
sensors

Article

Battery Powered Portable Thermal Cycler for
Continuous-Flow Polymerase Chain Reaction
Diagnosis by Single Thermostatic Thermoelectric
Cooler and Open-Loop Controller

Di Wu and Wenming Wu *

Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences,
Changchun 130000, China; wudi16@mails.ucas.ac.cn
* Correspondence: wuwm@ciomp.ac.cn

Received: 13 February 2019; Accepted: 1 April 2019; Published: 3 April 2019
����������
�������

Abstract: Temperature control is the most important and fundamental part of a polymerase chain
reaction (PCR). To date, there have been several methods to realize the periodic heating and cooling
of the thermal-cycler system for continuous-flow PCR reactions, and three of them were widely used:
the thermo-cycled thermoelectric cooler (TEC), the heating block, and the thermostatic heater. In the
present study, a new approach called open-loop controlled single thermostatic TEC was introduced to
control the thermal cycle during the amplification process. Differing from the former three methods,
the size of this microdevice is much smaller, especially when compared to the microdevice used
in the heating block method. Furthermore, the rising and cooling speed of this method is much
rapider than that in a traditional TEC cycler, and is nearly 20–30% faster than a single thermostatic
heater. Thus, a portable PCR system was made without any external heat source, and only a Teflon
tube-wrapped TEC chip was used to achieve the continuous-flow PCR reactions. This provides an
efficient way to reduce the size of the system and simplify it. In addition, through further experiments,
the microdevice is not only found to be capable of amplification of a PCR product from Human
papillomavirus type 49 (Genbank ref: X74480.1) and Rubella virus (RUBV), but also enables clinical
diagnostics, such as a test for hepatitis B virus.
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1. Introduction

Polymerase chain reaction (PCR) technology is a method for amplifying a target DNA sequence
in vitro. Developed in 1983 by Kary Mullis, PCR technology has been known as one of the greatest and
most widely used inventions in medical and biological research [1,2]. It has been used to amplify a
single copy or a few copies of a piece of DNA across several orders of magnitude, generating thousands
to millions of copies of a particular DNA sequence [3]. At present, PCR technology displays significant
functions in various fields, including environment, biology, physics, and medicine [4–7], etc.

The process for DNA amplification relies on thermal cycling, which consists of three different
stages: the denaturation stage, the annealing stage, and the extension stage [8,9].

There are several available methods for conducting the thermal cycling process of continuous-flow
PCR reactions, and three of them were widely used: the thermo-cycled thermoelectric cooler (TEC),
the heating block, and the thermostatic heater. Recently, a new approach called open-loop controlled
single thermostatic TEC was introduced, to control the thermal cycle during the amplification process
of continuous-flow PCR reactions.
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Figure 1 shows a comparison of the reaction microdevice and heating block configurations.
As shown in Figure 1a, the first method is to use heating blocks to achieve the required
temperature [10–12]. By placing the microfluidic chip on the heating blocks, which have different
temperatures, the microdevice can implement the PCR reaction. Since this system consists of several
closed-loop integrated circuits (IC) to control each heating block independently, the circuit control
becomes complicated. In addition, the use of several heating blocks makes it more difficult to
miniaturize the equipment. The second method is to use the TEC-H bridge controller [13,14]. As shown
in Figure 1b, TEC is controlled by a circuit to achieve the denaturation stage and the annealing stage
temperatures suitable for a PCR reaction. However, because TEC needs circuit control and a cooling
fan, the whole device cannot be miniaturized. In Figure 1c, the third method is to use a single
thermostatic heater to achieve thermal cycling [15–20]. In order to achieve the suitable temperature,
this system requires a closed loop IC to achieve high and low temperature cycle control, which means
the temperature change between the denaturation and annealing temperature is slower and circuit
control is more complex than the former two methods.
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Figure 1. Comparison of the four heating methods. (a) By using heating blocks to achieve the required
temperature; (b) by circuit control to make the thermoelectric cooler (TEC) achieve the required
temperature; (c) by using a single thermostatic heater to achieve thermal cycling; (d) by using a single
TEC to achieve thermal cycling of a polymerase chain reaction (PCR) reaction.

