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Abstract: This paper proposes an image-based wavefront sensing approach using deep 
learning, which is applicable to both point source and any extended scenes at the same time, 
while the training process is performed without any simulated or real extended scenes. Rather 
than directly recovering phase information from image plane intensities, we first extract a 
special feature in the frequency domain that is independent of the original objects but only 
determined by phase aberrations (a pair of phase diversity images is needed in this process). 
Then the deep long short-term memory (LSTM) network (a variant of recurrent neural 
network) is introduced to establish the accurate non-linear mapping between the extracted 
feature image and phase aberrations. Simulations and an experiment are performed to 
demonstrate the effectiveness and accuracy of the proposed approach. Some other discussions 
are further presented for demonstrating the superior non-linear fitting capacity of deep LSTM 
compared to Resnet 18 (a variant of convolutional neural network) specifically for the 
problem encountered in this paper. The effect of the incoherency of light on the accuracy of 
the recovered wavefront phase is also quantitatively discussed. This work will contribute to 
the application of deep learning to image-based wavefront sensing and high-resolution image 
reconstruction. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The resolution of an incoherent imaging system is often limited by phase aberrations. Phase 
aberrations can arise from a variety of sources including atmospheric turbulence and mirror 
misalignments and figure errors due to dynamic thermal or gravitational variations. 
Knowledge of phase aberrations affords either their correction by using adaptive optics or 
active optics, or post detection deblurring of the imagery [1]. 

Image-based wavefront sensing is a method of measuring the wavefront phase distribution 
in the pupil plane using focal plane images [2]. It has several important advantages over the 
conventional wavefront sensors, such as low requirement for optical hardware that could also 
be subject to misalignments and no special need for calibration. Therefore, this method is 
particularly suitable for wavefront sensing in space telescopes [3,4]. Other applications of it 
include measurement of a laser beam [5] and biological microscopy imaging [6]. 

It is of great significance that the image-based wavefront sensing approach is not 
restricted by the objects being imaged and cannot only be applicable to point source but also 
applicable to different extended scenes at the same time. A point object is not available in 
many imaging scenarios. Even for astronomical applications, the assumption of a point object 
involves some risk owing to the abundance of binary stars. If the optical system is expected to 
be looking at resolved targets, one needs to evaluate the performance with extended scenes, 
which can be substantially different from that with a point target. 

Machine learning with artificial neural networks (ANNs), including deep learning using 
convolutional neural networks (CNNs), has been introduced to the area of computational 
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imaging [7,8] and image-based wavefront sensing [9–12]. ANNs are input-output information 
processors composed of parallel layers of elements or neurons which are capable of 
elementary arithmetic. ANNs can be used to fit the complicated input-output mappings 
between wavefront phase and intensity images. Image-based wavefront sensing method based 
on machine learning has several important advantages compared to traditional G-S phase 
retrieval [13,14] or phase diversity methods [15–17], such as a high efficiency (needless of 
the time-consuming iteration process) and robustness (completely free from the stagnation 
problem). Therefore, image-based wavefront sensing using machine learning has a great 
prospect for development and wide application. 

However, the application of the current machine learning wavefront sensing methods to 
the case of an unknown object is still restricted to some extent. On one hand, some of the 
current machine learning approaches are only applicable to point sources [9–11]. On the other 
hand, while some recent researches can be applicable to extended scenes, it seems that the 
type of the extended scenes is still restricted (for example, selected handwritten numbers 
taken from the EMNIST database) [12]; Besides, this method needs to generate an extremely 
large number of different extended objects for training of the network (about 1,000,000), 
which is not only very time-consuming and hard to implement, but also will pose a great 
challenge to the storage and computing capacity of the computer (extremely expensive GPU 
are usually need [7,12]). These facts pose a tremendous obstacle to the promotion of image-
based wavefront sensing using machine learning. The underlying reason is that in the current 
methods the intensities of extended images in the space domain are directly taken as the input 
of the network. When both of the objects and phase aberrations of the system are completely 
random and unknown, the applicability and practicability of the current deep learning 
methods for image-based wavefront sensing are limited. 

