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A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to
be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details
are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints,
including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for
the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution
function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT)
model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of
use for potential epidemics such as avian influenza and H7N9 in China.
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1 Introduction

Beginning from late 2002 to mid 2003, severe acute respira-
tory syndrome (SARS) spread over the world. Up to the end
of May 2003 probable cases have been reported in 35 coun-
tries or regions, and the cumulative number of cases reached
8202 by May 26, 2003 according to the report by the World
Health Organization (WHO). SARS in the year 2003 and
avian influenza such as H7N9 in reported first in 2013 has
been the focus of world attention because of the high case-
fatality rate. Researchers were particularly interested in find-
ing the period of the time between infection and the onset of
infectiousness, length of period that patients remain infec-
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tious, further infections that each patient produce and the to-
tal number of infections during the epidemic. A large number
of research groups have reported on SARS elsewhere [1–4].
Important achievements have been made for the transmission
dynamics using various mathematical models [5–17] and re-
ported data from Hong Kong or Canada. Donnelly et al. [5],
Riley et al. [6] and Lipsitch et al. [7] made use of the avail-
able data for SARS on latent, incubation and infectious peri-
ods and have successfully fitted mathematical models to data
describing the number of cases observed over time. One log-
ical conclusion was that if SARS was unchecked, then a ma-
jority of people would be infected. The potential effective-
ness of different control measures has been studied in these
references.

Though SARS did not appear again since 2003, there may
be other epidemic, such as H7N9 avian influenza occurring
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actually in China possibly, spreading in a similar way. Hence
the study of various models for the prediction of SARS and
other epidemic once it has occurred is critical for intensive
study of transmission modes and mathematical modelling.

As assessed by Dye and Gay [8], the current mathematical
models are complex, the data are poor, and some big ques-
tions such as accuracy of case reports and heterogeneity in
transmission remain. Dye and Gay anticipated that the next
generation of SARS models would become more complex.

It is now evident that SARS and maybe avian influenza
in a city can be controlled through multiscale measures such
as medical interventions, public-service announcements, iso-
lation of people having contact with infected and restriction
of individual and social activities. When the interventions to
control a communicable epidemic are intensive and of mul-
tiple scales, it would be very difficult to find all those details
of the epidemic needed by a more complex model. It is thus
desired that, under intensive and multiscale interventions, the
global behavior of SARS or avian influenza spread, governed
by a complex and multiscale system, could be approximated
without having awareness of the epidemic details.

The dynamics of an epidemics is an important topic in
biology, medicine, mathematics and physics and is usu-
ally modelled through differential equations [17–21], among
which is the SIR (susceptible-infected-removed) model. Re-
search in this topic has been multi-pronged and on-going [9–
17,25,26].

Most of the models for epidemics spread rely on differen-
tial equations for the susceptible, infected and removed num-
bers. Different spread mechanisms are embedded into the
various terms in the differential equations.

Herein we are interested in the number of hospitalized
cases (cumulative number of cases minus the number of
deaths and the number recovered) and attempt to consider a
new approach to predict this number. In our approach all the
mechanisms controlling the spread are factored into a single
parameter. Assuming the system controlling the spread of
SARS or similar epidemic is a thermodynamic one, we de-
fine an entropy and determine the only parameter by using the
principle of extreme rate of entropy production. This allows
us to relate the dynamics of the spread to the information at
the inflexion point of the curve describing the time variation
of the number of hospitalized cases. The inflexion point is the
date at which the multiple controlling measures take effect.

The model presented in this paper is based on a simple dif-
ferential equation with the spread rate forced to satisfy four
constraints. The model is closed by the use of maximum or
minimal rate of entropy production as the system for spread
is assumed to be thermodynamical. A critical point (date) at
which the spread rate turns to decrease because of the overall
role of interventions. The maximum number of infected in-
dividuals and the time at which this maximum occurs can be
related to the number and time corresponding to the critical
date. This entropy-based thermodynamic model is validated
against the SARS data of the year 2003 for which we are able

to follow the history of the spread.