In contrast with the aforementioned three approaches, as shown in Figure 1d, the fourth method
was to use a single TEC to achieve thermal cycling of a PCR reaction. What we found in the
experiment was that under appropriate circuit control, the TEC can meet the denaturation and
annealing temperature requirements at the same time. When the high temperature region reaches
95 ◦C, the low temperature region reaches 63 ◦C. What is more, this system only requires an open loop
integrated circuit (IC) to maintain the proper voltage, with no need for complex circuit control. Due to
its characteristics, the TEC combines several advantages of small size, quick operation, flexible shape,
accurate temperature adjustment, no noise, long life, and environmental safety. Because there is no
need for complex circuits and heat sinks, the total size of the whole system is reduced.

As far as we know, this miniaturized PCR machinery is believed to be the smallest thermal cycler
for continuous-flow PCR reactions, with a weight of 727 g (including a self-contained battery-powered
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system), and with an option of a DC power supply of only 3.6 V and power consumption of only 6W.
This continuous flow PCR system benefits from the novel electronic control, as first introduced here.

Moreover, in the present study, a novel pumping principle and method were used for the passive
and velocity-stable transport of liquid. Differing from methods that rely on the permeability coefficient
of the end-blocked gas-permeable silicone or PDMS wall [21–24], an end-opened gas-impermeable
quartz tube was adopted to automate the flow. The end-opened microsystem was utilized to replace
the blunt-ended microsystems, similar to systems in previous works, for more accurate flow control.
The flow rate is fixed under the same pressure, as long as the inner diameter and length of the quartz
tube is fixed. The velocity was systemically studied by adjusting the length and inner diameter of the
quartz tube, as well as the inner pressure of the fluidic conduit.

2. Principle

The TEC uses the Peltier effect to create a heat flux between the junctions of two different types
of materials with the consumption of electrical energy, depending on the direction of the current.
The device has two sides. When the DC current flows through the device, it induces heat to be
transferred from one side to the other, causing one side to become cooler and the other side to
become hotter.

As shown in Figure 2a,b, the thermoelectric (TE) device comprised of micromodules connected
in series. Each micromodule comprised of an n-type and p-type TE semi-conductor material due to
different electron densities. The Peltier phenomenon occurs at the junction of these two dissimilar
conductors. When a flow of DC current passes through the junction of the semi-conductors, it causes a
temperature difference, and the side with the cooling plate absorbs the heat, which is then moved to
the other end of the device where the heat sink is located [25].
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When the current flows through the interface of two different conductors, heat may be generated
(or removed) at the junction. This phenomenon is called the Peltier Effect. Peltier heat is generated at
the junction per unit time:

.
Q = (ΠP −ΠN)I (1)

where ΠP(ΠN) is the Peltier Coefficient of the p-type and n-type TE semi-conductor material, and I is
the electric current that flows through the conductor.

A single-stage TEC will typically produce a maximum temperature difference of 70 ◦C between
the hot and cold sides. Hence, the more heat is moved, the less efficient it becomes. This is due to
the need of the TEC to dissipate both the heat being moved as well as the heat it generates itself from
its own power consumption. The amount of heat that can be absorbed is proportional to the current
and time:

W = ΠIt (2)

where Π is the Peltier Coefficient, I is the current, and t is the corresponding time.
As for the micropump of the system, a single syringe was used as a self-activated micropump.

At the end of the system, a quartz tube was attached to the tail Teflon tube. This novel micropump
system was studied in our former work [26], which was based on the air permeability from the
fluidic conduit to the atmosphere. The permeation actually relies on the air that passes through the
hollow channel of the gas-impermeable quartz tube, and not the air passing through the wall of the
gas-permeable silicone or PDMS wall, which causes a totally different mechanism and mathematic
modeling. Since the pressure of the compressed air captured inside the fluidic conduit is much
higher than the atmospheric pressure, air molecules inside the microchip tend to penetrate to the
ambient atmosphere through the hollow channel of the quartz tube, which causes a decrease in the
mole-number of air molecules in the anterior end of the sample plug. This can be calculated using the
following equation.

