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ABSTRACT: Photoredox-mediated iridium/nickel dual cat-
alysis has successfully triggered a series of traditionally
challenging carbon−heteroatom cross-coupling reactions.
However, detailed mechanisms, such as the catalytic cycles
for dual catalysts and the role of base additive, remain
controversy in these reactions. In this study, a highly
chemoselective C−S cross-coupling of thiols with heteroaryl
iodides has been investigated by density functional theory
(DFT) calculations and emission quenching experiments.
Interestingly, the oxidation state modulation mechanism
merging oxidative quenching (IrIII−*IrIII−IrIV−IrIII) and nickel
catalytic cycles (NiII−NiI−NiIII−NiI−NiII) is favorable. It is
consisted of four major steps: pyridine mediated proton-coupled electron transfer, oxidative addition of heteroaryl iodides with
Ni(I)−halide complex, reductive elimination, and single-electron transfer. In contrast, the radical mechanism initiated by
reductive quenching of *IrIII with thiols is impractical, because oxidative addition or σ-bond metathesis from Ni(II)−thiolate
intermediate is highly energy-demanding. This study will hopefully benefit the future understanding of such photoredox-
mediated dual catalytic systems.
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■ INTRODUCTION

The carbon−heteroatom (C−X) bond-forming reaction is of
particular interest in the field of modern organic chemistry,
because the introduction of heteroatoms is essential to the
functionalization of organic compounds.1 Especially, the C−S
bond is of utmost importance in biological, pharmaceutical,
and industrial applications.2 Undoubtedly, it is urgent to
develop the C−S bond-based synthesis to fulfill the increasing
demand of future pharmaceutical applications. Although
several fascinating catalytic achievements have been made for
C−N and C−O bond constructions, the efficient and selective
formation of C−S bond remains relatively rare.3 A general
approach for building C−S bond involves the transition metal-
catalyzed cross-coupling of organic halides with thiols or
disulfides. An accepted consensus of the catalytic cycle is the
double electron transmetalation mechanism, which consists of

three elementary steps: (i) oxidative addition, (ii) trans-
metalation, and (iii) C−S reductive elimination.1b Regrettably,
although the approach is sometimes effective, the activity of
the transition-metal catalysts may be suppressed by either the
high energy-demanding double electron transmetalation
process or the strong coordination of thiolates to catalysts.
In this regard, reaction conditions are often dependent on high
catalyst loading, specially designed ligands, high temperature,
excess of strong base, etc.4 To a great extent, limitations of the
further development of this approach are inextricably linked to
the reactions that are rooted in the two-electron pattern.5

Therefore, it is urgent to explore a new synthetic strategy for
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achieving highly selective cross-coupling reactions to construct
the C−S bond.
Inspired by the organo-singly occupied molecular orbital

(SOMO) catalysis,6 chemists strive to use a single-electron
transfer (SET)-mediated route to conduct the cross-coupling
cycle. With the increasing awareness of sustainable develop-
ment in synthetic chemistry, photoredox catalysis is turned to
be an ideal enabling technology.7 Upon irradiation with visible
light, photocatalysts (such as ruthenium and iridium
polypyridyl complexes) are converted to their excited states,
which can serve as strong 1e-oxidant and 1e-reductant
simultaneously. Thereby, they can be induced to activate
organic substrates or adjust the oxidation state of transition-
metal catalysts via unique SET pathways under environ-
mentally friendly conditions. The active intermediates can then
engage in organo-catalytic cycles.8 One intriguing utilization
can be traced back to 2008 with the covers of [Ru(bpy)3]Cl2
photocatalyzed the asymmetric alkylation of aldehydes, [2 + 2]
enone cycloadditions and reductive dehalogenation reactions
by the MacMillan, Yoon, and Stephenson groups, respectively.