In this paper, rather than directly recovering phase aberrations from intensities of focal 
images in the space domain, we first extract a special feature in the frequency domain which 
is related to phase aberrations but independent of the original objects. Meanwhile, a pair of 
focal plane images with a known defocus diversity between them is needed. Then the deep 
long short-term memory (LSTM) network is introduced as the non-linear fitting tool to 
establish the accurate mapping between the extracted feature image and phase aberrations. 
LSTM network is a variant of recurrent neural network (RNN), which not only have memory 
but also can solve the vanishing gradient problem in training due to long term dependencies 
[18,19]. LSTM networks can recognize and take advantage of the inherent relations between 
the intensities in the feature image with theirs elaborate memory units. Simulations and an 
experiment are performed to demonstrate the effectiveness and accuracy of the proposed 
approach. Some other discussions are also presented to demonstrate the higher fitting 
accuracy and computation efficiency of the deep LSTM neural network compared to Resnet 
18 (a variant of CNN) particularly for the case encountered in this work. The influence of the 
incoherency of light on the accuracy of the recovered wavefront phase is also quantitatively 
discussed. 

This paper is organized as follows. In Section 2, we introduce a special feature in the 
frequency domain which is independent of the object being imaged. Then we continue to 
propose an object-independent wavefront sensing approach using deep LSTM networks in 
Section 3. Simulations and an experiment are performed to demonstrate the effectiveness of 
the proposed approach in Section 4. Some other discussions on the proposed approach is 
presented in Section 5. In Section 6, we conclude the paper. 

2. Object-independent feature extraction 

We will only consider two images separated by a certain defocus distance. Let us suppose that 
the object is illuminated with non-coherent quasi-monochromatic light, and the imaging 
system is a linear shift-invariant system. The intensity distribution of the image plane i  can 
be modeled by the following equation, 
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 ,= ∗i o s  (1) 

where ∗  denotes the convolution operation, o  is the object to be found, s  is the point spread 
function (PSF) of the optical system. We can see that the information of the object (which is 
unknown) is included in this equation, which will pose a great challenge for us to establish 
the accurate non-linear mapping between wavefront phase aberrations and focal-plane 
images. 

To solve this problem, we will establish an equation which is independent of the objects. 
According to Fourier optics principle, in the frequency domain, Eq. (1) can be rewritten as 
 ,= ⋅I O S  (2) 

where I , O , and S  are Fourier transforms of i , o , and s , respectively. S  is optical 
transfer function. When two images obtained at two different focal planes are available, 
according to Eq. (2), we can have that 

 ,a a

b b

=
I S

I S
 (3) 

where the sub-scripts a  and b represent that the related variables corresponding to images at 
two different focal planes. We can see that this equation no longer contains the information of 
the extended object. 

Equation (3) can further be rewritten as 
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where { }⋅F  is the Fourier transform operation, ⊗  is the auto-correlation operation, aP and 

bP  are the complex pupil functions at the pupil plane corresponding to the two focal planes, 

respectively. aP and bP  are functions of the wavefront phase aberrations, ψ , i.e. 

 ( ) { }exp ,a j=P ψ p ψ  (5) 

 ( ) ( ){ }exp ,b j= +P ψ p ψ Δψ  (6) 

where p  represents the binary aperture function with values of 1 inside the pupil and 0 

outside, 1j ≡ − , and Δψ  is a known defocus diversity between the two focal planes. 

Equations (4-6) establish an analytic mapping between the extended scene images ( ai  and 

bi ) at two focal planes and the wavefont phase of the optical system (ψ ), which does not 

include the information of the object ( o ). Here we can define a feature image as 
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from which we can recover the wavefront phase, ψ . Note that here f  is a complex image 

and in practice we use another feature, i.e. 
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where {}1− ⋅F  means inverse Fourier transform operation. The reason for us to select this 

feature is that 0f  is an intensity image (similar with PSF) and the energy of this feature image 

is mainly concentrated at the central region. To suppress the effects of noise and decrease the 
complexity of the network, we can reduce the size of the actual feature image used to recover 
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wavefront aberrations (the actual feature image for deep learning is only a portion of 0f  near 

the central region). Illustration of the extracted feature for different objects in the presence of 
the same phase aberrations are shown in Fig. 1, where we can see that the feature image is 
independent of the object. 

 
Fig. 1. Illustration of the extracted features for different objects in the presence of the same 
phase aberrations. (a) and (b) show two extended scenes, the corresponding in-focus and 
defocus images, as well as the feature images obtained with Eq. (7), respectively. (c) shows a 
point source, the corresponding in-focus and defocus images as well as the extracted feature 
image. We can clearly see that the feature images extracted from different objects are the 
same. 