2 The entropy-based thermodynamic model

2.1 Basic model

Let f (t) be the number of hospitalized cases, defined as the
cumulative number subtracted from the cumulative number
of deaths and recovery ones since death and recovery are
also parts of actions in the thermodynamical system. The
epidemic increase is generally complex and can not be rep-
resented by an explicit expression. Thus, in the previous re-
search, one can either use the master equation or mean-field
to describe f (t). However, viewing the epidemic as a ther-
modynamic system and following the approach for the rate
of vibration excitation and chemical reaction [26], we may
assume that the rate of increase (decrease) be proportional to
the number at the previous day, that is,

d f (t)
dt
= α(t) f (t) (1)

Here α(t) is a time-dependent coefficient. The specific form
for the coefficient α(t) depends on the balance between the
spread mechanism of the epidemic and the the control mech-
anisms during the public intervention. For a deterministic
method, one need the knowledge of all the details for the
spreading and controlling of the epidemic, and a coupled sys-
tem of differential equations should be used. Here, we in-
stead use a statistic approach, by first assuming that all the
spread mechanism and controlling effect be incorporated into
the time-dependent function α(t). Though the details of epi-
demic are not need here, there are four obvious constraints
that this function should meet:

(1) The parameter α(t) must have the dimension of t−1, that
is α(t) ∼ t−1.

(2) At the initial stage there is an exponential increase for
regular spread to start (since at the initial stage the number is
near zero), that is, α(0)→ ∞.

(3) With the strong and active interventions the rate must
decrease at a given day t = L which will be called the in-
flexion point (date). Mathematically this amounts to say that
d2 f (t)

dt2 vanishes at t = L. Inserting eq. (1) into d2 f (L)
dt2 = 0

yields,
dα
dt
+ α2 = 0, t = L

(4) There must be a maximum for f (t), say at the date
t = D, for which we have α(D) = 0.

We assume that the virus causing an epidemic is constantly
active (high temperature or intrinsic lifetime constraint would
make the epidemic disappear suddenly, but this is not consid-
ered here) so that α(t) is further assumed to be an analytical
function.

The only analytical function that meets the four constraints
and that is sufficiently simple is found to be given by

α(t) =
−c ln(t/D)

t
. (2)
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where c = 1−ln(L/D)
ln2(L/D)

. Inserting (2) into (1) leads to the follow-
ing solution which is effectively the log-normal function:

f (t) =
k√

2πσt
exp

(
− (ln t − μ)2

2σ2

)
. (3)

Here k is a proportion constant that does not need to be
known, μ = ln D + σ2, and σ is to be determined in the fol-
lowing through the use of the principle of extreme rate of
entropy production.

The approach will be validated against the SARS data of
the year 2003. The essentially new feature of the present
model is the simplicity as there are no free parameters to be
fitted. The only parameter σ, characterizing the width of the
distribution function, in eq. (3) can be determined by a ther-
modynamic approach as described below.

2.2 Principle of extreme rate of entropy production

The principle of extreme rate of entropy production can be
found elsewhere [27]. This has been successfully used to
obtain the distribution of droplet production during its im-
pingement on solid walls [20]. Though the principle of maxi-
mum/minimum entropy production principle at least in some
cases has been proved to be incorrect, it is still useful as a
method to determine parameters in a model. Certainly, the
width of the curve f (t) ∝ t can be characterized by σ. The
wider the curve is, the larger is the (Shannon) entropy. The
intrinsic spread mechanism of virus and the large mixing ac-
tivity of the population tend to make the curve wider (so σ
larger). However, the medical and social interventions to con-
trol the epidemic constitute a dissipation mechanism which
would prohibit the curve to become infinitely wide (σ in-
finitely large). The width would cease to increase when the
maximum dissipation rate is reached. The dissipation rate is
proportional to the rate of the entropy production. Maximum
dissipation rate corresponds to extreme rate of entropy pro-
duction, which again corresponds to

d2S (σ, η)
dσ2

= 0. (4)

Here S (σ, η) is the Shannon entropy defined as:

S (σ, η) = −
∫ ∞

0
F(t) ln F(t)dtη,

where F(t) = t1−η f (t) with η = 3 in the usual entropy defini-
tion. Integration leads to

S (σ, η) = η

(
ln

(√
2πσ

)
+ η

(
ln D + σ2

)
+

1
2

)
,

so that eq. (4) holds if and only if

σ =
1√
2η
≈ 0.408, for η = 3. (5)

At this value for σ, the intrinsic spread mechanism is bal-
anced by the dissipation mechanism (controlling effect).

2.3 Maximum number of hospitalized cases

Inserting eq. (3) into the definition of inflexion point
d2 f (t)

dt2

∣∣∣∣
t=L
= 0 and considering μ = ln D + σ2, we obtain the

following relationship between the two typical dates D (for
maximum number of hospitalized cases) and L (inflexion
point):

D = L exp

(
1
2
σ2 +

1
2

√
4σ2 + σ4

)
.

