA methods are
not given in Table 2. The same as the results in Table 1, the perfor-
mance of all the methods on MDID2013 is poorer than that on MLIVE.
Most of the NR IQA methods developed for multiply-distorted images
outperform the methods designed for single type of distortions, which
confirm Chandler’s conclusion again [15]. Therefore, it is very urgent
to design new NR IQA methods for images distorted by multiple types
of distortions.

Furthermore, we evaluate the statistical significance [68] using
the T-test with 95% confidence level between SROCC generated by
the compared NR IQA methods and our proposed method in 1000
iterations. The results are shown in Table 2, the star sign (*) denotes
that our proposed method are statistically better than the compared
NR IQA methods. From Table 2, we can see that our proposed method
performs significantly better than most of the NR-IQA methods, slightly
inferior to IBQASD2 on the two databases. However, our proposed
method yielded better results than IBQASD2 in terms of PLCC and
RMSE on MLIVE database.

B. Performance on individual combination of distortions: To
further prove the superiority of our proposed method over the compet-
ing NR IQA methods, we evaluate the performance of competing NR
IQA methods on individual combination of distortions (i.e., GB+JPEG
and GB+WN) in MLIVE. Because only one combination of distor-
tions in MDID2013 (i.e., GB+JPEG+WN), the corresponding results on
MDID2013 are listed in Table 2. The SRCC comparison on individual
combination of distortions in MLIVE is listed in Table 3. The best three
NR IQA methods for each combination of distortions are shown in
boldface. It should be noted that similar results can be obtained for
PLCC and RMSE. Here we only list SRCC for brevity.

Although GWH-GLBP has lower computational complexity as shown
in Table 4, the proposed method found to be significantly better than
GWH-GLBP in terms of SRCC, PLCC, and RMSE after the significance
analysis. GWH-GLBP only considers image structure feature, which
is extracted as the gradient-weighted histogram of LBP calculated in
gradient map. Whereas our method not only considers image structure

Table 3
SRCC comparison on individual combination of distortions in MLIVE.

IQA method GB+JPEG GB+WN IQA method GB+JPEG GB+WN

NIQE 0.899 0.833 GWH-GLBP 0.948 0.903
ILNIQE 0.899 0.890 FISBLIM 0.858 0.855
BLIINDS-II 0.892 0.884 SISBLIM 0.874 0.880
DIIVINE 0.864 0.877 BQASD 0.954 0.948
CORNIA 0.904 0.900 IBQASD1 0.954 0.949
BRISQUE 0.905 0.900 IBQASD2 0.960 0.952
GMLOG 0.865 0.817 SHANIA 0.801 0.753
NFERM 0.919 0.887 LU 0.907 0.904
BIQI 0.881 0.883 Proposed 0.956 0.952

information, but also takes low-level features and their distribution into
account. The proposed method employs image gradient to represent
structure feature, uses PC to describe low-level feature, and extracts
LBP histogram in PC domain at five scales to characterize the distri-
bution of low-level feature. Then the LBP histogram is weighted by
gradient magnitude, fusing structure feature and the distribution of
low-level feature into a single representation.

According to PC theory [47,48], phase of an image conveys more
structural information than gradient. PC of an image can capture more
fine details of structure than gradient as illustrated in Fig. 1. The results
presented in Tables 2 and 3 show that LBP histogram in PC domain
(the proposed method) is better than that taking LBP histogram in
gradient domain (as done in GWH-GLBP) for IQA. Because human eyes
are sensitive to low-level image features for perception and PC provides
a biological and psychophysical model to interpret the detection and
identification of low-level feature, making feature perception more
consistent with the HVS. The proposed method would yield better
performance due to employing more features which are consistent the
HVS perception [68]. Therefore, considering both gradient and PC
would improve the performance of IQA.

IBQASD1 and IBQASD2 have lower computational complexity
shown in Table 4 and very similar performance with our proposed
method. They extract the first- and high-order structural features from
gradient-magnitude and contrast-normalized maps. In order to avoid
overfitting, random subspace method is employed [45] in IBQASD2.
It performs the bootstrapping in the feature space. After random
sampling, IBQASD2 generates a small subset of features from feature
space to reduce the discrepancy between the training data size and
the feature vector length. Although IBQASD1 and IBQASD2 employ
first- and high-order features to characterize structure and texture
information for improving accuracy of IQA, our proposed method (a
SVR is employed) outperforms IBQASD1(a SVR is employed) in terms
of overall performance on MLIVE shown in Table 2 and performance
on individual combination of distortions in MLIVE shown in Table 3.
Although 5 SVRs are trained using the subset of features to improve
the accuracy of IQA, our proposed method yields better results than
IBQASD2 on MLIVE and performs almost the same as IBQASD2 on
MDID2013.