3. Object-independent wavefront sensing approach using deep LSTMs 

3.1. Introduction of LSTM network 

LSTM network is a variant of recurrent neural network (RNN). A RNN is a class of artificial 
neural network where connections between nodes form a directed graph along a sequence. 
This allows it to exhibit temporal dynamic behavior for a time sequence. Given an input 
sequence ( )1,..., Tx x=x , a RNN computes the hidden vector sequence ( )1,..., Th h=h and 

output vector sequence ( )1,..., To o=o  by iterating the following equations from 1t = to T : 

 
( )1 ,

,
t xh t hh t h

t ho t o

h W x W h b

o W h b
−= + +

= +


 (9) 

where the W terms denote weight matrixes, b terms denote bias vectors, and   is the 
hidden layer activation function. For basic RNNs  is an elementwise application of a 
sigmoid function. Unfold of the basic RNN is shown in Fig. 2. This chain-like nature reveals 
that RNNs are intimately related to sequences and lists. 

                                                                                                Vol. 27, No. 18 | 2 Sep 2019 | OPTICS EXPRESS 26105 



 
Fig. 2. Diagram of the unfold basic RNN. 

In contrast to basic RNNs which use a single tanh layer to compute the hidden state, 
LSTM networks use purpose-built memory modules to compute the hidden state and store 
information. The LSTM module is shown in Fig. 3. In each LSTM module,  is 
implemented by the following composite function: 
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where σ  is the logistic sigmoid function, tanh is the hyperbolic tangent function, ⊗  is an 
element multiplication, and F , I , O  and G  are intermediate variables. LSTM cells can 
well decide internally what to keep in (and what to erase from) memory. LSTM not only can 
use their memory modules to process sequences of inputs and recognize patterns in them, but 
also can solve the vanishing gradient problem in training due to long term dependencies. For 
this reason, we can conveniently construct and train a very deep LSTM network. The 
intensities of pixels are not independent for a certain image pattern and they have inherent 
relations. Deep LSTM networks can take full advantage of these relations when the images 
are decomposed into a series of patches and treated as a sequence. 

 
Fig. 3. Diagram of the LSTM unit. 
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3.2. Object-independent wavefront sensing approach using deep LSTMs 

The object-independent wavefront sensing approach using deep learning is illustrated in Fig. 
4. Note that LSTM networks are mainly used to process sequences and a feature image cannot 
directly be taken as the input. Therefore, we first decompose the feature image into a series of 
patches which can be regarded as a sequence (each patch corresponds to one element in the 
sequence). The output of the deep LSTM networks is still a sequence. This sequence is then 
taken as a vector, which serves as the input of a fully-connected layer and at last we can 
obtain a set of aberration coefficients. 

 
Fig. 4. Sketch map of the object-independent wavefront sensing approach using deep LSTM 
networks. The feature image extracted from a pair of focal plane images is first decomposed 
into a series of patches (each patch includes one row of the feature image). Then these patches 
compose a sequence, which serves as the input of the a deep LSTM network. The output 
sequence of the deep LSTM network is further taken as a vector, which serves as the input of a 
fully-connected layer, before a set of aberration coefficients can be obtained. 

The application procedure of the object-independent wavefront sensing approach using 
deep LSTM networks is shown in Fig. 5. Specifically, for certain aberration coefficient 
ranges, a large number sets of aberration coefficients are randomly generated, and we can 
calculate the corresponding PSFs at the in-focus and defocus image plane. For each set of 
PSFs, we can extract a feature image, which is then decomposed into an image patch 
sequence. The generated aberration coefficients and the image patch sequences compose the 
output data set and input data set, respectively. The deep LSTM network can then be trained 
using these data sets. After the deep LSTM network is well trained, it can be applied to those 
image patch sequences which are obtained from a pair of real scenes even the object being 
imaged is unknown. Meanwhile, certain magnitude of noise is added to the simulated PSFs to 
simulate the real noisy condition. 
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Fig. 5. Application procedure of the object-independent image-based wavefront sensing 
approach using deep LSTM network. We can see that while the network is trained using 
simulated PSFs, it can be applicable to unknown extended scenes at the same time. 

We can recognize that the deep LSTM network can be trained without any simulated or 
real extended scenes. In fact, the feature images used to train the deep LSTM network are 
extracted from the simulated PSF images which are generated according to Fourier optics. On 
the other hand, after well trained the deep LSTM network can be applied to the feature 
images which are extracted from the real extended scenes and recover the wavefront phase 
aberrations. The underlying reason is that the feature image is independent of the object. 

4. Simulations and experiment 

In this section, simulations and an experiment will be performed to demonstrate the 
effectiveness of the proposed approach. Meanwhile, the optical system parameters used in the 
simulation are the same as that in the experiment, and the trained deep LSTM network in the 
simulation will be directly applied to the images obtained in the experiment. 