Using eq. (3) again, f (D) is found to be related to f (L) by

f (D) = f (L) exp

(
−σ2 − 1

2

√
4σ2 + σ4

+
1
2

(
3
2
σ +

1
2

√
4 + σ2

)2⎞⎟⎟⎟⎟⎟⎠ .
With σ given by eq. (5), we have two important relations:

D
L

∣∣∣∣∣
η=3
= 1. 649,

f (D)
f (L)

∣∣∣∣∣
η=3
= 2. 120. (6)

these important ratios can be applied to predict the maximal
number of possible hospitalized cases and the day this max-
ima appears, once the inflexion point is identified through the
data at the earlier stage of epidemic spreading. See below for
more detailed explanation.

2.4 Initial date for regular spreading

Once we know the inflexion date, it is crucial to determine
when is the initial date for regular spreading of the epidemic.
In other words, we must know the number L (cumulated days
to reach the inflexion point counting from the initial date).
This can be done by using the rate of increase d f (t)

dt at t = L.
A simple calculation using eq. (3) yields

d f (t)
dt

∣∣∣∣∣
t=L
= − 1
σ2L

f (L) ln
L
D

which yields

L =

⎛⎜⎜⎜⎜⎜⎝1
2
+

1
2

√
4
σ2
+ 1

⎞⎟⎟⎟⎟⎟⎠ f (L)
d f (t)

dt

∣∣∣∣
t=L

=
3 f (L)
d f (t)

dt

∣∣∣∣
t=L

(7)

3 Application and validation of the model

3.1 Use of the EBT model

The model is used as follows:
Step 1 (data recording). Using the reported data we deter-

mine the number F = f (L) at the inflexion date (the date that
d f (t)

dt tends to decrease). Also determine d f (t)
dt

∣∣∣∣
t=L

by using the

reported date. Determine the proportion constant k in (3) by
setting f (L) = F. Then use eq. (7) to determine L.
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Step 2 (Prediction). Once L and f (L) are known, use eq.
(6) to predict D and f (D) and plot the curve f (t) ∼ t using
eq. (3) to predict the number f (t) for L < t.

Hence it is essential to determine the inflexion point.
Specifically, this is done as follows. We record the re-
ported number f (t) for each day and draw the curve g(t) =
f (t) − f (t − 1). Once we observe that g(t) reaches a peak (de-
noted as G) at t = L, then L is considered as the inflexion
point. However, special cautions must be made.

(a) in the early period of the epidemic, it is possible to have
report delay of cases so that a false peak would occur.

(b) for a city or region where the cumulative number of
cases remains always small, it is difficult to observe a clear
peak. In this case this approach is not valid.

(c) There is also a possibility to have multiple inflexion
points due to new outbreaks, as is in the case of Hong Kong,
Singapore and Canada for SARS in the year 2003.

Numerically, L is calculated as:

L = 3F/G, (8)

where F = (2F − G)/2 is the number of f averaged over
two consecutive dates (at and before the inflexion date). Still
using the log-normal function, we can relate the maximum
H = f (D) and the date D to F and G by H ≈ 2.12F and
D ≈ L + 2F/G where none of the constants depend on the
details of the epidemic.

3.2 Test of the model for the epidemic of SARS in 2003:
cities in China

First let us consider Beijing. Using the reported date as
shown in Figure 1, we identify April 27 to be the critical date
since d f (t)

dt experiences an evident decrease after that date (we
also observe a decrease before April 25, but that decrease
is due to the report delay). Using the reported date we have

Figure 1 Inflexion point for Beijing. Note that the first peak is not an
inflexion point but is simply due to report delay in the early period.

f (L) = 980 and d f (t)
dt

∣∣∣∣
t=L
= 116. Hence L = 24 according to

eq. (8). This indicates that the initial date for irregular spread
is April 3. Using eq. (6) we predict D and f (D) to be D = 42
(May 13) and f (D) = 1955, while according to the report,
D = 44 (May 15) and f (D) = 1991. The predicted curve
f = f (t) follows well the curve, as can be seen in Figure 2.

For Hong Kong, we observe three distinct inflexion points
as can be seen in Figure 3. The prediction using the informa-
tion at the three inflexion points (IP1, IP2, IP3) show that the
predicted curve using the first inflexion point is the closest to
the reported data (Figure 4).

For Hebei, the number of cases is not large, however, the
prediction is in good agreement (Figures 5 and 6).

