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Chromatic aberration is an important artifact that influences image quality. Thus, it should be optimized during
lens design. However, the typical combination and selection method of glass materials for the visible band can
hardly satisfy the apochromatic requirements of short-wave infrared (SWIR) lenses. Therefore, we propose a
method of glass selection for apochromatic lens design in the SWIR band through vector operation based on
the Buchdahl model and third-order aberration theory. The proposed method overcomes limitations of tradi-
tional methods and unstable calculation results of special material properties. A design example is presented,
which indicates that the proposed method can correct the secondary spectrum in the SWIR band and simplify
the design using ordinary mass-produced glasses. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.000892

1. INTRODUCTION

The short-wave infrared (SWIR) has excellent optical proper-
ties and image quality and resolution comparable to those of
visible (VIS) light. SWIR imaging technology can be employed
in low-illumination backgrounds such as night illumination,
and under harsh environments, such as mist and haze [1–3].
With the development of infrared focal plane arrays, SWIR im-
aging technology has been widely applied in high-resolution
observation and machine vision.

For optical systems with such a wide waveband as SWIR,
the secondary spectrum is the main obstacle in enhancing im-
age quality. However, material selection is the key to correcting
the secondary spectrum, and dispersion characteristics of ma-
terials vary greatly in SWIR. Consequently, the materials used
for apochromatic lenses in the VIS band are unsuitable for apo-
chromatic lenses in the SWIR band [1,4]. Thus, special mate-
rials are widely applied, but the unstable properties and poor
availability of these materials complicate optical design [5–7].

The Buchdahl model provides a new material selection
method. It is a polynomial model that describes the refractive
index, and the theory derived from this model can be used for
apochromatic lens design. Previous research on the Buchdahl
model focused mainly on calculation of coefficients and fitting
of the refractive index in VIS and near-infrared bands [8–10].
Considering the relationship of focal lengths between different
wavelengths, Robb et al. [11,12] established a material selection
method based on the Buchdahl model and used this model to
correct the chromatic aberration of n� 1 wavelengths in n

different types of glasses for n > 2. Bráulio et al. [13] modified
this method and applied it to practical optical design. The
Buchdahl model was also applied to optical systems such as
cemented doublet mirrors [14,15], triplets [15], and even
microscope [16] and hyper refractive–diffractive [17] systems
in thermal infrared. However, refractive index fitting and pre-
cision analysis have yet to be conducted in SWIR, and the
Buchdahl model has yet to be applied for apochromatic lens
design in SWIR.

Aiming to overcome the above problems, we introduced the
Buchdahl model into SWIR and deduced a material selection
method for apochromatic lens design in the form of vector op-
eration. The proposed method can correct the secondary spec-
trum by using ordinary mass-produced optical glasses. The
Buchdahl model was utilized to fit the refractive index in
SWIR, and the fitting precision of materials from five manu-
facturers was analyzed. Then the material selection method was
derived in detail based on third-order aberration theory. This
selection method was subsequently demonstrated in a spatial
coordinate system. Finally, a specific design example was given
under the guidance of the Buchdahl model to verify the validity
of the proposed method.

2. DISPERSION CHARACTERISTICS OF
MATERIALS IN SWIR

Although the infrared focal plane arrays have been commercial-
ized, the technology is still incomplete. Although SWIR covers
a spectrum of 1–2.5 μm, the photon response range of most
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SWIR detectors cannot reach this level. Widely used detectors
are low-resolution ones with a large pixel size, and the classical
photon response covers the range of 0.9–1.7 μm [1,3,18]. This
type of detector was used in this study.

For an optical system composed of two materials with given
focal length f 0, the secondary spectrum [19] is expressed as

Δl 0 � −f 0 ·
P1 − P2

V 1 − V 2

, (1)

where V and P are the empirical formulas of the Abbe number
and partial dispersion defined as

V � �ncentral − 1�∕�nshort − nlong�,
P � �ncentral − nlong�∕�nshort − nlong�:

Equation (1) shows that materials with similar partial
dispersion and a large difference between Abbe numbers are
appropriate to correct the secondary spectrum [20–22].
Most optical glasses can be used in SWIR because of their ex-
cellent transmission, but the dispersion characteristics of these
materials vary greatly in SWIR, as can be observed from the
partial dispersion versus Abbe number graphs of different ma-
terials from Schott and CDGM catalogs shown in Fig. 1.