Ga =
DAave

Z
(CAia − CAo) (3)

CAia =
Pa

RT
(4)

CAo =
PAo
RT

(5)

where Ga is the diffusion flux, D is equivalent diffusion coefficient, CAia is inner air molecule
concentration in the anterior end of the sample plug, CAo is the air molecule concentration of the
ambient atmosphere, Z is the diffusion length, and Aave is the average diffusion area.

As shown in Figure 3, Pp and Pa represent the air pressures in the posterior and anterior ends of
the reagent, while Pg represents the pressure gradient imposed in the reagent. These can be calculated
through the following equation:

Pg = Pp − Pa (6)
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Figure 3. The assembly of the microdevice.

3. Experimentation

Due to the special characteristic of the thermoelectric device, we decided to use the
TEC1-12712 type TEC, as shown in Figure 2c,d. The size of the devices is 40 mm × 40 mm × 3.3 mm,
with a rated voltage of DC 12 V. The 12712 model is usually used as a semi-conductor refrigeration unit
for water dispensers or refrigerators. The maximum temperature difference is 62 ◦C. Thus, by changing
the input voltage, it is possible to determine the suitable value for the temperature of each side of the
TEC, which is capable of the PCR reaction. Moreover, the temperature of the upper high-temperature
surface is correlated not only to the input voltage, but also with the kind of upper spacer materials.
Thus, in order to determine the appropriate condition, a series of voltage gradient experiments was
conducted using three different spacers underneath. According to the thermal conductivity table of
various materials, three of these materials were chosen for the test due to the thermal conductivity,
showing that these materials could more likely reach the expected conditions. These were as follows:
92% Aluminum Oxide Ceramics, Silicon Carbide Ceramics, and 304 Stainless Steel. The size of these
materials was all 50 mm × 50 mm × 10 mm.

A set of voltage gradient experiments for each of the different spacers was conducted. In order
to meet the temperature requirement of denaturation stage, we monitored the temperatures of the
high-temperature region by adopting different kinds of spacers and setting up different voltages.
As shown in Figure 4, the temperature in the high-temperature region increases with the increase in
voltage. In order to determine the actual voltage and current values at that moment, an adjustable
step-down voltage regulator module, with an input voltage of 5–23 volts and an output voltage
of 0–16.5 volts (TELESKY, 3A, DC, 62 mm × 44 mm × 18 mm), was attached to the TEC power



Sensors 2019, 19, 1609 6 of 11

system. Since this has the smallest thermal conductivity among the three, the heat transferred to
the 304 stainless steel was lesser than that to the other two materials. Therefore, the upper surface
temperature was highest among those three spacers under any input voltage. The investigators
documented the temperature in the low-temperature region while conducting the gradient experiment,
and compiled the data, as shown in Table 1.
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Table 1. Temperatures of the low-temperature region of the thermoelectric cooler under different
voltages and spacers.

Voltage (V)
Temperature (◦C)

92% Aluminum Oxide Ceramics Silicon Carbide Ceramics 304 Stainless Steel

1 30 30 34
1.5 34 32 36
2 38.5 35 37

2.5 48 46 47
3 56 54 56

3.2 58 57 60
3.4 60 62 63
3.6 63 65 67
3.8 68 69 72
4 70 73 75

As shown in Figure 4 and Table 1, it was relatively a suitable condition for the PCR reaction when a 92%
Aluminum Oxide Ceramic was used for the spacer, with a setup voltage at 3.6 V. The high-temperature zone
was approximately 95 ◦C, which was appropriate for the denaturation stage, while the low-temperature
zone was nearly 63 ◦C, which was a suitable temperature for most of the reagents to react. The investigators
consider that by balancing the input voltage and the material and thickness of the spacer, the system would
be able to achieve most of the conditions that a PCR reaction would require.

