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Abstract: Fourier ptychographic microscopy (FPM) is a recently developed imaging approach
aiming at circumventing the limitation of the space-bandwidth product (SBP) and acquiring a
complex image with both wide field and high resolution. So far, in many algorithms that have
been proposed to solve the FPM reconstruction problem, the pupil function is set to be a fixed
value such as the coherent transfer function (CTF) of the system. However, the pupil aberration
of the optical components in an FPM imaging system can significantly degrade the quality of the
reconstruction results. In this paper, we build a trainable network (FINN-P) which combines
the pupil recovery with the forward imaging process of FPM based on TensorFlow. Both the
spectrum of the sample and pupil function are treated as the two-dimensional (2D) learnable
weights of layers. Therefore, the complex object information and pupil function can be obtained
simultaneously by minimizing the loss function in the training process. Simulated datasets are
used to verify the effectiveness of pupil recovery, and experiments on the open source measured
dataset demonstrate that our method can achieve better reconstruction results even in the presence
of a large aberration. In addition, the recovered pupil function can be used as a good estimate
before further analysis of the system optical transmission capability.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently, a data-driven image reconstruction technology, called Fourier Ptychographicmicroscopy
(FPM), has been proposed [1–3] which provides a coherent imaging approach for achieving a
wide-field and high-resolution result by circumventing optical space-bandwidth product (SBP).
This method integrates the theories of phase retrieval [4] and aperture synthesis [5] to recover
both the intensity and phase information. The FPM approach is derived from a similar imaging
technique called ptychography, which is a lensless imaging technique [6–8]. Both the techniques
could acquire a high-resolution complex object image based on a series of low-resolution images.
However, unlike ptychography, FPM adopts a microscopic system which can transform the
spectral information received in ptychography into the spatial information [1]. In addition, FPM
replaces the fixed light source with an LED array. As a result, the sample could be illuminated
by plane waves from multiple angles. In this way, the higher-frequency information that would
normally surpass the system bandwidth could be received and detected by the image sensor.

Since FPM was first proposed in 2013, the system structure and reconstruction algorithm have
been modified several times to further improve the performances of the technology. In order to
minimize the negative impact of background noise during the reconstruction process, several
methods have been proposed [9–13]. To increase the reconstruction speed and robustness of
FPM, some optimization methods have been developed such as nonlinear optimization algorithm
[14], Gauss-Newton method [15,16], Wirtinger flow optimization [17], convex relaxation method
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[18]. By selectively updating the most informative sub-regions [19,20], the reconstruction speed
of FPM could be further improved. In addition, the algorithms for diminishing the influences of
system aberrations, like the positional misalignment of the LED array [21–23] and the aberrations
of the optical lens [24–26] have been proposed. Meanwhile, the concept of FPMwas also adopted
in lensless imaging [27] and by combining with the multi-layer modeling approach, Tian et al.
developed a multi-slice FPM which can obtain the three-dimensional (3D) information of the
sample [28].
In addition to the approaches mentioned above, recently an increasing number of algorithms

based on deep convolutional neural network (DCNN) have been published to solve image
reconstruction problems such as single image super-resolution [29–33] and phase retrieval
[34,35]. The traditional DCNN is a machine learning technique that learns the mathematical
mapping between the input and output. A DCNN model usually needs to be trained with the
existing training dataset and the loss function is calculated by the residual between the output of
the model and the label images in the training dataset. By using the gradient descent method to
minimize the loss function, the model could be updated and learn the mapping process more
correctly. Due to the excellent ability of DCNN to learn the non-linear relationship between
the input and output, these works produce great results. Because the purpose of FPM is to
solve the nonlinear ill-posed inverse problem of synthesizing a high-resolution complex image
from low-resolution images [1,4,14], it is naturally to introduce the idea of DCNN into FPM
by learning the mapping process from several low-resolution images to a high-resolution target
[35–39]. However, there still exist some issues in these methods. First, this end-to-end DCNN
framework relies on a large dataset to learn the rules of the underlying inverse process while
lacks the constrains that could represent the actual physical process [38]. In this case, it is usually
necessary to train the dataset for hundreds of times to acquire acceptable results [37,38], which
makes the training process of the network very time-consuming. Second, after the training is
completed, the network can only work properly for a specialized FPM system. If any system
parameters change, the network needs to be retrained to match the new parameters, which makes
the reconstruction algorithm lack of universality and stability. Jiang et al. recently proposed
a novel FPM algorithm which utilizes a deep learning library called TensorFlow [40]. They
first establish a forward imaging model of FPM and then use back-propagation to train the
model. Because this method introduces the physical process of the actual FPM system and is still
essentially an iterative-based algorithm, it does not have the same issues as the DCNN-based
methods do. However, none of these methods takes into account the influences of the system
pupil aberrations.
In this paper, we propose a novel FPM reconstruction model termed forward imaging neural