As shown in Fig. 1, almost all the materials are distributed in
a narrow band, approximately forming a straight line in the VIS
band. However, in SWIR, flint glasses with a high refractive
index and large dispersion, such as SF66 and ZF12, approach
the crown glasses with a low refractive index and small
dispersion, which makes optical materials compressed into a
mass. Abbe numbers should have a large difference for apochro-
matic lenses, and the Abbe numbers of the materials vary from
40 to 60 in SWIR, which is narrower than that (20 to 80) in the
VIS band. This result indicates that the materials that can be
selected for apochromatic lenses in SWIR are greatly reduced.
With the change in dispersion characteristics, optical materials
suitable for apochromatic lenses in the VIS band are no longer
suitable for those in the SWIR band. Special optical materials,
such as crystals, are widely applied in optical systems to satisfy
the condition of apochromatic lens design. Although these crys-
tals have excellent optical properties, their use gives rise to a
series of new problems [23,24]. For instance, CaF2 is an ideal
crystal material for apochromatic lenses owing to its high

transmission and unique partial dispersion characteristics
[19,21]. However, it is very fragile, easy to deliquesce, and
slightly soluble in water, which complicate its fabrication
and the process of obtaining a large-scale lens blank. ZnSe
and ZnS can also be utilized for apochromatic lenses, but these
materials heavily depend on the fabrication method. For in-
stance, using the gas phase method or sedimentation method
considerably affects transmission [19,21]. Additional materials,
such as SiO2 and calcite, are unsuitable for making refractive
optical elements because of the birefringence effect [19]. In
summary, a method to select ordinary optical glasses for
apochromatic lenses should be developed [25].

3. BUCHDAHL DISPERSION MODEL IN SWIR

A. Buchdahl Dispersion Model
Dispersion is a function of variation in the refractive index
relative to the wavelength; accurately describing the refractive
index is the precondition for further research. Many models
describing the relationship of refractive index and wavelength
have been proposed [11,19], among which the Schott model is
the most widely adopted one by manufacturers:

N 2�λ� � A0 � A1λ
2 �

X5
n�2

Anλ
2−2n, (2)

where N �λ� represents the refractive index at wavelength λ, and
Ai represent the coefficients of each material. Different models
can be converted accurately using optical design software.
Previous research [8,10] has shown that the refractive index
fitting precision of the Schott model in the spectrum of
0.4–0.7 μm is about �3 × 10−6, whereas that in the spectrum
of 0.36–1.0 μm is about �5 × 10−6. Although the fitting
precision is slightly higher than�5 × 10−6 outside the spectrum
of 0.36–1.0 μm, it still satisfies the tolerance requirements.

According to the definition of dispersion, Eq. (2) can be
expanded into the following form of Lagrange series:

ΔN �λ� � a0 � a1Δλ� a2�Δλ�2 � a3�Δλ�3 � � � � , (3)

where ΔN �λ� � N �λ� − N �λ0�, Δλ � λ − λ0, and λ0 is the
central wavelength. Unfortunately, Eq. (3) converges very
slowly, and higher-order terms are needed to satisfy the conver-
gence conditions, even Δλ is very small [17]. The more rapidly

Fig. 1. Partial dispersion versus Abbe number in (a) visible band and (b) short-wave infrared band.
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the polynomial converges, the simpler the aberration theory
will be.

The Buchdahl model is a new fast-convergence refractive
index model derived from the Hartmann model, which is still
polynomial fitting of the refractive index and wavelength data
[26]. Unlike other models, the Buchdahl model considers
dispersion coordinate ω. The refractive index is converted from
a function of wavelength into a function of dispersion coordi-
nate. The Buchdahl model can be expressed as follows:

N � N 0 � ν1ω� ν2ω
2 � ν3ω

3 � � � � , (4)

where N 0 is the refractive index at the central wavelength, and
νi are the unique coefficients of each material.

When fitting the refractive index, reasonably choosing the
order of polynomial can reduce calculation complexity while
keeping the fitting precision [10]. For the spectrum of 0.4–
0.7 μm, the square Buchdahl model can fit the refractive index
very well, with a standard deviation of about 2 × 10−5 and
maximum absolute errors of about 1 × 10−4. For the spectrum
of 0.365–1.014 μm, the cubic Buchdahl model performs very
well, with a standard deviation of about 5 × 10−5 and a
maximum absolute error of about 2.6 × 10−4.

In order to determine the polynomial series suitable for the
spectrum of 0.9–1.7 μm, we calculated the maximum absolute
error of Buchdahl models with different orders for five glass

catalogs. The calculation results are shown in Fig. 2. As the poly-
nomial series changes from the first order to the third order, the
maximum absolute error of each catalog decreases sharply. For
higher orders after the third order, the change in the maximum
absolute error becomes very slow, and the change is too small to be
considered. Considering calculation complexity, here we choose
the cubic Buchdahl model for the spectrum of 0.9–1.7 μm.

B. Dispersion Coordinate ω
Dispersion coordinate ω [26] is a function of wavelength
expressed as follows:

ω � λ − λ0
1� α�λ − λ0�

, (5)

where α is the scale factor, and its value depends on the
operation wavelength ranges. The effect of scale factor α causes
the Buchdahl model to converge rapidly, which straightens the
refractive index curve in the coordinate system consisting of
dispersion coordinate ω. Figure 3 displays the refractive index
curves of BK7 in different coordinates. In the coordinates of
wavelength λ, the curve shows the bending property. In the
coordinates of dispersion coordinate ω, the curve is approxi-
mately linear with a certain slope.