4.1. Simulations 

For a certain set of system parameters (11.5mm aperture size, 150mm focal length, 632.8nm 
wavelength, 5.5um pixel size, and 1mm defocus distance), we first train a suitable deep 
LSTM network according to the procedure shown in Fig. 5. We generate a number of (10000) 
aberration coefficient sets and the corresponding PSF images for training. The aberration 
coefficients considered here are simply 2nd~9th Fringe Zernike coefficients corresponding to 
tip-tilt, focus, astigmatism, coma and spherical aberration, which are randomly generated 
within the range of [-0.5λ, 0.5λ]. The size of the selected PSF image is 64 64×  and the actual 
size of the extracted feature image for training is 32 32× . In other words, the number of the 
input sequence is 32 and each sequence includes 32 elements. The number of layers of the 
deep LSTM network is 128. A learning algorithm called Adam was used for optimizing the 
network with an initial learning ratio of 0.0001, a batch size of 10, and a number of epochs of 
40. The dropout ratio of the dropout layer was 0.2. Meanwhile, a proper level of Gaussian 
noise (50dB) has been introduced to the generated PSF images to simulate the practical noisy 
condition in the training process. Besides, an error in defocus distance ([-0.1mm,0.1mm]) has 
also been taken into consideration. The codes are implemented in Python and Keras and were 
executed on a computer with an Intel Core 6700 CPU running at 3.4 GHz, with 16 GB of 
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RAM, and no GPU is used here. The training time is about 4 hours. Compared to other 
researches on image-based wavefront sensing with deep learning, the requirement on 
hardware in our approach is much lower (in [12] the codes are executed on a computer with 
an Intel Xeon 6134 CPU running at 3.2 GHz, with 192 GB of RAM, and an NVIDIA Tesla 
V100 GPU with 16 GB of VRAM). Therefore, this deep learning approach is much easier to 
implement and more convenient for popularization and application. 

The training result is shown in Fig. 6, which provides the distribution of the error between 
the targets and the actual outputs of the network in the form of histogram. Figure 6(a) shows 
the error distribution for the training set which is particularly used to train the deep LSTM 
network. Figure 6(b) shows the error distribution for the test set which is only used to test the 
performance of the trained network. We can see that the trained deep LSTM network can 
accurately establish the non-linear mapping between the extracted feature images and the 
phase aberrations. Specifically, the mean of the absolute errors between the targets and 
outputs of the network are 1.51e-4 waves for training set and 1.67e-4 waves for the test set, 
respectively. 

 
Fig. 6. Distributions of the error between the targets and the actual outputs of the deep LSTM 
network for the training set (a) and test set (b). We can see that deep LSTM network can 
accurately fit the non-linear mapping between the extracted feature image and the phase 
aberrations. 

To further demonstrate the accuracy of the proposed approach, the trained deep neural 
network is applied to several simulated aberrated extended scenes for wavefront sensing and 
image reconstruction. Specifically, three sets of aberration coefficients are randomly 
introduced and three sets of aberrated extended scenes including the in-focus and defocus 
scenes (with a noise level of 50dB and a random error in the defocus distance of [-0.1mm, 
0.1mm]) are obtained correspondingly according to Fourier optics [Eq. (1)]. Three feature 
images are then extracted and three sets of aberration coefficients are recovered after the 
feature images are decomposed into sequences and taken as input of the trained deep LSTM 
network. The comparisons between the introduced aberration coefficients and the recovered 
aberration coefficients are shown in Table 1. The mean error between the introduced 
aberration coefficients and the aberration coefficients recovered from simulated aberrated 
extended scenes is 2.3e-3 waves, which indicates a high accuracy of wavefront reconstruction 
from unknown extended scenes. Note that while the tip-tilt terms are considered in the 
generation of the PSFs for training the deep LSTM network, they are not included in the 
outputs, since they have no influence on imaging quality. 
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Table 1. The comparisons between the introduced aberration coefficients (A) and the 
aberration coefficients recovered from simulated aberrated extended scenes (B) 