Comprehensive experiment results show that the PC map can effec-
tively represent low-level fine features (structure), which is consistent
with detection and identification of features in images biologically.
LBP map in PC domain can sensitively capture the changes of image
structure due to degradation by multiple distortions. Gradient-weighted
LBP histogram in PC domain at multi-scale can measure the changes
of contrast information and structure to which the HVS is highly
sensitive, compensating for the limitation of PC contrast invariance.
SVR procedure is utilized to pool histogram features for quality score.
These are beneficial for improving the accuracy of quality prediction
for multiply-distorted images. Therefore, the quality scores produced by
our proposed method are highly correlated with the subjective scores.
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Table 4
Time cost of each compared IQA method.

IQA method SSIM IW-SSIM OSS-SSIM VIF VSNR ADM
runtime (s) 0.1385 0.9812 0.9815 1.3761 0.7895 0.7893

IQA method FSIM GMS IGM VSI GMSD NIQE
runtime (s) 0.7510 0.1529 3.4091 0.6752 0.0113 0.4596

IQA method ILNIQE BLIINDS-II DIIVINE CORNIA BRISQUE GMLOG
runtime (s) 6.9016 102.7232 21.3212 3.6845 0.5612 1.3692

IQA method NFERM BIQI GWH-GLBP SISBLIM BQASD IBQASD1
runtime (s) 3.7959 2.0191 1.7101 2.0762 2.3542 2.3683

IQA method IBQASD2 Proposed
runtime (s) 2.8542 3.2102

5.4. Computational cost

The computational cost of each compared IQA method was also
evaluated. Experiments were performed on a HP desktop (Intel Core i5-
2400 CPU@3.1 GHz and 6G RAM). The software platform was Matlab
R2018a. The time cost (unit:s) consumed by each method is average
out by 100 distorted images (1280 × 720 from MDID2013) and is listed
in Table 4. As for the compared FR IQA methods, we directly run the
code to get run-time except MAD due to unavailability of its code. As
for OSS-SSIM, we only get p-file code of Matlab (it has been optimized).
For the NR IQA methods, BRISQUE, BLIINDS-II, DIIVINE, GMLOG,
NFERM, BIQI, SISBLIM, GWH-GLBP, BQASD, IBQASD1, IBQASD2, and
our method are based on SVR. The RBF kernel is chosen as their original
papers suggested, and the grid search technique is also employed. After
training, we track the run-time of quality prediction of the 9 methods.
As for NIQE, ILNIQE, and CORNIA, we directly apply the code of these
three methods on the images according to the corresponding papers
and track the run-time of quality prediction. Due to unavailability of
the code of MAD, LU, FISBLIM, and SHANIA, the run-time of these four
methods is not listed. As shown in Table 4, our proposed method has
a moderate computational complexity.

5.5. Discussions

The proposed method obtains promising performance in perceptual
quality prediction. The performance improvement is mainly from the
following aspects. Firstly, PC map can effectively represent low-level
image features, which is highly consistent with the detection and
identification features in images of the HVS. Moreover, PC map, to
some extent, can characterize image structure to which the HVS is very
sensitive and contributes to IQA. Secondly, since the HVS is sensitive to
contrast changes, image gradient magnitudes are employed to measure
the contrast information at each pixel as complementary features to
compensate for the contrast invariance of PC. Meanwhile, gradient
magnitudes are used as weighting factors for LBP histogram creation
in PC domain, which can highlight image regions with high contrast
changes. Thirdly, the gradient-weighted LBP histograms in PC domain
at multiple scales are combined by scale factors which are used to
adjust the relative importance of different scales to reflect the multi-
scale characteristics of the HVS. SVR can effectively map the multi-scale
gradient-weighted LBP histogram features into the visual quality.

6. Conclusions

In image communication systems, images are usually distorted by
multiple types of distortions. However, most existing NR IQA methods
mainly focus on single type of distortion. To address this, we proposed a
new NR IQA method based on low-level features and their distribution
for multiply-distorted images. The underlying principle of proposed
method is that distortions not only destroy low-level image features,
but also distort the distribution of these features. In order to represent
low-level image features, phase congruency (PC) is investigated and

LBPs based on PC map are used for describe the distribution of low-
level features. To handle the contrast invariance of PC, image gradient
magnitudes (GM) are employed as weighting factors to build LBP
histogram of the distorted image. PC and GM are complementary and
they can reflect different aspects of the HVS for IQA. And then, quality
score is predicted by learning a support vector regression model using
multi-scale gradient weighted LBP histogram feature vectors. Exper-
imental results on benchmark databases have demonstrated that the
proposed method achieves high consistency with subjective perception
and performs better than other state-of-the-art methods.
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