network with pupil recovery (FINN-P), which can simultaneously reconstruct an aberration-free
high-resolution complex image of the sample and the pupil function of the system. Similar to
Jiang’s method, we build a TensorFlow-based trainable network to solve the FPM problem, and
the high-resolution results can be obtained by minimizing the loss between the network’s output
and measured low-resolution images. However, due to the more effective model workflow and
optimization methods employed, our algorithm can achieve better reconstruction results and
the imaging wavefront aberrations could be estimated through the phase of the recovered pupil
function [24].
This paper is structured as follows: in Section 2, we present the overall structure of the FPM

system and describe the forward imaging model mathematically. in Section 3, we explain our
reconstruction network and verify the effectiveness of pupil recovery through simulation. in
Section 4, we demonstrate that our method can improve the reconstruction quality and compare
the performances with several other reconstruction algorithms such as GS [1], AS [9], and Jiang’s
method [40]. Finally, Section 6 describes the summaries and discussions as well as our prospect
for future works.
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2. The principle of FPM

Before we introduce the details of our algorithm, it is worthwhile to briefly review the structure
of the FPM system and the imaging process. A traditional FPM system comprises five parts
as shown in Fig. 1. A thin specimen is located far enough away from an LED array so that
the incident waves which irradiate the specimen from different angles can be approximately
considered as plane waves. An optical 4f system consisting of an objective lens and a tube lens is
placed behind the specimen. In order to obtain the spectra of the sample at the back focal plane
of the objective lens, the specimen need to be placed at the front focal plane of the objective
lens. Eventually, an image sensor placed behind the tube lens is utilized to detect the light waves
propagating through the system.

Fig. 1. Schematic of a typical Fourier ptychographic microscopy.

Since the image sensor (CCD) can only capture the intensity of the outgoing waves, for the mth

LED, the intensity image recorded by the sensor can be formulated as:

Im(r) = |F −1{F {o(r) · exp(i2π · umr)} · P(u)}|2, (1)

where r = (x, y) represents the 2D coordination in the spatial domain, “·” symbol donates
element-wise multiplication and u = (fx, fy) is the 2D coordination in the Fourier domain, o(r)
refers to the transmission function of the sample, F and F −1 represent the Fourier transform and
inverse Fourier transform respectively, and um represents the wave vector shift corresponding to
the illumination angle of the mth LED, which can be expressed as:

um = (
sinθ(m)x
λ

,
sinθ(m)y

λ
), (2)

where (θ(m)x , θ(m)y ) represent the incident angles for the mth LED, and λ represents the illumination
wavelength in the air. Therefore, the imaging formation process can be rewritten as:

Im(r) = |F −1{O(u − um) · P(u)}|2, (3)

where O(u − um) represents the sample spectrum corresponding to the mth LED, and P(u)
represents the pupil function of the imaging system, which is considered as the coherent transfer
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function (CTF) of the system in many traditional algorithms and can be expressed as:

P(fx, fy) = CTF =


1, if (f 2x + f 2y ) ≤ (NA
λ )

2

0, otherwise
, (4)

where NA is the numerical aperture of the objective lens. According to Eqs. (3) and (4), when
light passes through the system, the field is low-pass filtered by the pupil function P(u), and
when the LEDs which provide different wave vectors um are sequentially activated, we can
obtain a series of low-resolution images containing information from different sub-regions of the
spectrum.

3. FPM reconstruction model with pupil recovery

Based on the imaging model discussed above, we propose a new algorithm called FINN-P by
reproducing the forward imaging process through a network similar to Jiang’s method [40].
However, Jiang’s method uses a previously fixed pupil function, such inaccuracy of the pupil
function will degrade the reconstruction quality when the system suffers from severe aberrations.
To solve this problem, we set both the Fourier spectrum of the sample and the pupil function as
trainable multiplication layers, unlike the usual deep learning method, this algorithm does not
require a pre-training process. Instead, we use the characteristic of gradient back-propagation
to optimize the layers by alternately training one and keeping the other one fixed during the
reconstruction process. The overall workflow of FINN-P is shown in Fig. 2.