  C4 C5 C6 C7 C8 C9 

1 A −0.2152 0.4419 −0.3327 −0.3365 0.4790 −0.2915 
B −0.2129 0.4387 −0.3318 −0.3413 0.4683 −0.3023 

2 A −0.4872 0.3704 −0.5773 −0.1084 −0.4520 −0.3175 
B −0.4947 0.3799 −0.5704 −0.1049 −0.4638 −0.3205 

3 A −0.0724 −0.2104 0.5957 −0.5947 0.1701 −0.0171 
B −0.0705 −0.2088 0.5889 −0.6051 0.1667 −0.0133 

These Fringe Zernike coefficients are in ( 632.8nm).λ λ =  

The recovered aberration coefficients can be used to reconstruct the original extended 
scenes through deconvolution operation. The results of image reconstruction from the three 
sets of aberrated images are shown in Fig. 7. By comparing the reconstructed extended scenes 
with original ones as well as the aberrated ones, we can recognize that the resolution of the 
reconstructed image is greatly improved, which is comparable to the original extended 
images. This fact can demonstrate the accuracy of the recovered aberration coefficients 
indirectly. The extracted feature images corresponding to different phase aberrations are also 
shown in Fig. 7. 

 
Fig. 7. Simulation results of image reconstruction with the recovered aberration coefficients. 
We can see that the resolution of the reconstructed images can be effectively improved, which 
demonstrates the accuracies of the recovered aberration coefficients from the side. 

4.2. Experiment 

A simple experiment is then performed to validate the effectiveness of the proposed approach. 
The sketch map of the experimental setup is shown in Fig. 8. In this figure, the laser light 
passes through an extended hole (a resolution board) after it passes through a scattering 
matter, and therefore the extended hole can be seen as an extended light source. Here the 
scattering matter can be any semitransparent solution (such as milk) which is used to change 
the parallel laser light to scattered light. The position of the detector is located conjugate to 
the extended hole. The optical system is composed by only one lens. The aberrations of this 
simple optical system change with field. Different figures in the resolution board can simulate 
different objects at different field positions. The aperture size of the stop is 11.5mm, the 
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distance between the lens and the detector is 150mm, the wavelength of the laser is 632.8nm, 
the pixel size of the detector is 5.5um, and the defocus distance is 1mm. The detector is 
located on an adjustable stage and therefore we can introduce a known defocus diversity. The 
parameters of the system are the same as that used in the simulation (in fact, the parameters 
used in the simulations are determined according to this experimental system). 

We can select several isolated figures in the image plane which correspond to different 
field angles of the optical system and therefore they are blurred by different phase 
aberrations. These extended scenes can be used to recover the wavefront phase aberrations 
with the approach proposed in this paper. Then the recovered phase aberrations are further 
used to perform deconvolution and reconstruct the extended scenes collected from the 
experimental setup. Several sets of in-focus and defocus extended scenes as well as the 
reconstructed images are shown in Fig. 9. We can see that the resolutions of the reconstructed 
images are effectively improved, which demonstrates the accuracies of the recovered phase 
aberrations from the side. 

While the traditional phase diversity algorithm has some disadvantages in efficiency and 
robustness, we can compare the results of this method with the results of deep LSTM network 
to further evaluate the accuracy of them quantitatively. In the process of performing phase 
diversity approach, we can use different optimization methods [20,21] and guarantee that a 
global optimum is obtained. The comparisons between the results of phase diversity approach 
and the proposed approach are presented in Table 2. We can see that the results of these two 
different approaches bear strong similarities with each other. Specifically, the mean absolute 
error between the results of these two approaches is 8.7e-3 waves. This fact will further 
demonstrate the accuracies of the recovered phase aberrations from the side. 

 
Fig. 8. Sketch map of the experimental setup. Here the scattering matter can be any 
semitransparent solution which is used to change the parallel laser light into scattered light. 
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Fig. 9. Experimental results of image reconstruction with the recovered aberrations. We can 
see that the resolution of the reconstructed images is effectively improved compared to original 
aberrated images, which demonstrates the accuracy of the recovered aberration coefficients 
from the side. 

Table 2. The comparisons between the aberration coefficients obtained with deep LSTM 
network (A) and the aberration coefficients recovered using traditional phase diversity 

algorithm (B) for the 4 pair of images 

  C4 C5 C6 C7 C8 C9 

1 
A −0.3731 −0.4192 0.0577 −0.1071 0.2688 −0.0382 

B −0.3808 −0.4212 0.0406 −0.1036 0.2654 −0.0401 

2 
A −0.2781 −0.2256 0.2271 −0.1091 −0.1206 −0.0349 

B −0.2797 −0.2189 0.2217 −0.1071 −0.1170 −0.0332 

3 
A −0.2995 −0.5066 0.1244 0.0745 −0.0429 −0.0259 

B −0.2983 −0.4938 0.1183 0.0801 −0.0690 −0.0281 

4 
A −0.3401 −0.1895 0.1066 −0.0939 −0.1874 −0.0245 

B −0.3381 −0.1929 0.1162 −0.0733 −0.1807 −0.0328 
These Fringe Zernike coefficients are in λ ( 632.8nmλ = ). 