9

This strategy was marked as a milestone to construct C−C
bond using photocatalysis involving SET processes.8a,9

Notably, with the characteristic of abundant, inexpensive,
and several available oxidation states, nickel complex acts as an
ideal transition-metal catalyst.10 In this regard, photoredox/
nickel dual catalysis, which is the combination of photo-
catalysis and nickel catalysis, has become a novel and powerful
synthetic strategy for building various C−C and challenging
C−X (C−O, C−N, C−P, and C−S) bonds via unique SET
pathways. Notably, such a dual catalysis can enable synthetic
transformations to proceed in a more mild and selective
manner than the individual catalysts, hence expand the scope
of the C−X formation modes.11

More recently, Johannes and co-workers successfully
constructed C−S bonds by the cross-coupling of 4-
methoxybenzyl thiol (RSH) and 4-iodotoluene (ArI) with
IrIII[dF(CF3)ppy]2(dtbbpy)PF6/Ni

II(bpy)Cl2 (IrIII/NiII) met-
allaphotoredox approach, as shown in Scheme 1.12 It is notable

that the desired product (P) can be obtained in excellent yield
in the presence of pyridine (Py) under room temperature
while completely none forms in the absence of Py. A tentative
radical mechanism including a photoredox-mediated iridium
reductive quenching cycle (IrIII−*IrIII−IrII−IrIII) was proposed
to provide fundamental information into the dual catalytic
platform. Besides the questionable mechanism, however, some
other important details remain obscure. For example,

(i) How does the Py promote the reaction?

(ii) What is the nature of the dual catalysts?

(iii) What is the origin of the high chemo-selectivity of C−S
cross-coupling?

In fact, it is quite difficult to identify the precise mechanism
experimentally, because of the rather short lifetime of relevant
reactive intermediates. By contrast, computational modeling of
the reaction mechanism has been more broadly applied.13 At
present, there have been some progress on theoretical
mechanistic studies of IrIII/NiII metallaphotoredox catalyzed
C−X cross-coupling reactions. For instance, Ma and co-
workers investigated the mechanism of C−N cross-coupling by
IrIII/NiII metallaphotoredox catalysis. Their calculation results
suggest the radical mechanism merging iridium reductive
quenching and nickel catalytic cycles appears more feasible
than the triplet−triplet energy transfer mechanism.14 In
contrast, Guan and co-workers illustrated that IrIII/NiII

metallaphotoredox catalyzed C−O cross-coupling occurs
through oxidation state modulation mechanism15 merging
oxidative quenching and nickel catalytic cycles.16 In addition,
Chen and co-workers took the vinylation reaction as an
example to investigate photophysical properties of IrIII

polypyridyl complexes and their photoredox-mediated ex-
cited-state SET paths in detail.17 In view of the above studies,
we questioned which type of mechanism would be more
suitable for C−S bond formation. On this account, two
probable mechanisms have been put forward with under-
standings of the present reaction. As shown in Scheme 2a, a
radical mechanism is comprised of photoredox-mediated
iridium reductive quenching (IrIII−*IrIII−IrII−IrIII) and nickel
catalytic cycles (NiII−NiI−NiII−NiIV−NiII or NiII−NiI−NiII−
NiII). Specifically, in the reductive quenching photoredox cycle,
Ir(III) photocatalyst (a) initially absorbs a photon to produce
an excited state *Ir(III) (b). Then, b is reductively quenched
by RSH to generate a radical cation RSH• + and Ir(II) species
(c). Py selectively abstracts a proton from the sulfydryl group
of RSH• + to deliver S-centered radical (RS•). In parallel,
single-electron reduction of Ni(II) catalyst (d) by c generates
Ni(I) halide complex (e) and the ground state photocatalyst
Ir(III). Then, RS• would be rapidly captured by e to afford
Ni(II) thiolate species f. The following oxidative addition of
ArI to Ni(II) center and reductive elimination yield the C−S
coupling product and catalyst d (NiII−NiI−NiII−NiIV−NiII).
Besides, starting from f, a σ-bond metathesis between Ni−I
and S−C(aryl) bonds might occur to yield P and regenerate d
(NiII−NiI−NiII−NiII). An alternative mechanistic pathway, an
oxidation state modulation mechanism consisting of oxidative
quenching (IrIII−*IrIII−IrIV−IrIII) and nickel catalytic cycles
(NiII−NiI−NiIII−NiI−NiII or NiII−NiI−NiI−NiII) is given in
Scheme 2b. First, upon irradiation of the Ir(III) to *Ir(III),
Ni(II) catalyst will be reduced to e complex by the oxidative
quenching *IrIII → IrIV. Then, the successive coordination of
RSH and Py provides a Ni(I) thiolate intermediate (i) through
proton transfer step. The subsequent oxidative addition and
reductive elimination steps lead to the formation of the desired
C−S bond. Alternatively, a σ-bond metathesis between Ni−I
and S−C(aryl) bonds might also occur from i. Finally, single-
electron oxidation of Ni(I) halide (k) by Ir(IV) regenerates a
and d simultaneously.
To this end, to provide a deeper insight into the mechanism