According to the properties above, by fitting the refractive
index curves of different α, we can choose the one that makes
the curve close to a straight line as the optimal solution of α of
each material. The calculation process is shown in Fig. 4. The
refractive index curves of BK7 change continuously with the
change in α, and the curve is close to a straight line when α
is near 0.0612.

We calculated the scale factors of 1044 materials from five
manufacturers, such as Schott and CDGM. Table 1 lists the
range of α and maximum absolute error calculated in different
catalogs. The column named Glass represents the glass corre-
sponding to the maximum absolute error in each catalog. Aside
from a few materials such as H-LAK59, the values of α of all the
materials are distributed in a narrow range of 0–0.8. Thus, α
can be regarded as a constant, which is similar to that in the VIS
and near-infrared bands [10]. In this study, we take the mean
value of α (0.4086) as the constant. Once α is determined, the
coefficients νi can be accurately calculated.

Fig. 2. Maximum absolute fitting error with different polynomial
orders.

Fig. 3. Refractive index curves of BK7 under (a) wavelength coordinates and (b) dispersion coordinates.

894 Vol. 58, No. 4 / 1 February 2019 / Applied Optics Research Article



C. Calculation and Analysis of Buchdahl Model
Obtaining refractive index data is the premise of using the
Buchdahl model, and the internal glass catalogs of Code V pro-
vide detailed refractive index data at specific wavelengths. In the
process of precision analysis, we take the Schott model offered
by Code V as the criterion. All the fitting results are compared
with the data from the Schott model. The central wavelength is
set to 1.3 μm in the spectrum of 0.9–1.7 μm.

In addition to the data at central and edge wavelengths,
Code V provides refractive index data at 1.06 μm and
1.5296 μm. Using these five pairs of data, we can express
Eq. (4) as the following matrix form:2

66666664

ω1 ω2
1 ω3

1

ω2 ω2
2 ω3

2

ω3 ω2
3 ω3

3

ω4 ω2
4 ω3

4

ω5 ω2
5 ω3

5

3
77777775

2
64
ν1

ν2

ν3

3
75 �

2
66666664

N 1 − N 0

N 2 − N 0

N 3 − N 0

N 4 − N 0

N 5 − N 0

3
77777775
: (6)

The least square method is an effective method for solving
Eq. (6), in which the subscript of each parameter represents

different wavelengths. Some of the fitting results are listed
in Table 2. Figure 5 shows the fitting precision of materials
from the two most used catalogs, Schott and CDGM. The
envelope curves are the maximum and minimum statistical er-
rors for the cubic Buchdahl model. The results demonstrate
that the cubic Buchdahl model acts so well in the spectrum
of 0.9–1.7 μm that the absolute fitting error of the Schott cata-
log is kept within 7 × 10−5, whereas that of the CDGM catalog
is kept within 2.5 × 10−5, which completely satisfies the preci-
sion requirements of tolerance analysis. The fitting error curves
converge at the central wavelength of 1.3 μm, which is
consistent with theoretical analysis.

4. METHOD OF GLASS SELECTION FOR
APOCHROMATIC

A. Dispersion Power
Dispersion is the first-order differential of refractive index with
wavelength [19], and the refractive index is a continuous func-
tion of wavelength; thus, the dispersion should also be a
continuous function of wavelength. Continuous dispersion is
called instantaneous dispersion [27,28]. The relation of the
Abbe number and instantaneous dispersion can be expressed as

V 0 � −
1

2

n�λ� − 1
dn∕dλ

: (7)

Equation (7) is called the instantaneous Abbe number. By
proper algebraic transformation, the Buchdahl model of
Eq. (4) can be rewritten as follows:

D � ΔN
N 0 − 1

�
Xk
i�1

νi
N 0 − 1

ωi �
Xk
i�1

ηiω
i, (8)

whereD�λ� is the dispersion power, k is the polynomial order of
the Buchdahl model, and ηi are the primary, secondary, and
tertiary dispersion coefficients. Equation (7) has a reciprocal
relationship to Eq. (8) approximately, if we neglect the constant
term and replace dn∕dλ with Δn when the wavelength
approaches the central wavelength. In other words, dispersion
powerD�λ� is the reciprocal of instantaneous Abbe number V 0,
or Eq. (8) is the Lagrange polynomial expansion of the
reciprocal of Eq. (7).

B. Method of Glass Selection
In the third-order aberration theory [19], the chromatic aberra-
tion of a thin lens is dependent on focal length and ray height,
and the ray height is related to air space. A relationship of −u 0

k
exists between axial chromatic aberration and lateral chromatic
aberration. Thus, we analyze only lateral chromatic aberration in
this study. The cemented thin lenses group is the simplest optical
structure, whose thickness and air space can be considered zero.

Fig. 4. Refractive index curves of BK7 with different ω values.