The measurement of the assembled portable PCR device shown in Figure 5a,c was 115 mm ×
85 mm × 80 mm. It consists of two 3.7 V polymer lithium batteries connected in series (ZON.CELL,
12,000 mAh, 70 mm × 60 mm × 20 mm), an adjustable step-down voltage regulator module,
a ship-shaped switch (TELESKY, 6 A, 250 V, 13.5 mm × 8.5 mm), a 92% Aluminum Oxide Ceramic,
a TEC (TEC1-12712), a 10-mL syringe, Teflon tubes (the inner and outer diameters were 0.3 mm and
0.6 mm, respectively), an iron wire, a 27 G needle, and a 15-cm long quartz tube (inner diameter,
25 µm). The whole system was installed in a box made of polymethyl methacrylate (PMMA). The right
wall and top of the box were made of transparent PMMA to allow the internal structure to be observed,
while the rest of it was made of white PMMA.
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In order to operate the system, the switch was turned on, and the voltage regulator module was
set-up to 3.6 V. Then, there was a wait of approximately 15 min to preheat the TEC. Next, the reagents
were placed on the inner side wall of the syringe, and the syringe was pushed from the scale of 10 mL to
the scale of 6 mL. After that, the syringe was positioned upright to allow the reagents to spontaneously
flow down under pressure. When all the reagents flowed into the Teflon tube, the syringe was
positioned horizontally on a bracket on the left wall of the box. As shown in Figure 5d, the flow time
of the reagents was approximately 60 s per cycle to reach a suitable reaction time for a PCR assay,
the flow rate was 8.5 µL per minute, and the Teflon tube was wrapped for 40 laps. Tests showed that
the microdevice can work stably for three hours with two polymer lithium batteries in series.

In order to prove that the microdevice can be used for continuous flow PCRs, a commercial
qPCR cycler (CFX Connect; Bio-Rad, CA, USA) was used as a reference cycler system. By comparing
the PCR products from these two devices, the function of this system could be verified. In addition,
in order to prove the practicability of the system and determine the PCR amplification efficiency of the
microdevice in the present study, two kinds of reagents were used, and these reagents were tested in
parallel by both the microdevice and commercial qPCR cycler (Bio-Rad). The reaction condition in the
commercial qPCR cycler was set with an annealing stage and denaturation stage of 30 s, 63 ◦C, and 30 s,
95 ◦C, respectively. Meanwhile, the flow rate of the reagent in the Teflon tube was approximately 60 s
per cycle. Due to the shape of the PDMS block, the 95 ◦C denaturation temperature and the 63 ◦C
annealing temperature both lasted for 30 s.

The DNA fragment of Human papillomavirus type 49 (Genbank ref: X74480.1), Rubella virus
(RUBV), and Hepatitis B Virus (HBV) were amplified using the microreactor. The target amplifications
of Human papillomavirus type 49 were 75 bp in size. The target amplifications of RUBV was 88 bp.
The primer sequences for amplifying a 75 bp gene fragment of Human papillomavirus type 49 were
as follows: 5′-GCCAACCCCTCCAGAAACA-3′ (forward), and 5′-CCCACCTCCACCAGTAAA CG-3′

(reverse). The primer sequences for amplifying an 88 bp gene fragment of RUBV were as follows:
5′ATTGTTATGTATGAGCGGTGA A-3′ (forward), and 5′-TTGTAAAGCCCTATGAGTGAG C-3′ (reverse).
The PCR reagent was composed of 1× SYBR Premix Ex TaqII, 0.075 U µL−1 TaKaRa EX Taq, 0.6 mg
mL−1 BSA (AS25483; AMEKO, www.biolianshuo.com, China), 1 µM of forward and reverse primers,
and 0.00322 ng µL−1 of template. Each test required 40 µL of reagent.The Hepatitis B Virus Nucleic Acid
Detection Kit was applied for amplification of HBV gene, which consisted of the primer and probe. After the
PCR reaction, agarose powder (V900510; Sigma-Aldrich, www.sigmaaldrich.com, MO; 2%), DL2000 DNA