First, the algorithm needs to make an initial guess on the sample spectrum Oe(u), which is the
Fourier transform of an up-sampled low-resolution image under the normal incidence condition,
and the pupil function is set as the circular low-pass filter P(u) defined in Eq. (4). Second, we
obtain the estimated low-resolution complex field Ee,m(r) from the initial spectrum similar to
Eq. 3.

Ee,m(r) = F −1{Oe(u − um) · P(u)}. (5)

Since our forward imaging network is built based on the TensorFlow library, in which the trainable
parameters need to be real, we separate the spectrum of the sample and the pupil function into
real and imaginary parts, (Or,Oj) and (Pr,Pj) respectively, such that:

Oe(u) = Or(u) + iOj(u)

P(u) = Pr(u) + iPj(u)
(6)

In this case, there are four layers in the entire network that need to be trained and by substituting
Eq. (6) into Eq. (5), the simulated low-resolution complex field can be expressed as:

Ee,m(r) = F −1{[Or(u − um) · Pr(u) − Oj(u − um) · Pj(u)]
+i[Or(u − um) · Pj(u) + Oj(u − um) · Pr(u)]}

(7)

In order to suppress the negative effects caused by the intensity fluctuation of different LED
elements [26], after obtaining Ee,m(r), an intensity correction process is imposed using the
measured intensity Îm(r).

Ẽe,m(r) =
∑

pix
√

Îm(r)∑
pix Ee,m(r)

· Ee,m(r), (8)

where the operator
∑

pix means the summation of all the pixel values in the matrix. Moreover, the
loss function is set as L2-norm so that we still can obtain good reconstruction results under a
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Fig. 2. Overall workflow of FINN-P method

fixed learning rate.

loss =
M∑

m=1

∑
pix
||Ẽe,m(r)| −

√
Îm(r)|2, (9)

where M represents the number of employed LEDs. To minimize the loss, we apply stochastic
gradient descent with Nesterov acceleration (NAG) as the optimizer instead of Adaptive Moment
Estimation (Adam) used in Jiang’s method. This optimizer updates the current parameters
by calculating the gradient information of the lookahead position and combining it with the
momentum [41,42]. Therefore, it could get a faster convergence speed and better result than
the traditional first-order gradient-based optimizers. Meanwhile, Nesterov-accelerated Adaptive
Moment Estimation (Nadam) is employed as the optimizer to train the pupil function, which uses
the estimation of the first and second moments of the gradient to dynamically adjust the learning
rate of each epoch. Moreover, as the improved version of Adam, Nadam combines Adam with
NAG to have better estimates in both the learning rate and direction of the gradient [42,43].
It is worth noting that since the recovered high-resolution image has different size from

measured image. After the simulated high-resolution spectrum is multiplied by the pupil
function, it needs to be cropped to fit the corresponding measured size. In addition, during
the reconstruction process of the pupil function, the pixel values outside the circular function
which should always be zero could become non-zero due to the noise in the measured images.
Therefore, we propose a pupil constraint by multiplying the CTF of the system. Only after all
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captured intensity images are used to train the network, a single epoch of the training process is
completed. Then the entire training process needs to be repeated for dozens of epochs to ensure
the convergence towards the final sample spectrum and pupil function.

4. Performance in simulation

To quantitatively verify the effectiveness of our model in improving the reconstruction quality
through pupil recovery, a simulated FPM dataset is trained on our networks with and without
pupil recovery, denoted as FINN-P, FINN respectively. The overall workflow of FINN is similar
to the one mentioned in Section 3, except that the pupil function remains unchanged after being
fed into the network.
In the simulation, two images with a size of 512 × 512 pixels are employed as the high-

resolution amplitude and phase images respectively, the magnification of the simulated system is
set to 8× and the NA is set to 0.2, the sample is placed 67.5µm behind a 7 × 7 LED array and the
distance between the adjacent LEDs is 4mm. Therefore, the synthetic NAsyn could be up to 0.44.
In order to simulate the aberrations and the situation of incoherent imaging that occurs in the
system, we set the amplitude of pupil function as the incoherent optical transfer function (OTF)
and the phase as non-zero during the process of obtaining the low-resolution images as shown in
Figs. 3(a4) and 3(a5). OTF is the normalized autocorrelation of CTF which could be formulated
as follows:

OTF(u) = CTF(u)?CTF(u)∑
pix |CTF(u)|2

, (10)

where ‘?’ means the autocorrelation operation. The same dataset is also employed to the AS
algorithm and Jiang’s method for comparison. In all algorithms, the image corresponding to the
center LED is up-sampled and Fourier transformed to act as the initial guess of the spectrum. The
reconstruction results are shown in Fig. 3. Instead of using the original high-resolution images
as the ground truth, we obtain the ground-truth images by passing the original high-resolution
spectrum through a synthetic low-pass circular filter with the radius of 2π(NAsyn)/λ. The
ground-truth of the amplitude, phase and spectrum are shown in Figs. 3(a1)–3(a3).

All the four methods use the circular low-pass filter mentioned in Eq. (4) as the initial guess of
the pupil function. To ensure the convergence of all algorithms, FINN and FINN-P are trained
for 40 epochs, Jiang’s method is trained for 200 epochs, the AS algorithm stops automatically
after 21 steps since it adopts an adaptive step-size strategy [9]. However due to the imprecise
pupil function used in the AS algorithm, Jiang’s method and FINN, the reconstruction results are
subject to significant crosstalk between the amplitude and phase, which seriously degrades the
reconstruction quality as shown in Figs. 3(b1)–3(b3), Figs. 3(c1)–3(c3) and Figs. 3(d1)–3(d3).
Whereas, the FINN-P method can correctly reconstruct the amplitude and phase information
of the sample with only a small amount of crosstalk which is similar to the ground truth
(Figs. 3(e1)–3(e3)).

The recovered pupil functions are shown in Figs. 3(e4) and 3(e5), the similarity between the
recovered pupil function and ground truth is further evaluated by using the mean square error
(MSE) and the structural similarity index (SSIM). The result is listed in Table 1. It can be seen
that the recovered pupil functions are very close to the ground truth in both amplitude and phase.
Therefore, the FINN-P method could be used to evaluate the optical transmission capability of
the system.

Table 1. The comparison between the recovered pupil function and ground truth

MSE (× e−3) SSIM

Amplitude of pupil 0.346 0.993

Phase of pupil 2.808 0.937
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Fig. 3. Reconstruction results of Jiang’s method, AS, FINN and FINN-P using the simulated
dataset. (a1-a2) The ground-truth amplitude (Baboon) and phase (Aerial) for comparison.
(a3) The truncated spectrum based on the synthetic NA. (a4-a5) The actual pupil function
added into the imaging system. (b1-b3) The reconstruction amplitude, phase and spectrum
using Jiang’s method. (c1-c3) The reconstruction amplitude, phase and spectrum using the
AS method. (d1-d3) The reconstruction amplitude, phase and spectrum using FINN. (b4-b5)
the amplitude and phase of the circular low-pass filter defined in Eq. (4), which is also the
initial guess of the pupil function in all the four methods. (e1-e3) The reconstruction results
using FINN-P. (e4-e5) The reconstructed amplitude and phase of the pupil function through
FINN-P, showing a similar distribution as Figs. 3(a4) and 3(a5).

In addition, due to the use of an LED array which provides a periodic sample pattern, there is
a slightly periodic pattern in the recovered pupil function [44,45]. However, this pattern could be
eliminated by using a non-periodic LED array [45], which will not be further discussed in this
paper.
In addition to using MSE as the evaluation indicator, the reconstruction results are also

quantitatively evaluated by calculating the normalized mean square error (NMSE) between the
reconstruction spectrum and the ground truth spectrum [24,46]:

NMSE =

∑
pix

����Ô(u) − ∑
pix Ô(u)O∗e(u)∑
pix ( |Oe(u) |2)

Oe(u)
����2∑

pix |Ô(u)|2
, (11)
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where Ô(u) represents the ground truth spectrum of the sample. The NMSE is calculated over
the overlapping area of 128 × 128 pixels at the center of two spectra. NMSEs at different epochs
are plotted in Fig. 4.

Fig. 4. The NMSE between the reconstruction results of different methods and the ground
truth at different epochs. (a1) To ensure the convergence of different algorithms, FINN
and FINN-P are trained for 40 epochs, the AS algorithm stops automatically after 21 steps,
Jiang’s method is trained for 200 epochs. (a2) the locally enlarged image of Fig. 4(a1).