Table 1. Calculation of α with Different Manufacturers

Catalog
Range
of α

Optimum
α Max. Error Glass

Schott 0.0071–0.8058 0.325 6.2954 × 10−5 N-KZFS2
CDGM 0.0253–0.7636 0.412 2.0915 × 10−5 ZF52
Corning 0.0456–0.6535 0.411 1.4386 × 10−5 E0525
SUMITA 0.0432–0.8049 0.462 3.6699 × 10−5 KPSFN173
Pilkington 0.0145–0.9054 0.433 1.0729 × 10−4 JLAK8

Table 2. Calculation of Some Materials

Material N 0 ν1 ν2 ν3 Max. Error

CaF2 1.42722 −0.004915 −0.000888 −0.002316 3.021204 × 10−6
Silica 1.44714 −0.010405 −0.006511 −0.007111 5.397995 × 10−6
H-FK61 1.48785 −0.007077 −0.001479 −0.003239 3.103174 × 10−6
ZF12 1.72755 −0.021045 −0.002266 −0.012215 8.360192 × 10−6
BK7 1.50372 −0.012059 −0.012059 −0.005197 3.307846 × 10−5
N-SF66 1.87225 −0.027296 0.0030493 −0.014697 2.113214 × 10−5
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Assuming a cemented thin lenses group with the stop aperture
on the lens imaging for an object located at infinity, the lateral
chromatic aberration [19] can be expressed as

TAchc �
Xm
j�1

y2j ϕj

u 0
kV j

, (9)

where TAchc is the lateral chromatic aberration, yj is the ray
height of the j-th lens, ϕj is the focal power of the j-th lens,
V j is the Abbe number of the j-th lens, and u 0k is the angle after
the ray passing through the last surface of the system. Assuming
the incident ray height on the first surface is y1, for a system with
focal length f 0 and focal power ϕ0, we can determine from the
geometrical optics that u 0k � −y1∕f 0 � −ϕ0y1.

Assuming the Abbe number in Eq. (9) can be replaced by
the instantaneous Abbe number, we can convert and express
the lateral chromatic aberration as

TAchc � −y1
Xm
j�1

y2j ϕj

y20ϕ0

Dj�λ�: (10)

If we define αj � y2j ϕj∕y21ϕ0, then Eq. (10) can be further
written in the following form:

TAchc � −y1
Xm
j�1

αjDj�λ�: (11)

Taking the cubic Buchdahl model into Eq. (11), we can obtain
the following equation:

η10ω� η20ω
2 � η30ω

3 �
Xm
j�1

�αj�η1jω� η2jω
2 � η3jω

3�	,

(12)

where ηi0 is the sum of the i-th dispersion coefficients, and ηij is
the i-th dispersion coefficient of a specific lens represented by
subscript j. For any given wavelength, ω is a constant; if we
ignore ω, then Eq. (12) is not existent and divided into three
equations as shown below:

ηi0 �
Xm
j�1

αjηij �i � 1, 2, 3�: (13)

For an optical system described by Eq. (13), each glass material
can be uniquely described by a coordinate point of �η1j, η2j, η3j�
in a 3D coordinate system consisting of dispersion coefficients.

Fig. 5. Refractive index fitting error of (a) Schott catalog and (b) CDGM catalog.

Fig. 6. Distribution of all materials in 3D coordinate system.
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By multiplying the point of �η1j, η2j, η3j� with αj, we can get a
new coordinate point of αj�η1j, η2j, η3j�, where αj corresponds
to the scale factor. For a cemented thin lenses system under
the normalized condition, the ray height on each lens is the
same, which means αj could be taken as the focal power of each
lens. Thus the point of αj�η1j, η2j, η3j� can be viewed as the
dispersion effect caused by the selected glass.

The first-order dispersion (η10) of the entire system can be
viewed as the sum of the first-order dispersion coefficient of
each glass. This relationship is also applicable to second-order
and third-order dispersions. However, the overall dispersion is a
combination of η10, η10, and η10. On this basis, if we take each
glass as a vector in the 3D coordinate system, then an optical

system can be made up of lenses in the form of a vector. By the
method of vector operation, the whole dispersion of the system
described as �η10, η20, η30� can be calculated, which is the
vector sum of each lens’ dispersion:

~G0 �
Xm
j�1

αj ~Gj, ~Gj � ηij x̂ � η2j ŷ � η3j ẑ : (14)

~G0 and ~Gj are space vectors in the 3D coordinate system, where
~G0 represents the dispersion vector of the whole system, ~Gj
represents the dispersion vector of j-th glass, and x̂, ŷ, and ẑ
are unit vectors. To ensure that the selected glass combination
is appropriate for apochromatic lenses, we take the length of the
sum vector as the criterion. Theoretically, the smaller the length
of vector ~G0, the better the apochromatic ability of optical sys-
tems. Thus, we can adjust the scale factors αj of certain glasses
to make the sum vector ~G0 close to zero.