www.biolianshuo.com
www.sigmaaldrich.com
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marker (50 × 250 µL, Peking Jialan Biotechnology Co., Ltd., Beijing, China), 0.5 × TBE buffer (PH1755,
Phygene, China), and Nucleic Acid GelStain (KeyGEN BioTECH, Nanjing, China) were applied to analyze
the amplification result, which was detected at 254 nm with an UV illuminator. Positive control experiments
were conducted using a thermal cycler (CFX Connect, Bio Rad, USA) under the same thermal-cycling
conditions for all targets, and the high-resolution multiplexed PCRs as well. Denaturation and annealing
or extension were performed at 95 ◦C and 63 ◦C, respectively, requiring 40 thermal cycles of amplification
procedure. Three experiments were carried out for each reagent. The best results are shown below.

4. Results and Discussion

As a proof of concept, various DNA targets were performed on the portable PCR platform.
Each assay was tested twice and the best results are shown in Figures 6 and 7. Figure 6 shows the
amplification results of our microsystem and the Bio Rad thermal cycler. As shown in Figure 6,
the intensity of the target amplicons obtained from the polymer lithium battery-powered microreactor
is close to that obtained using the commercial thermal cycler. Figure 6a demonstrates the results of
the electrophoretic reaction of the DNA fragment of Human papillomavirus type 49 and Figure 6b
demonstrates the results of the electrophoretic reaction of Rubella virus (RUBV). As shown in the
figure, the two methods of the commercial qPCR cycler (Bio-Rad) and the present system have the same
products. This means that the present system is capable of carrying out a PCR reaction. Although the
chip gained band is a little weaker, this is inevitable for continuous-flow PCRs because the big inner
surface of the Teflon tube can unexpectedly adsorb the biomolecules. After calculation of amplification
results of the targets by ImageJ, the average amplification efficiencies are about 78% and 43% of those
of a commercial cycler. The results indicate the portable PCR platform can be applied for preliminary
on-chip amplifications.
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(b) Rubella virus (RUBV).

To further test system performance for clinical diagnostic tests, an experiment was conducted to
verify whether the present system can be applied for the detection of hepatitis B virus. A Hepatitis B
Virus Nucleic Acid Detection Kit provided by Anhui Targene Medical Technology Co., Ltd., was used,
and both the HBV positive and HBV negative assays were performed using the commercial qPCR
cycler (Bio-Rad) and the present system. The results are shown in Figure 7.

In Figure 7, the ladder is shown in the middle, and the two lanes on the left of the ladder represent
the products gained by the commercial qPCR cycler (Bio Rad) and the present system. The two lanes
on the right of the ladder were gained by the commercial qPCR cycler (Bio Rad) and the present
system. As shown in the figure, the gene targets from HBV positive serum were successfully amplified
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by both the commercial thermal cycler and the portable PCR platform, respectively, and the HBV
negative sample had no products at the position of the product strip through both the commercial
qPCR cycler (Bio-Rad) and microdevice. The intensity of the amplified HBV target of the microreactor
was approximately 61% of that obtained by using a commercial thermal cycler. Based on this result, it is
proven that the polymer lithium battery-powered continuous-flow PCR platform can be applied for
diagnosis of HBV. It can provide an easier and more energy-efficient way of performing a PCR reaction.
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5. Conclusions

In this study, we introduced a novel mechanism, in which a single TEC was used as a thermal
cycler and a self-powered end-opened micropump system. This provides a new approach to thermal
cycling, in which the Teflon tube was wrapped around the TEC to perform the PCR reaction. The gel
images revealed that this portable microdevice is also capable of clinical diagnostic tests. The design of
the portable PCR microreactor simplifies the traditional processing method and makes the operation
more convenient with general applicability. At the same time, the portable PCR microreactor can
provide reliable results for the detection of Human papillomavirus type 49, RUBV, and Hepatitis B
Virus (HBV). In future studies, this system will be upgraded to make it more controllable, allowing it
to be applied to wider fields.
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