While in the experiment we only use simple objects, which seems similar with the case of 
reference [12]. However, the case presented in our paper has some fundamental differences 
from the case presented in reference [12]. In this reference, EMNIST database is used to train 
the network and the trained network is then applied to those samples selected from EMNIST. 
However, in our manuscript, the network is trained without any simulated or real extended 
scenes, i.e., the training process does not have any relation with the images obtained with our 
experimental setup. The trained network in our manuscript not only can apply to these simple 
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objects but can also be applicable to any other objects, for it is independent of the objects 
being imaged. Besides, since in the simulations we have used complicated extended scenes to 
demonstrate the effectiveness and accuracy of the proposed approach, here we only need to 
validate the practicality of the proposed approach in the experiment. 

5. Other discussions 

In this section, we will further present some discussions on the proposed method. On one 
hand, we will compare the non-linear fitting capacity of deep LSTM network with Resnet 18 
(a variant of convolutional neural network) specifically for the problem encountered in this 
paper. On the other hand, considering that the in practice the incident light is usually not 
purely coherent light, we will further discuss the influence of the incoherency of light on the 
accuracy of the proposed method. 

5.1. Comparison between deep LSTM network and Resnet 18 as deep learning tool 

In this paper, deep LSTM network is selected as the mathematical tool to establish the non-
linear mapping between the extracted feature image and the aberration coefficients. In fact, 
CNNs can also do this work. The main reason for us to select deep LSTM network as the 
non-linear fitting tool is that for the problem encountered in this paper the non-linear fitting 
accuracy of the deep LSTM network is much higher than the CNN model used by us and the 
structure of the deep LSTM network is also more simple. The fitting accuracies of deep 
LSTM and Resnet 18 [22,23] (a variant of CNN) for the fitting problem of this paper will be 
compared and discussed in this section. 

When the 2nd~9th Fringe Zernike coefficients (corresponding to tip-tilt, focus, 
astigmatism, coma and spherical aberration) are considered, which are randomly generated 
within the range of [-0.5λ, 0.5λ], the fitting accuracies of Resnet 18 for the training set and 
test set are shown Fig. 10. The numbers of the feature images for training and testing of the 
Resnet 18 are both 10000. Other conditions for training the Resnet 18 are also the same as 
those for training the deep LSTM (except that the training time for Resnet 18 is much longer). 
Comparing Fig. 10 with Fig. 6, we can see that the residual fitting error using deep LSTM is 
much smaller than that using Resnet 18. Specifically, the mean absolute errors between the 
targets and outputs of the network are 7.12e-3 waves for training set and 1.14e-2 waves for 
the test set in Fig. 10, respectively. 

 
Fig. 10. Distributions of the error between the targets and the actual outputs of the Resnet 18 
for the training set (a) and test set (b). Comparing this figure with Fig. 6 we can recognize that 
the fitting accuracy of Resnet 18 is much less than deep LSTM for the problem encountered in 
the paper. 

When we further increase the number of Fringe Zernike coefficients that are considered 
(2nd~21th Fringe Zernike coefficients), which are randomly generated within the range of [-
0.5λ, 0.5λ], the training results using deep LSTM and those using Resnet 18 are presented in 
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Fig. 11 and Fig. 12, respectively. We can see that in this case the fitting error of deep LSTM 
is about two orders of magnitude smaller than the fitting error of Resnet 18 for the problem 
encountered in the paper. Specifically, the mean absolute errors between the targets and 
outputs of the deep LSTM are 2.37e-4 for the training set and 2.96e-4 for the test set, 
respectively. On the other hand, the mean absolute errors between the targets and outputs of 
the Resnet 18 are 4.93e-2 for the training set and 6.34e-2 for the test set, respectively. 
Besides, when we further increase the number of Fringe Zernike coefficients that are 
considered (2nd~37th Fringe Zernike coefficients), the training results for deep LSTM 
network are shown in Fig. 13. In this case, the mean absolute errors between the targets and 
outputs of the deep LSTM are 6.71e-4 for the training set and 9.04e-4 for the test set, 
respectively. We can recognize that while the accuracy actually decreases as the number of 
aberration coefficients increases, the degradation in accuracy is still not obvious for deep 
LSTM network. 