It can be seen from Fig. 4(a1) that, for Jiang’s method, the NMSE converges at the slowest rate
and is still much larger than the other three methods even after 200 epochs of training. In order to
better demonstrate the comparison between the reconstructed results of AS, FINN and FINN-P,
the sub-region framed in Fig. 4(a1) is enlarged and shown in Fig. 4(a2). Compared with the AS
algorithm, Both the FINN and FINN-P have faster convergence rate and end up with a smaller
NMSE. Meanwhile, because of the inaccurate estimation of the pupil function, the NMSE of the
FINN stops dropping after the first 8 epochs and slightly increase during the subsequent training
process. Whereas, due to the embedded pupil recovery procedure in FINN-P, the impacts of the
pupil inaccuracy will gradually decrease as the increase of the training epoch, which leads to a
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continuous convergence process and better reconstructed result. The NMSE could reach about
5 × e−3 after 40 epochs.
We further compare our results of MSE and SSIM with GS, AS and Jiang’s method, the GS

algorithm is iterated for 40 times, those two evaluation indicators are calculated between the
reconstructed amplitude and the ground truth. The comparison is listed in Table 2. Benefiting
from the pupil recovery procedure, we can see that FINN-P presents the best results in NMSE,
MSE and SSIM than the other four methods.

Table 2. The comparison of reconstruction results

NMSE of spectrum (× e−3) MSEa (× e−3) SSIM

GS 42.47 23.87 0.904

Jiang’s methodb 28.86 3.75 0.953

ASc 13.09 2.09 0.979

FINN 11.96 1.35 0.985

FINN-P 5.15 1.05 0.991

aMSE is calculated after normalizing the reconstruction amplitude into 0∼1.
bJiang’s method is modified from the open source code [40].
cThe AS algorithm is implemented with Python

5. Performance in experience

In this section, we implement FINN-P in experimental data. First, we use an open source USAF
dataset provided by Zuo et al [9] and compare the reconstruction result with GS, AS, and Jiang’s
method. The hardware setup of the FPM system consists of a 2× objective lens with an NA of
0.1, a CCD sensor with a pixel size of 6.5µm and a 21 × 21 programmable LED matrix with a
lateral distance between two adjacent LEDs of 2.5mm, and the sample which is placed 87.5µm
behind the LED. The initial guess of the high-resolution spectrum is the Fourier transform of the
up-sampled image captured under the illumination of the center LED. The reconstruction results
are shown in Fig. 5.

Fig. 5. The comparison of reconstruction results using the USAF dataset. (a-d) The
reconstruction results by GS, AS, Jiang’s and FINN-P respectively. (e1). The amplitude of
the pupil function recovered through FINN-P. (e2) The phase of the pupil function recovered
through FINN-P.

Due to the sufficient number of low-resolution images and overlap in the Fourier domain [47],
all four algorithms can reconstruct the line pairs in Group 9, Element 3 (0.775µm). However, GS
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method has the worst reconstruction result with much more background noise than other methods,
and some convergence errors appears in Group 9, Element 1 and 2 (Fig. 5(a)). The reconstruction
result of Jiang’s method suffers from obvious ring artifacts around Group 8, Element 1 (Fig. 5(c)).
The AS algorithm proposed by Zuo et al. can reduce the influences of the background noise to a
certain extent and present better reconstruction quality than GS and Jiang’s method, but there
is still serious background noise (Fig. 5(b)). In contrast, FINN-P jointly optimizes the sample
spectrum and pupil function, improves the reconstruction quality and obtains a better result with
minimal background noise (Fig. 5(d)). The amplitude and phase of the pupil function recovered
by FINN-P are shown in Figs. 5(e1) and 5(e2) respectively, from the pupil function we can see
that the optical transfer function of the system is very similar to CTF and there is only a slight
pupil aberration in the system, which is why some algorithms that do not consider the pupil
aberrations, such as AS, can still get acceptable reconstruction results.
In addition to using USAF dataset, the FINN-P algorithm is also implemented on an open

source dataset (stained Human Bone Osteosarcoma Epithelial U2OS sample) provided by Tian et
al [16]. The parameters of the FPM system are the same as those used in the previous simulation.
The performance of our method under a slight aberration is first analyzed by choosing an area
with a size of 256 × 256 pixels (204 µm× 204 µm) at the center of the entire field of view (FOV).
The same dataset is also employed to the AS algorithm, and the comparison of both methods
are shown in Fig. 6. In order to better illustrate the effectiveness of our method in improving
the reconstruction quality, the same small portion of the reconstruction amplitude from both
algorithms is zoomed in and shown in Figs. 6(a3) and 6(c3). From the recovered pupil phase
which is shown in Fig. 6(c4), it can be seen that the aberration at this location is so small that
both methods can obtain fine results without obvious convergence errors. However, Fig. 6(a3)
shows that some details are not well recognized because the AS method ignores the aberration
effects. In contrast, FINN-P can successfully separate the influences of the aberration from the