of the C−S cross-coupling by IrIII/NiII metallaphotoredox
catalysis, we have comparatively investigated two types of

Scheme 1. C−S Cross-Coupling of 4-Methoxybenzyl Thiol
and 4-Iodotoluene by IrIII/NiII Metallaphotoredox Catalysis
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probable mechanisms mentioned above. Both DFT calcu-
lations and emission quenching experiments indicate that the
oxidation state modulation mechanism merging oxidative
quenching (IrIII−*IrIII−IrIV−IrIII) and nickel catalytic (NiII−
NiI−NiIII−NiI−NiII) cycles is more favorable. Furthermore,
the pyridine-mediated stepwise proton-coupled electron trans-
fer (PCET) step takes on a non-negligible role in the C−S
cross-coupling. We hope such knowledge would benefit a
better understanding of the present reaction mechanism and
future development of versatile C−X bond construction
reactions by such Ir/Ni−metallaphotoredox catalysis.

■ COMPUTATIONAL DETAILS AND MODELS

In the present calculations, the C−S cross-coupling of RSH
and ArI with the existence of Py catalyzed by IrIII/NiII dual
catalyst was selected as the model reaction, as shown in
Scheme 1.
DFT calculations were performed using the Gaussian 09

program.18 The (U)M06 method19 was used for unrestricted
geometry optimizations in the gas phase. The LANL2DZ was
employed for Ni, I, and Ir atoms with effective core potentials
(ECPs) for its core electrons.20 The 6-31++G(d,p) level was
used for H atoms in the sulfydryl and methylene groups, and
the 6-31G(d) level was applied for all of the other atoms. The
excited state of *Ir(III) was obtained by geometry
optimization of the triplet state of Ir(III). Frequency analyses
were calculated at the same theoretical level to ensure whether
it is a saddle point or minimum at 298.15 K and 1 atm.
Intrinsic reaction coordinate (IRC)21 calculations were
performed to confirm that the transition states indeed connect
the right reactants and products. The single-point energies of
all stationary points were performed at the SMD22(CH3CN)/
(U)M06/[6-311++G(d,p)/SDD23(Ni, I, and Ir)] level. In
addition, considering the change in standard states from gas
phase to aqueous solution, the translational entropy was
corrected with the method developed by Whitesides et al.24 In
order to evaluate the reliability of the computational method,
the photophysical properties of Ir(III) photocatalyst and redox
potentials of relevant complexes were calculated (see Figures
S1 and S2, Scheme S1, and Tables S1−S3 in the Supporting
Information). The 3D molecular structures were generated
using the CYL view program.25

■ RESULTS AND DISCUSSION
Radical Mechanism. Effort was first put into examining

the energy demands of the radical mechanism. Above all, a
radical coupling partner is generated through a pyridine-
mediated stepwise PCET step, as shown in Figure 1. In the

reductive quenching photocatalytic cycle, the photoredox
catalyst Ir(III) absorbs visible light to reach its excited state
*Ir(III). *Ir(III) can then facilitate the oxidation of RSH to
deliver RSH• + and reduced Ir(II) species with Gibbs free
energy change (ΔG°) of 3.6 kcal/mol (Figure S3 in the
Supporting Information). This SET process is feasible
according to the redox potential evaluations (see Scheme S1
in the Supporting Information). Based on Marcus electron
transfer theory,26 furthermore, the activation barrier of this
SET step was calculated to be 9.3 kcal/mol.27 Subsequently,
the approach of Py toward RSH• + results in the formation of
complex 1 (ΔG° = −0.3 kcal/mol), where H atom of the
sulfydryl group binds with the N atom of Py through near-
linear N···H−S hydrogen-bonding interaction. Next, a proton
transfer (PT) step occurs via an almost barrier-free transition
state TS1 to generate the radical coupling partner RS•. The
Gibbs activation energy (ΔG°⧧) and ΔG° of this PT step is