Figure 2 Time history of the number of hospitalized cases for Beijing.

Figure 3 Inflexion point for Hong Kong. For Hong Kong we observe three
distinct inflexion points.
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Figure 4 Time history of the number of hospitalized cases for Hong Kong.

Figure 5 Inflexion point for Hebei. For the Province of Hebei of China the
inflexion point is still identifiable.

3.3 Test of the model for the epidemic of SARS in 2003:
other countries

Apart from China, SARS also appeared in Singapore and
Canada, though the numbers of hospitalized cases were low.

For Singapore we observe three distinct inflexion points
and two maximums (Figure 7). The prediction using the in-
formation at the first inflexion point fits well to the most part
of the first peak (Figure 8).

For Canada we observe two inflexion points (Figure 9)
and when the information of the first inflexion point is used
the prediction reproduces well the lower part of the observed
curve but fails to predict the peak value (Figure 10).

In summary, when the number is small, the error may be
large. This is because that the thermodynamic approach is
more accurate when the system is larger.

Figure 6 Time history of the number of hospitalized cases for Hebei. The
predicted curve is reasonable as compared to the reported one, though the
number of cases in Hebei is not large.

Figure 7 Inflexion points for Singapore.

3.4 Sensitivity of model to the number of hospitalized
cases and the value of σ

In contrast to a deterministic approach for which one can give
the specific condition under which a model is valid, for a
statistic model, as for the present model, it is usually diffi-
cult to give specific conditions for validity. For the present
approach, if the epidemic is sufficiently large but governed
by controlling efforts of multiple scales so that an entropy is
associated with the system, then the model is expected to be
useful for predicting the spread increase or decrease, based
on some data for the initial period of the epidemic. This can
be seen from the estimated error as displayed in Table 1 for
comparison of the model with SARS data. In Table 1, when
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Figure 8 Comparion between predicted and reported cases for Singapore.

Figure 9 Inflexion points for Canada.

there are multiple inflexion points, as is in the case for Hong
Kong, Singapore and Canada, we use the information at the
first inflexion point. In the case of Singapore and Canada,
there are two maximums but we give information only for

Figure 10 Comparison between predicted and reported cases for Canada.

the first one. We see that when the total number is in the or-
der of a thousand or above, then the comparison is generally
consistent, with an error within 15%.

For Hebei, Singapore and Canada, the total number is of
the order of one hundred or less, with some comparison be-
ing entirely consistent. Only the case for Canada, we fails to
predict the maximum value but correctly predicts the day the
maximum appears.

It is interesting to note that the best fit value of σ using
the reported data is close to the theoretical one (σ = 0.408)
(Table 2). In fitting σ, the date D (counting from the starting
date) and the maximum value H are fixed to be the values
given by the reported data (third and fourth columns) so that
only σ is fitted. In the second column, the starting date is ap-
proximately the date when the first case was introduced into
the region. The outbreak for the epidemic is assumed to take
place within at most ten days so the best fit σ is obtained
by using two epidemic starting days (date with the introduc-
tion of the first case and latest possible outbreak date). The
range of best fit σ (fifth column) is in close approximation
to the theoretical value 0.408 for Beijing and is not signifi-
cantly different from the theoretical value for the other cities
or regions.

Table 1 Predicted number H and date D compared with the reported ones for several cities or regions

Regions
Inflexion date Date D Maximum H

Error
Date F = f (L) G Pred Rep Pred Rep

Beijing Apr27 980 116 May13 May15 1955 1991 2%

Hong Kong Mar28 960 49 Apr12 Apr14 823 960 14%
World Apr23 2005 222 May9 May12 4015 3700 8.5%

Mainland China Apr27 1572 177 May14 May12 3332 3068 8.6%

Hebei May4 92 17 May15 May13 177 161 8%
Singapore Mar18 29 6 Mar27 Mar23 61 60 1%

Canada Mar27 49 9 Apr10 Apr4 104 67 55%
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Table 2 Best fit value of σ for several regions using the least square method, compared to the theoretical value σ = 0.408. The agreement is reasonable

Regions Starting date Date D Maximum H Best f·it σ
Beijing Mar 25/(10 days later) May 15 1991 0.349/0.462

Hong Kong Feb. 20/(10 days later) Apr. 14 960 0.285/0.343

World Feb. 20/(10 days later) May 12 3700 0.273/0.32
Mainland China Mar 25/(10 days later) May 12 3068 0.307/0.404

Hebei Apr. 17/(10 days later) May 13 161 0.367/0.357
Singapore March 1/(10 days later) Apr. 15 64 0.409/0.491

Canada Feb. 25/(10 days later) April 8 84 0.297/0.368

Figure 11 Role of σ on the correct reproduction of the curve f = f (t).