Fig. 6. The comparison of reconstruction results using the open source dataset (U2OS). The
reconstruction region located at the center of the FOV. (a1-a3) The reconstruction results
by the AS method. (b) The low-resolution image captured under the illumination of the
center LED. (c1-c3) The reconstruction results by FINN-P. (c4) The recovered pupil phase
by FINN-P.
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input dataset through the pupil recovery procedure, which results in a higher-quality result. As
shown in Fig. 6(c3), more details such as the organelles inside the cell can be identified, and the
phase information of the sample obtained by our method exhibits a higher contrast and smoother
background than AS.
We further analyze the region in the upper-right corner of the FOV, in which the aberration

is no longer non-negligible. Figure 7(c4) shows the pupil phase recovered by FINN-P. The
amplitude and phase images of the same sub-region reconstructed by AS and FINN-P are shown
in Figs. 7(a1) and 7(a2), Figs. 7(c1) and 7(c2) respectively. It can be seen from the local enlarged

Fig. 7. The comparison of reconstruction results using the open source dataset (U2OS). The
reconstruction region located in the upper-right corner with a non-negligible pupil aberration.
(a1-a3) The reconstruction amplitude and phase by the AS method. (b) The low-resolution
image captured under the illumination of the center LED. (c1-c3) The reconstruction results
using FINN-P method. (c4) The reconstruction phase of pupil function which could represent
the wavefront aberration of the system. (d) The Zernike decomposition of the reconstruction
pupil phase.
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images shown in Figs. 7(a3) and 7(c3) that due to a very significant pupil aberration, the AS
method is unable to converge to a clear result and generates some grating fringe errors. The
detailed structure in Fig. 7(a3) is difficult to distinguish, and the reconstruction phase shown in
Fig. 7(a2) contains a lot of background fluctuation. Whereas, even with such a large aberration,
our method still can obtain clear results in amplitude and phase with more recognizable details
and smoother background (Fig. 7(c1)–7(c3)).
In addition, a Zernike decomposition of the pupil phase component is performed to better

demonstrate the aberration. The coefficients of the first 20 Zernike polynomials are decomposed
and shown in Fig. 7(d). The three main Zernike components of the aberration are mode 7 which
represents the tilt in the y-direction, mode 6 which represents the tilt in the x-direction, mode 4
which represents the astigmatism at 90◦. In this way, a good estimate can be obtained before
further analysis of the system wavefront aberration.

6. Conclusion and discussion

In this paper, based on themachine-learning platformTensorFlow, a Fourier ptychographic forward
imaging network embedded with pupil recovery (FINN-P) is proposed and the effectiveness
in reducing aberration effects on both simulated and measured datasets is also demonstrated.
In FINN-P, both the spectrum of the sample and pupil function are separated into the real and
imaginary parts respectively, and all four parts are treated as trainable layers. By using the
imaging network with a more effective workflow and different optimizers, FINN-P can achieve
much better reconstruction results than Jiang’s method which is also based on neural network.
Due to the co-optimization of the sample’s spectrum and pupil function, FINN-P can obtain
clearer results even if there is a significant aberration and the recovered pupil function can be
used as a good initial estimate when further analysis of the system optical transmission capability
is required. Meanwhile, the reconstruction speed of FINN-P can be further improved by training
the proposed network in the neural engine or tensor processing unit (TPU) as mentioned in [40].
Due to the periodic LED array used in the FPM system, there is a slight periodic pattern

in the recovered pupil function, which will become an obstacle to further application of our
method. However, this issue could be solved by using a different illumination source, such as
a non-periodic LED array, which will be our future work. In addition, in order to improve the
reconstruction speed, we could combine FINN-P with a DCNN by adopting the structure of
generative adversarial network (GAN) [32], in which FINN-P can be treated as a discriminator
and the DCNN acts as a generator. By training the entire network using a loss function such as
cross-entropy or L2-norm, we could obtain a well-trained generator which could quickly map the
low-resolution images into a high-resolution result and also reduce the influences of the pupil
aberration.
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