Scheme 2. Two Mechanisms of the C−S Cross-Coupling Reaction by IrIII/NiII Metallaphotoredox Catalysis: (a) Radical
Mechanism and (b) Oxidation-State Modulation Mechanism

Figure 1. Energy profile (ΔG298.15° ) of Py-assisted proton coupled
electron transfer process (bond length given in Angstroms).
Hydrogen atoms are omitted for the sake of clarity.
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only 1.1 kcal/mol and −12.5 kcal/mol, respectively. In TS1,
the S−H bond is slightly elongated to 1.44 Å from 1.41 Å in 1,
while the N−H bond is shortened to 1.62 Å from 1.76 Å in 1.
This indicates the breaking of S−H bond and that the
formation of the N−H bond is in process. Furthermore, the
spin density of S atom changes from 0.27 in 1 to 0.88 in RS•

throughout the PT step. An alternative hydrogen atom transfer
(HAT) from RSH to Py• + may provide RS•; however, the
oxidation of Py by *Ir(III) via SET to afford Py• + and Ir(II)
with an energy barrier of 27.9 kcal/mol. The high energy
demand of the SET step and the mismatched redox potential
results exclude such HAT mechanisms. Accordingly, RS• is
expected to proceed via the stepwise PCET step and can be
rapidly intercepted into a nickel catalytic cycle.
Hereafter, we will discuss the triplet nickel catalytic cycle,

because the singlet surface lies higher than the triplet (see
Figure S4 in the Supporting Information). As shown in Figure
2, the single electron reduction of Ni(II) by Ir(II) delivers a

Ni(I) intermediate 2 and regenerates the photoredox catalyst
Ir(III) with a small ΔG°⧧ value of 6.0 kcal/mol and a ΔG°
value of −3.2 kcal/mol. Also, this SET step is supported by the
matched redox potential (see Scheme S1 in the Supporting
Information). Subsequently, 2 captures RS• to generate a
stable Ni(II)−thiolate species 3, where the Ni−Cl bond is
almost perpendicular to the bpy ligand plane with a large
energy downhill of 39.6 kcal/mol. Starting from 3, the directly
oxidative addition of the Ar−I bond can occur via the
concerned three-membered-ring (Ni−C3−I) transition state
TS2. In TS2, the C3−I distance (2.58 Å) is longer than that in
ArI (2.13 Å), indicating that the cleavage of the C3−I bond is
in progress. As a result, an octahedral Ni(IV) complex 4 can be
obtained with completely broken C3−I bond (dC3−I = 2.93 Å).
The ΔG°⧧ and ΔG° values of the process are 41.3 and 38.7
kcal/mol, relative to 3, respectively. Then, through the
transition state TS3, where the distance of C3−S bond
distance is shortened to 2.62 Å from 3.03 Å in 4, the reductive
elimination occurs with a high energy barrier of 42.2 kcal/mol
to afford Ni(II) complex 5. In 5, the C3−S bond is completely
formed (1.79 Å). At last, the C−S cross-coupling product (P)

will be extruded to complete the catalytic cycle and regenerate
Ni(II) catalyst. As another possibility for the radical
mechanism, however, the oxidative addition that occurs prior
to RS• addition is more unfavorable than the present one,
because the energy barrier is 54.3 kcal/mol, with respect to 3
(see Figure S5 in the Supporting Information).
Considering the high-valent Ni(IV) intermediate is kineti-

cally and thermodynamically inaccessible, the viability of the σ-
bond metathesis mechanism was evaluated. In TS5, a four-
centered C3−I−Ni−S ring is formed, where the C3−I, Ni−I
and C3−S distances change to 2.53, 2.78, and 2.46 Å,
respectively, indicating the C3−I bond cleavage and the C3−S
bond formation occur simultaneously. The ΔG°⧧ and ΔG°
values of the process are 34.1 and −19.8 kcal/mol, relative to
3, respectively. Although the σ-bond metathesis effectively
decreases the activation barrier of the radical mechanism, the
high energy barrier cannot still be overcome by the
experimental conditions.