We can visually demonstrate this process in the coordinate
system. However, the vectors are difficult to display in 3D
space. Fortunately, calculation results show that almost all
materials, except for some such as silica, are distributed on
one plane approximately (Fig. 6). The colorful points represent
materials from different catalogs; these points are assembled to-
gether onto a surface similar to a plane. Based on this property,
the 3D coordinate system can be projected onto a 2D coordi-
nate system using high-dimensional projection. Selecting glass
materials in 2D space using dispersion coefficients η1 and η2 is
easier than that in 3D space [15].

C. Example of Apochromatic Design Using Three
Materials
Combining three glass materials provides more controllable
variables for optimal design without the need to match the focal
powers strictly, which is helpful to correct primary and residual
aberrations. Therefore, three glass materials are usually com-
bined for apochromatic lenses. The vector equation of three
glass materials for apochromatic lenses is written as

α1 ~G1 � α2 ~G2 � α3 ~G3 � 0: (15)

Figure 7 shows the process of selecting three materials using
vector operation in the 2D projection coordinate system.
H-FK71 and H-LaF2 form positive lenses because of the small
positive focal powers, and H-ZF12 forms a negative lens due to

Fig. 7. Diagram of vector operation of three-material combination.

Table 3. Calculation of Three-Material Combinations

Glass Combination α1 α2 α3 Length

H-FK61/H-K3/ZF52 2.4302 −1.0651 −0.3650 7.7159 × 10−5
H-FK61/H-F51/TF3 2.2424 −0.0992 −1.1432 9.0584 × 10−5
H-FK61/H-K9L/ZF52 2.5610 −1.2000 −0.3636 3.2415 × 10−4
H-FK61/H-F51/H-ZBaF1 2.7000 −0.3191 −1.3806 1.3640 × 10−4
H-FK61/H-F51/H-ZK5 2.6977 −0.4493 −1.2485 8.6891 × 10−4

Fig. 8. Focal shift curves of systems designed by (a) new method and (b) traditional method.
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the large negative focal power. The sum of the focal powers
equals one, and the sum vector is close to zero. Some calcula-
tion results of the normalized optical system are listed in
Table 3.

The combinations listed in the table have great apochro-
matic ability. The only difference is that the wavelengths
achieving apochromatic are inconsistent with the design wave-
lengths. Figure 8 shows the focal shift curves of different optical
systems designed with the combinations listed in Table 3.
These optical systems all have a unit focal length at F/4, im-
aging for objects at infinity. The initial target is correcting the
secondary spectrum using central and edge wavelengths. As a
comparison, the systems in Fig. 8(a) are designed by the new

method proposed in this paper, and the systems in Fig. 8(b) are
designed by the method discussed in section 2. Compared with
the new method, the traditional method can also achieve apo-
chromatic through simple optimization, but the performance is
far inferior to the new method. The focal shift of the traditional
method is obviously larger than that of the new method under
the same conditions; the wavelengths used for apochromatic
of the traditional method differ more greatly from the design
wavelengths than that of the new method.

D. Example of Apochromatic Design Using Two
Materials
Theoretically, the method shown in Fig. 7 is applicable no mat-
ter how many glasses are used. However, a special case would
appear when selecting two materials, where the two materials
selected need to be collinear with the original point [15].
Finding two materials that completely satisfy the requirements
in 3D space is difficult, but Robb [11,12,15] reported that the
perfect collinearity in applications is unnecessary. As shown in
Fig. 9, if we take H-FK61 as a reference, the two-material com-
binations within the tolerance of about �4 deg could be used
for apochromatic lenses. Some calculation results of normalized
optical systems are listed in Table 4, and Fig. 10 shows the focal
shift curves similar to those in Fig. 8. Compared with Table 3
and Fig. 8, the apochromatic ability of two-material combina-
tions is worse than that of three-material combinations. Optical
systems in Fig. 10 have similar apochromatic ability, but the
wavelengths used for apochromatic deviate significantly from
the design wavelengths.

5. DESIGN EXAMPLE OF APOCHROMATIC
SYSTEM

To verify the validity of the Buchdahl model, we designed an
apochromatic camera based on the analysis above to correct the
secondary spectrum at the pupil of 0.707 using wavelengths of
1.0 μm, 1.3 μm, and 1.7 μm. The design requirements are
shown in Table 5.

A. Initial Structure of Optical System
To render the optical system lightweight and compact, we
choose the telephoto objective lens as the initial model; all
the surfaces are standard spheres [29]. The front group of

Fig. 9. Dispersion vector operation diagram of two-material
combinations.