 
Fig. 11. Distributions of the error between the targets and the actual outputs of the deep LSTM 
for the training set (a) and test set (b) when 2nd~21th Fringe Zernike coefficients are 
considered. Comparing this figure with Fig. 6 we can recognize that the fitting accuracy of the 
deep LSTM is not sensitive to the number of the outputs. 

 
Fig. 12. Distributions of the error between the targets and the actual outputs of the Restnet 18 
for the training set (a) and test set (b) when 2nd~21th Fringe Zernike coefficients are 
considered. Comparing this figure with Fig. 11 we can recognize that the fitting accuracy of 
Resnet 18 is much less than deep LSTM for the problem encountered in the paper. Besides, the 
fitting accuracy decreases obviously as the number of the outputs increases. 
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Fig. 13. Distributions of the error between the targets and the actual outputs of the deep LSTM 
for the training set (a) and test set (b) when 2nd~37th Fringe Zernike coefficients are 
considered. We can recognize that while the accuracy actually decreases as the number of 
aberration coefficients increases, the degradation in accuracy is still not obvious for deep 
LSTM network. 

It is possible that if we increase the scale of the data set, the training time, as well as the 
computational performance of the computer (by using GPU), the non-linear fitting accuracy 
of the Resnet 18 will increase correspondingly. However, in this case the non-linear fitting 
accuracy of the deep LSTMs will increase correspondingly. In other words, deep LSTMs 
have a higher fitting accuracy than Resnet 18 under equal conditions for the problem 
encountered in the paper. The underlying reason may be that the feature images in this paper 
include some sparse and scattered points (as shown in Fig. 7) and it may a little hard to 
further extract features through convolution. CNNs are more suitable for the cases where 
there are some typical geometrical features (such as edge, texture, line, curve and so on). 

Besides, the time it costs to recover aberration coefficients is very short using deep LSTM 
network. Specifically, recovering 10000 sets of aberration coefficients only costs 3.5 seconds. 
In other words, recovering one sets of aberration coefficients only costs 0.35 milliseconds. On 
the other hand, as presented in [12], this value is 9.2 milliseconds for CNNs (in our 
simulation, this value is tens of milliseconds due to the lower configuration of our computer). 
The underlying reason is that the convolution process is very time-consuming, especially 
there are usually hundreds of convolutional layers in those deep CNNs. While it seems that 
the feature image should be decomposed into a sequence and the elements in this sequence 
need to be put into the computer one after the other which will cost some time. However, this 
time is far less than the time it costs for large amount of convolution computation. We also 
find that when increasing the number of aberration coefficients to be recovered the training 
time for deep LSTM is nearly unaffected (in the training process, we set the training iterations 
are same for different number of aberration coefficients). Therefore, deep LSTMs not only 
have a higher accuracy, but also have a higher efficiency than the CNNs for the problem 
encountered in this paper. This fact indicates that the proposed deep learning approach is 
more suitable for wavefront sensing of dynamic phase screens which changes very quickly. 
Note that in this case a beam splitter is usually needed to obtain a pair of images with a 
defocus diversity simultaneously. 

Therefore, while CNNs have achieved great successes in large-scale image recognition 
and classification, they are not always the best choices. We should select suitable deep 
learning tool according to the specific situations and specific issues. 

5.2. Influence of the incoherency of incident light on wavefront sensing accuracy 

In the sections presented above, we only consider the case of coherent light, i.e., we suppose 
the spectrum bandwidth of the incident light is infinitely small. However, in practice, the 
incident light is usually incoherent, even we use optical filter to restrict the bandwidth. In this 
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case, if we still use the deep LSTM network which is trained with the coherent model to 
recover the wavefront phase, some error will be introduced to the results. 

In this subsection, we will quantitatively discuss the incoherency of the incident light on 
the accuracy of the recovered aberration coefficients under the condition that the deep LSTM 
network is trained with coherent model. Specifically, we consider 4 cases, as shown in Table 
3, which includes two different numbers of aberration coefficients and two different ranges of 
aberration coefficients. For each case, we first train a deep LSTM network based on the 
coherent model presented above. Then, for each case, we generate a series of extended scenes 
with different spectrum bandwidths. Here the bandwidth changes from 5nm to 600nm and the 
step size is 5nm. For each bandwidth we generate 100 extended scenes to simulate the true 
incoherent scenes. Meanwhile, for simplicity we suppose that the intensity of light spectrum 
is uniformly distributed within the bandwidth. The deep LSTM network which is trained with 
the coherent model is then applied to these extended scenes. Certain image noise and the error 
in the defocus distance are also considered in this process. The mean absolute error between 
the aberration coefficients recovered from these 100 extended scenes and those true values is 
used to evaluate the wavefront sensing error for each bandwidth. These errors for different 
cases are shown in Fig. 14. 