Oxidation-State Modulation Mechanism. Alternatively,
we must turn our attention to the oxidation-state modulation
mechanism. As shown in Figure 3, photoexcited *Ir(III) is
oxidatively quenched by Ni(II) via SET process to generate
the ground-state Ir(IV) and Ni(I) species 2, which is exergonic
by −3.8 kcal/mol. This SET step is very facile, because of the
matched redox potential (Scheme S1) and a low energy barrier
of 3.1 kcal/mol. Furthermore, a rapid and sensitive
luminescence turn-off response was observed upon addition
of Ni(II) in the Ir(III) solution (Figure 4). The emission
quenching was clearly seen upon addition of 2 mM Ni(II), and
almost completely quenched emission (∼98%) was observed
when the concentration of Ni(II) reached 30 mM. Stern−
Volmer (S−V) plot (Figure 4a, inset) gives a curve bending
upward, indicating that the emission quenching of *Ir(III)
becomes more efficient with the increase of Ni(II)
concentration. Also, the excited state lifetimes in the presence
of quencher Ni(II) (2 mM) (111 ns) are obviously shorter
than that of without addition of Ni(II) (146 ns). Combining
the nonlinear S−V curve and the change in excited-state
lifetime, the dynamic and static quenching processes may
coexist in the quenching process.28 The quenching rate
constant is evaluated to be ∼5.55 × 109 M−1 s−1. In addition,
no overlap was observed between the emission spectrum of
Ir(III) and UV-absorption spectrum of Ni(II) indicates the
absence of energy transfer between Ir(III) and Ni(II) (see
Figure S6 in the Supporting Information). The above results
reveal that the emission quenching of *Ir(III) can be
attributed to the SET process from the excited state Ir(III)
complex to the ground-state Ni(II) complex.
After the oxidative quenching *Ir(III) → Ir(IV), the

consecutive coordination of RSH and Py forms the nickel(I)
intermediate 9 with a ΔG° value of −6.5 kcal/mol.
Subsequently, a PT occurs via a four-centered (Ni−S−H−
N) transition state TS6 to afford a nickel(I) thiolate
intermediate 10 with a small ΔG°⧧ value of 6.1 kcal/mol.
The Ni−Cl and S−H distances are elongated to 5.64 and 2.09
Å in 10 from 2.31 and 1.37 Å in 9, respectively. The chloride
anion (Cl−) spontaneously dissociates from nickel(I) center to
counter the pyridinium cation [HPy]+. Thereafter, [HPy]+Cl−

ion pair acts as a solvent molecule to interact with the rest of
the nickel moiety, because the dissociation of the [HPy]+Cl−

from 10 requires a ΔG° value of 13.5 kcal/mol. Here,
successive SET and PT were defined as the stepwise proton-
coupled electron transfer (PCET). Note that a strong pre-

Figure 2. Energy profiles (ΔG298.15° ) of NiII−NiI−NiII−NiIV−NiII and
NiII−NiI−NiII−NiII cycles.
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equilibrium hydrogen-bonding interaction between N atom of
Py and H(−S) atom of RSH in the PT step causes high
chemoselectivity of C−S versus C−C cross-coupling (see
Figure S7 in the Supporting Information).16