Table 4. Calculation of Several Two-Material
Combinations

Glass Combination α1 α2 Length

H-FK61/H-K12 3.0703 −2.0703 0.0014
H-FK61/TF3 2.3393 −1.3393 0.0015
H-FK61/H-F4 2.0265 −1.0265 0.0026
H-FK61/H-ZF3 1.7586 −0.7586 0.0034
H-FK61/ZF12 1.8282 −0.8282 0.0050

Fig. 10. Focal shift curves of systems designed by (a) new method and (b) traditional method.
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the system uses a triplet structure, which is used mainly to
correct the secondary spectrum. The back group uses a doublet
structure, which is used mainly to correct residual aberration.
For the telephoto objective thin lens model with a focal length
of 137.5 mm in this example, in order to balance the focal
powers between the front and the back groups, here we make
the total optical length of the system 0.8 of the focal length, and
the distance between the front and back groups half of the total
optical length. Therefore, the equivalent focal length of the front
group is 91.67 mm, while it is −100 mm of the back group.

The selection of glasses is the key to correct the secondary
spectrum. The FK glasses have the same optical properties as
CaF2, which renders it an ideal material for apochromatic
lenses [19]. Lenses with a small radius of curvature are difficult
to fabricate, whereas high-refractive-index materials can achieve
a large radius of curvature. Thus, the dense flint glasses with a
high refractive index can be used for apochromatic lenses.
Referring to the analysis in section 4, the glasses used for
the front group are ZF52, H-FK61, and H-K9L, while those
used for the back group are H-FK61 and H-ZF3. All the glasses
are frequently produced ones with high transmission and fine
optical properties from the CDGM catalog.

The PWC method is a tool to determine the optical
structure, whose parameters are functions of aperture angles,
which are linked to the radius of curvature and glasses them-
selves. When using the PWC method, two special rays are usu-
ally introduced; one corresponds to the maximum field of view,
and the other one passes through the edge of the stop aperture.
The specific forms of primary aberrations can be determined by
tracing the rays on each single surface, and then the initial
structure can be solved. Figure 11 shows the ray tracing of a
thin lenses system, and the thickness is just for display. The
parameters marked with u and n are ray angles and refractive
index, respectively, while those marked with h represent the ray
height on each surface. Each parameter follows the symbolic
rules defined in Ref. [19].

For a normalized thin lenses system, imaging for objects at
infinity, assuming that the stop aperture is on the lens, then the
incident angle u � 0, the marginal ray height h � 1, and the
chief ray height hz � 0. As shown in Eq. (16), only spherical
aberration SI, comatic aberration SII, and longitudinal aberra-
tion C I need to be solved for apochromatic lens design:

X
SI �

X
h4ϕ3P �

X
P,X

SII �
X

h3hzϕ3P � J
X

h2ϕ2W � J
X

W ,
X

C I � h2ϕ
X ϕ

ν 0
�

X ϕ

ν 0
, (16)

where Abbe number ν is replaced by instantaneous Abbe num-
ber ν 0, and J is the Lagrange invariant. P and W are the
normalized forms of P and W , defined as

P � P
�hϕ�3 �

�
u 0 − u

1∕n 0 − 1∕n

�
2

·
�
u 0

n 0 −
u
n

�
,

W � W
�hϕ�2 � −

u 0 − u
1∕n 0 − 1∕n

·
�
u 0

n 0 −
u
n

�
:

For the front group in this paper, by sorting out Eq. (16), we
can get the relationship between the primary aberrations and
the radius of curvatures. It is difficult to solve four unknown
quantities (radius of curvature) using two equations (SI and
SII), so here we introduce a new parameter, shape factor Q,
to solve this problem. The shape factor is defined as
Q � 1∕r2 − ϕ1, where r2 is the radius of curvature of the sec-
ond surface, and ϕ1 is the focal power of the first lens. Using the
focal power formulas of thin lenses, the radius of curvatures and
Eq. (16) can be converted to a function of single unknown
quantity Q finally. It is difficult to find a shape factor that
satisfies both spherical aberration and comatic aberration, so
the shape factor with smaller absolute value is usually adopted
to generate large radius of curvatures. Here we take 2.7851 as
the shape factor, and the aberrations of the front group are

SI_front �
X

P � 1.6635,

SII_front � J
X

W � −0.0137,

C I_front �
X ϕ

ν 0
� −7.3124 × 10−4:

The back group in this paper is used mainly to correct residual
aberrations, which requires that the aberration of the back group
and that of the front group compensate for each other as

SI_front � SI_back � 0,

SII_front � SII_back � 0,

C I_front � C I_back � 0:

Focal power distribution of the back group can be determined
according to the principle of aberration compensation. Since the
spherical aberration of the back group is always greater than
zero, only the comatic aberration needs to be compensated.
After calculation, we take −3.7398 as the shape factor, and
the aberrations of the back group are

Table 5. Design Requirements of Apochromatic Camera

Items Requirements

Focal length 137.5 mm
Operating wavelength 1.0–1.7 μm
Relative aperture 1:4
Detector 640 × 512 pixels
Pixel size 25 × 25 μm

Fig. 11. Ray-tracing process of the thin lenses system.
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SI_back �
X

P � 0.6221,

SII_back � J
X

W � 0.0137,

C I_back �
X ϕ

ν 0
� 7.3124 × 10−4:

According to the calculation result above, using the selected
glasses and the allocated focal powers, the result of enlarging
the initial structure calculated by the PWCmethod to the actual
focal length is shown in Table 6.