It can be noted that if the use of a value σ far beyond
the theoretical value, the curve will not significantly affected.
Herein we display in Figure 11 the role of σ on the correct
reproduction of the curve f = f (t). The log-normal curves
using the thermodynamical value σ = 0.408 and the best
fit value σ = 0.47 are all close to the reported data. How-
ever, whenσ is significantly different from the thermodynam-
ical value, then the log-normal curve has a great departure
from the reported data, as can be seen from the curves using
σ = 0.1 and σ = 0.9. This shows that the shape of the curve
is quite sensitive to σ and the theoretical value of σ is indeed
a rational one.

4 Discussion

For the spread rate of communicable epidemics with multi-
scale controlling effort, we have built an entropy-based ther-
modynamic model for which we just need some data for the
early period of a communicable epidemic, that is, we just
need to know the inflexion point L (the cumulative days be-
fore the inflexion point), the number f (L) of the hospitalized
cases and the increase rate d f (L)/dt. Then the number of hos-
pitalized cases for t > L can be predicted through the model.
Notably, the maxima (t = D, f (D)) is shown to be related to
the inflexion point by the following very simple relations:

D
L
= 1. 649,

f (D)
f (L)

= 2. 120. (9)

The EBT model is applied to predict the number for t > L
and especially D and f (D) for the 2003 SARS and is hoped
it can be applied to other systems for SARS or similar epi-
demic spread involves multiscale interventions and consti-
tutes a thermodynamical system. Despite the possible un-
certainty in the reported data for 0 < t < L and that the model
does not require epidemic details such as latent, incubation
and infectious periods, the comparison between model pre-
diction and reported SARS data is sufficiently good for the
cities or regions where the epidemic is severe. The predic-
tion for the case of Beijing is somewhat consistent since the
number of cases is large. This shows that when the system
is sufficiently large, the thermodynamic approach is more ac-
curate. The actual model has some difficulties to precisely
predict the case of multiple inflexion points.

The model seems to work if the number of hospitalized
cases is in the order of hundreds, though the epidemic of
Canada for SARS in the year of 2003 contains less than one
hundred hospitalized cases and the prediction is entirely con-
sistent.

The occur of the inflexion point depends on the strong
public intervention to control the epidemic. The informa-
tion about the inflexion point must be given according to the
recorded data, without delay in reporting.

According to eq. (9), the maximum number of hospitalized
cases will appear at a day about t = 0.65L after the inflexion
point t = L, and the maximum number is about two times of
the number at the inflexion point.

One may define the time t = M as the day that the epidemic
disappears, if at this day the number of hospitalized cases re-
duces to 1% of the number at the inflexion point t = L, that
is, the M is determined by, according to eq. (3) such that

L
M

exp

(
(ln L − ln D − σ2)2

2σ2
− (ln M − ln D − σ2)2

2σ2

)
= 0.01.

Using eq. (9) to replace D we further obtain

L
M

exp

(
(ln L − ln(1. 649L)− σ2)2

2σ2

− (ln M − ln(1. 649L) − σ2)2

2σ2

)
= 0.01. (10)

For SARS in Beijing, L = 24, the use of (10) predicts
M = 150 for σ = 0.408. This compares quite consistently
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with the approximate disappearing date as can be seen from
Figure 2.

The present model can be possibly used to predict epi-
demics other than SARS once the communicable epidemics
receive intensive interventions. The H7N9 avian influenza
is actually of great concern [28,29] and if unfortunately this
should spread rapidly, we expect the present model would be
useful for predicting the spread.

5 Conclusions

The advantage of the present approach is the simplicity of the
model, which does not involve any free parameters nor epi-
demic details, though the process of the spread of epidemics
is complex. The complexity of the problem is resolved here
through the use of an entropy approach. She [30] recently
suggested a framework for treating complex system. Accord-
ing to this framework, it is usually possible to define simple
models for complex systems. The disadvantage of the present
approach is that it is a statistical one so that it is difficult
to give specific conditions under which the model remains
valid. Though the use of SARS data, this supports the va-
lidity of the approach, even when the number of hospitalized
cases is small for cities or countries such as Hebei Province
or Canada. More comparisons needs to be done to further
assess the validity. This can be considered in future studies.
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