Prior to the following oxidative addition of the C−I bond of
ArI to the Ni(I) center, the CC double bond of ArI first
coordinates with the Ni(I) center of 10 in a η2-side-on manner
to provide a four-coordinate nickel(I) intermediate 11 with a
ΔG° value of −6.1 kcal/mol. Subsequently, the C3−I bond is
cleaved via the transition state TS7 to afford a nickel(III) aryl
thiolate intermediate 12 with a moderate ΔG°⧧ value of 19.4
kcal/mol. Then, C−S reductive elimination occurs through the
transition state TS8 to form the four-coordinate Ni(I)
intermediate 13. This reductive elimination from nickel(III)
complex needs a very small ΔG°⧧ value of 3.2 kcal/mol,

relative to 11. In contrast, an alternative σ-bond metathesis
from 11 was also evaluated to require much larger ΔG°⧧ value
of 31.3 kcal/mol, as shown in Figure 3 (blue line). Finally, the
SET process between 13 and Ir(IV) complexes can release the
desired product P and regenerate Ni(II) and Ir(III) to restart
the catalytic cycle. According to the above results, the rate-
determining step of NiII−NiI−NiIII−NiI−NiII cycle is an
oxidative addition, with a ΔG°⧧ value of 19.4 kcal/mol,
which can be overcome under room temperature. Overall, the
IrIII/NiII cooperative catalysis is reflected not only in
thermodynamics but also in kinetics. Kinetically, Ir(III)
photoredox-mediated excited-state SET process triggers the
single electron reduction of Ni(II) to the active Ni(I) species
with a very low energy barrier (3.1 kcal/mol). Thermodynami-
cally, photocatalytic cycle (IrIII−*IrIII−IrIV−IrIII) contributes

Figure 3. Energy profiles (ΔG298.15° ) of the NiII−NiI−NiIII−NiI−NiII and NiII−NiI−NiI−NiII cycles.

Figure 4. (a) Steady-state emission quenching of *Ir(III) (10 μM) with addition of different concentration Ni(II) complex in the CH3CN solution
(inset shows Stern−Volmer analysis of the results). (b) Corresponding photographs of *Ir(III) (10 μM) with addition of different concentration of
Ni(II) complex (6−30 mM) in the CH3CN solution under sunlight (top) and UV lamp irradiation (bottom), respectively.
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an extra huge driving force (27.3 kcal/mol) for the entire
catalytic reaction.
Note that the difference of oxidative addition steps between

the radical mechanism and the oxidation state modulation
mechanism is originated from the oxidation states of nickel
center. Generally, the oxidation process of high-oxidation-state
metal is more disadvantageous. In this regard, the former
involving NiII → NiIV transformation is obviously less favorable
than the latter involving NiI → NiIII transformation. In
addition, we also employed the activation strain model to
analyze their energy-barrier differences (Figure S8 in the
Supporting Information).29 It can be suggested that the
oxidative addition of ArI to high-oxidation-state NiII center
results in considerably larger distortion between the Ni catalyst
and the substrate, which accordingly leads to the larger bond
activation barrier.

■ CONCLUSIONS
An oxidation state modulation mechanism, which consists of
IrIII−*IrIII−IrIV−IrIII oxidative quenching and NiII−NiI−NiIII−
NiI−NiII catalytic cycles, has been proposed and proved to be
the most viable for photoredox-mediated iridium(III)/nickel-
(II) dual-catalyzed C−S cross-coupling of thiols with
heteroaryl iodides. The catalytic cycle starts with a
thermodynamically and kinetically favorable single electron
transfer process, where photoexcited *Ir(III) is oxidatively
quenched by Ni(II) to generate the ground-state Ir(IV) and
Ni(I)(bpy)Cl complex. This active nickel(I) species succes-
sively interacts with 4-methoxybenzyl thiol and pyridine to
form a nickel(I) thiolate intermediate through proton transfer
step. A subsequent two-electron oxidative addition and
reductive elimination process constructs the C−S bond.
Then, the second exergonic single electron transfer process
between nickel(I) iodide and Ir(IV) complexes can regenerate
Ni(II) and Ir(III) to restart the catalytic cycle. Importantly,
the pyridine-mediated stepwise proton-coupled electron trans-
fer process successfully accelerates the reaction. The oxidative
addition is the rate-determining step, with an energy barrier of
19.4 kcal/mol. Furthermore, the proposed oxidative quenching
cycle has been demonstrated to be favorable through the redox
potential evaluations, the activation barriers of single electron
transfer, and the emission quenching experiments. We hope
the mechanistic insights could benefit deep understanding of
iridium/nickel cooperative catalysis and the future develop-
ment of new C−X cross-coupling reactions.
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