B. Optimization of Optical System
The initial structure listed in Table 6 does not consider the
thickness; thus, further optimization is needed. The first step
of optimization is converting a thin lens into a thick lens
by giving a certain thickness while maintaining focal power
distribution.

The thickness of the lens is related not only to the radius of
curvature and lens diameter, but also to the difficulty of
processing and alignment. As a rule of thumb, central thick-
ness, edge thickness, and external lens diameter satisfy the fol-
lowing mathematical relation:

d � x1 � t − x2, xi � ri 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i − �D∕2�2

q
,

where xi is the sagittal height of the lens, t is the edge thickness
of the lens, and d is the central thickness of the lens. All param-
eters follow the symbolic rules defined in Ref. [19]
. The Chinese standard GB/T 1205–1975 stipulates the mini-
mum thickness of the center and edge of optical elements [30].
Using the above formula and the national standard, we can de-
termine the thickness of each lens.

In this paper, the pupil diameter is 34.375 mm, and we give
the lens a processing allowance of 2.5 mm considering the need
of lens clamping. According to the national standard, for lenses
with external diameters in the range of 30–50 mm, the mini-
mum edge thickness of positive lenses is in the range of 1.8–
2.4 mm, while the minimum central thickness of negative
lenses is in the range of 2.2–3.5 mm. In order to reduce com-
putational complexity and difficulty of lens processing and
alignment, we set the central thickness of each lens to be greater
than 4 mm, while the edge thickness is greater than 3 mm.

The focal power of a lens with a certain thickness is de-
fined as

ϕ � �n − 1�
��

1

r1
−
1

r2

�
� d �n − 1�

r1r2n

�
: (17)

Equation (17) shows that the focal power of the lens and the ray
height on each surface change with the change in thickness.
According to Eq. (10), the changes in ray height and focal

power cause the change in lateral chromatic aberration; thus,
these two parameters need to be controlled. It is quite complex
and difficult to keep the ray height unchanged; however, the
focal power can be easily kept unchanged as long as the radius
of curvature of one surface changes. The radius of curvature can
be calculated by using Eq. (17). For different types of lenses,
the changing trend of the radius of curvature of the front
surface and the back surface is different when the thickness
increases, which is shown in Table 7.

In optical design, lenses with a large radius of curvature can
reduce the advanced aberration and simplify the difficulty of
lens processing. Therefore, according to Tables 6 and 7, for
the lenses consisting of ZF52 and H-ZF3, we choose the front
surface of each lens to adjust the radius of curvature, while we
choose the back surface of the lens consisting of H-K9L to ad-
just the radius of curvature. For the convex and concave lenses
consisting of H-FK61, we choose the front surface and the back
surface to adjust the radius of curvature, respectively.

Based on the above analysis, we can convert the thin lens
into the thick lens while maintaining focal power distribution.
The thickness added to each lens and the structure of the initial
system are listed in Table 8. ϕ0 is the focal power of the lens in
the actual optical system with a focal length of 137.5 mm, and
r 0 is the adjusted radius of curvature of each lens. d center and
d rim represent the central thickness and edge thickness, respec-
tively. The thickness and focal power of the second lens in the
front group are too large to improve transmission, which is
not conducive to lightweight design or residual aberration
correction. Therefore, it is necessary to separate this lens to dis-
perse the focal power and enlarge the radius of curvature.

Once the thickness is determined, the distance between the
front and back groups also changes correspondingly. The sum
of the central thickness of all lenses and the distance between
the front and back groups equals the distance between the front
and back groups in the thin lens system. According to Table 8,
the total thickness of the system is 28 mm, so the distance
between the front and back groups should be 27 mm.

So far, we have formally established a thickness lens struc-
ture for further optimization. For those systems with special

Table 6. Initial Structure Calculated by PWC Method

Glass ZF52 H-FK61 H-K9L H-FK61 H-ZF3

n0 1.8059 1.4878 1.5038 1.4878 1.6863
ϕ0 (norm) −0.3636 2.5610 −1.2000 1.8285 −0.8285
r1 46.52 37.86 −32.41 −49.89 47.96
r2 37.86 −32.41 −206.96 47.96 130.20

Table 7. Changing Trend of Curvature Radius

Lens Front Surface Back Surface

r1 > 0 r2 < 0 Reduce↓ Reduce↓
r1 < 0 r2 > 0 Rise↑ Rise↑
r1 > 0 r2 > 0 Rise↑ Reduce↓
r1 < 0 r2 < 0 Reduce↓ Rise↑

Table 8. Initial Structure of the Adjusted Thickness Lens

Glass ZF52 H-FK61 H-K9L H-FK61 H-ZF3

n0 1.8059 1.4878 1.5038 1.4878 1.6863
ϕ0 −0.003967 0.027938 −0.013091 −0.016623 0.007532
r 01∕mm 48.71 33.46 −32.41 −49.89 48.63
r 02∕mm 37.86 −32.41 −215.4909 49.22 130.20
d center∕mm 4 11.5 4 4 4.5
d rim∕mm 4.5 3.2 7.8 7.4 3.4
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requirements (such as apochromatic systems), it is easy to get a
good initial structure by converting the thin lens into a thick
lens, and the thickness of the lens should be optimized as a
variable in the subsequent optimization process. Therefore,
it is not necessary to give a very accurate solution of thickness
in the conversion process.