Table 3. Four cases considered in the simulations for demonstrating the influence of the 
incoherency of incident light when deep LSTM network is trained based on the coherent 

model 
 Number of aberration coefficients Range of each aberration coefficient 

Case 1 2nd ~9th [-0.5λ, 0.5λ] 
Case 2 2nd~9th [-1λ, 1λ] 
Case 3 2nd~21th [-0.5λ, 0.5λ] 
Case 4 2nd~21th [-1λ, 1λ] 

The aberration coefficients are measured in λ (λ = 632.8nm) 

The following conclusions can be drawn from Fig. 14: 

(1) On one hand, we can easily see that the accuracy of the recovered aberration 
coefficients decreases as the spectrum bandwidth increases. As the bandwidth 
increases, the difference between the actual imaging model and the coherent model 
used to train the network increases, which will lead to decreases in wavefront 
sensing accuracy. 

(2) On the other hand, we can still recognize that the accuracy is nearly unaffected when 
the spectrum bandwidth is comparatively small (<150nm). In practice, we can put an 
optical filter before the detector to restrict the bandwidth to guarantee the wavefront 
sensing accuracy. 

(3) Besides, we can also recognize the influence of the incoherency of light on wavefront 
sensing accuracy is nearly unaffected by the number of aberration coefficients to be 
recovered. However, it seems that this influence is larger for a larger range of 
aberration coefficients. 
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Fig. 14. Influence of the incoherency of light on the accuracy of the deep LSTM network 
which is trained with the coherent model for 4 cases with different numbers and different 
ranges of aberration coefficients. (a), (b), (c) and (d) show the mean absolute error of the 
recovered aberration coefficients which corresponds to Case 1, Case 2, Case 3 and Case 4, 
respectively. On one hand, we can easily see that the accuracy decreases as the spectrum 
bandwidth increases. On the other hand, we can still recognize that the accuracy is nearly 
unaffected when the spectrum bandwidth is comparatively small (<150nm). 

6. Conclusion 

This paper proposes an image-based wavefront sensing approach using deep learning, where 
both of the training and application of the neural network are independent of the object. 
compared to the traditional phase retrieval algorithms, this approach is more robust (free from 
stagnation problem) and has a far higher efficiency. This work contributes to the wide 
application of deep learning to image-based wavefront sensing and high-resolution image 
reconstruction. 

One of the core innovations of this paper lies in that we first extract a feature image in the 
frequency domain which is related to phase aberrations but independent of the original 
extended objects. Due to this operation, we can train a deep neural network without using any 
simulated or real extended scenes while this network can be used to recover the aberration 
coefficients from any extended scenes. In other words, this image-based wavefront sensing 
approach is totally object-independent. Another key point is that we demonstrate deep LSTM 
networks can serve as a powerful deep learning tool for image-based wavefront sensing. We 
also compare the performance of deep LSTM with Resnet 18 for the fitting problem 
encountered in this paper under the same conditions, and we find that the former has a higher 
fitting accuracy and a higher computation efficiency. This conclusion indicates that CNNs are 
not always the best choices for deep learning and we should select suitable deep learning tool 
according to the specific situations and specific issues. 

Since the training process is performed without any simulated or real extended scenes, our 
approach is much easier to implement and has a far lower requirement on computational 
performance of the computer. The underlying reason is that the extraction of the object-
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independent feature image eliminates the interfere of the unknown object on image-based 
wavefront sensing. On the contrary, the current deep learning methods usually directly 
recover wavefront phases from the intensities of unknown extended images in the space 
domain. The training process in these methods usually needs an extremely large number of 
the extended scenes, a high performance computer (in general expensive GPU is also needed) 
as well as a very long time for training. Therefore, the deep learning approach proposed in 
this paper is more convenient for application and generalization. 

Note that the proposed approach needs a pair of images with a roughly known phase 
diversity between them, while it seems that some other existing deep learning methods only 
need one image [11,12]. However, we should point out that the mathematical mapping from 
the set of all possible pupil phase screens to the set of all possible intensity distributions is a 
many-to-one mapping. Therefore, to invert this mapping and guarantee the uniqueness of the 
solution for wavefront phase, simultaneous collection of multiple intensity images with 
certain phase diversities are usually needed [24,25]. This is the underlying reason for why we 
need two images with a phase diversity between them. 
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