The lenses of the initial structure can be separated appro-
priately to increase controllable variables and enhance the
ability of correcting aberrations. The position of the stop aper-
ture significantly influences lens size, field curvature, and

distortion. Thus, we need to adjust the position of the stop
aperture. In the optimization process, we should use the
operands and constraints provided by optical design software
such as ZEMAX or Code V to constrain the geometric and
optical features of the system and meanwhile correct the
aberration.

C. Final Optical System Structure
After iterative optimization, the final structure is shown in
Fig. 12. The stop aperture is placed in the middle to balance
the aberrations of the front group and back group. The lens
composed of H-FK61 in the front group is separated into
two lenses. The doublet structure of the back group is separated
to correct field curvature, and the meniscus back toward the
stop aperture corrects mainly astigmatism. The final system
has good image quality, as shown in Fig. 13. The spot size
of different fields of view on the image surface is distributed
within the range of the Airy disk, and the modulation transfer
function (MTF) within the Nyquist frequency of 20 lp/mm is
close to the diffraction limit.

Fig. 12. Final optimized structure of the apochromatic camera.

Fig. 13. Image quality graphs of the (a) RMS spot and (b) MTF.

Fig. 14. Apochromatic results of (a) focal shift curve and (b) longitudinal aberration curves.
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According to the analysis above and Eq. (13), the total
dispersion coefficients of the final optical system are

η10 �
X6
j�1

αjη1j � 2.313596 × 10−4,

η20 �
X6
j�1

αjη2j � 7.415788 × 10−5,

η30 �
X6
j�1

αjη3j � 1.196397 × 10−4: (18)

The dispersion coefficients of the final system are quite small,
which indicates that the system has good apochromatic ability.
The apochromatic effect is illustrated in Fig. 14. For an
apochromatic system, the focal length of each wavelength used
to correct the secondary spectrum is the same; in other words,
the focal shifts of these wavelengths are equal. In the figure of
focal shift curve, the points at the wavelengths of 1.0 μm,
1.3 μm, and 1.7 μm coincide with zero. In the figure of the
longitudinal aberration curves, the wavelengths of 1.0 μm,
1.3 μm, and 1.7 μm marked by dotted lines intersect in
one point at the pupil of 0.707.

Tolerance analysis is used to estimate the quality of optical
design, which is related to the capacity of fabrication and align-
ment. We take the average diffraction MTF at 20 lp/mm as the
evaluation criterion and the back focal length as the compen-
sation in the process of tolerance analysis. The tolerance
allocation is listed in Table 9.

Tolerance analysis usually begins with a relatively loose tol-
erance and then adjusts the tolerance according to the analysis
results until we find a tolerance that guarantees image quality

and is not overly strict [16]. The tolerance analysis result is
shown in Fig. 15 with reasonable tolerance allocation; the
average MTF at 20 lp/mm is maintained over 0.6 with high
probability, which means the final system compiles with the
requirements of fabrication and alignment. The system is sen-
sitive to the radius of curvature. Thus, the tolerance of the
radius of curvature should be rigorously controlled.

6. CONCLUSION

We deduced a method of glass selection for apochromatic lens
design based on the Buchdahl model and third-order aberration
theory. This method of glass selection performed in the form of
vector operation in a coordinate system consisted of dispersion
coefficients. Theoretically, this method allows the system to
correct the secondary spectrum in SWIR with ordinary mass-
produced glasses combinations, whose properties are more re-
liable than those of special materials, such as crystals, while the
dispersion characteristics and transmissions are comparable to
those of special materials. Using the visualized spatial coordi-
nate, once the glasses are selected, the dispersion characteristics
of the system can be judged according to the length of the
sum vector, which greatly simplifies the difficulty of apochro-
matic lens design. The new method avoids the unfavorable
influences caused by using special materials, which reduces the
difficulty of apochromatic lens design and consequently im-
proves cost performance. To verify the validity of the new
proposed method, we calculated the dispersion coefficients of
1044 materials and selected four ordinary glasses for specific
apochromatic design. The design completely meets the require-
ments of fabrication, and the aberrations are well corrected.
Depending on the comparison of the proposed method and the
empirical method, this new proposed method overcomes the
theoretical limitations of the traditional empirical formulas, and
the apochromatic ability of the new proposed method is better
than that of the traditional method to some extent. For glass
selection and apochromatic lens design in other wavebands, this
method offers instructional significance to some extent.
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