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A B S T R A C T

In this paper, we provide a fairly standard derivation of the power spectrum of photocurrent and limited
displacement resolution of laser heterodyne detection system. And the phase noise with different oscillation
lineshapes of the heterodyne detection system is discussed. Based on the one-dimensional probability distribution
model of phase noise, the minimum resolvable displacement and noise-equivalent mean square displacement
are established, which represent the minimum detectable amplitude and noise limited resolution respectively.
According to the numerical results, we obtain the variation of displacement resolution against the key parameters
including the laser wavelength, the detection distance, the laser linewidth and the signal power. It reveals that the
phase fluctuation has a significant effect on the power spectrum of photocurrent. Besides, both the probability
density distribution of phase noise and displacement resolution have heavy dependence on laser oscillation
lineshapes. And the noise-equivalent mean square displacement is inversely proportional to the root-mean-
square of a measurable light power. The noise-equivalent mean square displacement can reach 3.5×10−15m∕

√

Hz
under the given parameters. Our findings provide a quantitative reference for the displacement resolution and
engineering application of the heterodyne detection.

1. Introduction

The heterodyne detection is a widely used technique in the mi-
crowave region developed by researchers for many years, which has ad-
vantages in high-precision, non-contact and anti-interference vibration
measurements with nanometric scale. The heterodyne detection tech-
nique has good prospects of applications in micro-vibration and velocity
measurement, rotation target spectrum identification and laser ultra-
sonic propagation imager. Several excellent reviews [1–3] in the 1960s
describing the detection of micro-vibration with homodyne techniques
were limited to small-amplitude vibrations (<25 nm) or could only be
able to detect a standard sinusoidal vibration. Then the measurement
of vibrating surfaces by laser Doppler technique proved to be available
with crucial developments of heterodyne techniques [4,5] during the
1980s. Typical systems of the heterodyne detection technique include
Firepond radar [6] and HI-CLASS system [7] researched by MIT Lincoln
lab and Air Force Research Laboratory, respectively.

As optical frequencies in the range of 1015 Hz cannot be detected
directly by a photodetector, the frequency 𝜔1 of a measurement beam
has to be mixed down by a reference beam obtained from a coherent
light source with the frequency 𝜔2. Usually, the reference beam is shifted
in the frequency domain through an acousto-optic modulator whose
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drive signal is offered by a signal generator [8,9]. The output current of
the detector contains a component which corresponds to the heterodyne
intermediate frequency. It is evident to demodulate the phase of het-
erodyne intermediate frequency to acquire the instantaneous vibration
information.

The displacement resolution of laser heterodyne detection system
not only depends on the performance of photodetector and laser source
but also the rest of the system, such as the acousto-optic modulator,
the fiber circulator, the target surface roughness and the matching
progress of signal light and local oscillator light. However, the former
are dominant and the latter can be converted into the signal–noise ratio.
Consequently, taking the formers into account is enough to illustrate
the issue of the displacement resolution of heterodyne detection system.
For a long-range heterodyne detection over several hundred meters or
more, additional considerations including the influence of atmospheric
turbulence should be given [10–12]. Although the optical heterodyne
detection has been pursued for many years, there is no report of the
limited displacement resolution of the heterodyne detection system.

In Section 2.1, we will derive the power spectral density by introduc-
ing the phase noise for a general heterodyne system. Since the amplitude
noise of heterodyne detection is usually negligible, laser linewidths are
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due to the phase noise of photocurrent. It means that we can directly
associate the coherent time with the laser linewidth. Subsequently we
will discuss the power spectrum of phase noise.

Furthermore, we will derive the minimum resolvable displacement
and noise-equivalent mean square displacement in Section 2.2.The one-
dimensional probability distribution model of phase noise of hetero-
dyne detection system is proposed. And we built up the quantitative
mathematical formulas of both the minimum resolvable displacement
and noise-equivalent mean square displacement for different oscillation
lineshapes [13,14]. Some numerical results are presented to show the
displacement resolution of heterodyne system with the key parameters
including the laser wavelength 𝜆, the laser linewidth Δ𝜔 (FWHM, full
width at half maximum), the propagation delay time 𝜏𝑑 and the signal
power. Finally we briefly discuss the implications of our work for the
displacement resolution and engineering application of the heterodyne
detection, which is the motivation of our works.

2. Theory

2.1. The power spectral density

Consider a general equation for a heterodyne detection system [15,
16]

𝐴𝑜𝑢𝑡 = 𝐴1𝑒
𝑖𝜔0(𝑡−𝜏𝑑 )+𝑖𝜙(𝑡−𝜏𝑑 ) + 𝐴2𝑒

𝑖(𝜔0+𝜔𝑠)𝑡+𝑖𝜙(𝑡)+𝑖𝜙′(𝑡) (1)

𝐴1 and 𝐴2 are the amplitude of the heterodyne detection signal,
𝜔0 is the average optical frequency and 𝜙 (𝑡) is a stochastic process
symbolizing the phase fluctuations. 𝜏𝑑 is the propagation delay time
between the signal light and local oscillator light. 𝜔𝑠 is the frequency
difference of the reference and measurement beams – that is the
intermediate frequency signal of the heterodyne detection. 𝜔𝑠 is less
than the cut-off response frequency 𝑓𝑠 of photodetector, which leads
to an output current from the photodetector. This equation has also
included the possibility that one path could introduce its phase noise
𝜙′ (𝑡).

The light intensity of a heterodyne detection signal will be
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]

(2)

The photocurrent (in the complex notation) of the heterodyne
detection system is written as

𝑖 (𝑡) = 𝑖1 + 𝑖2 + 2
√

𝑖1𝑖2𝑒
𝑖[𝜔𝑠𝑡+𝜙(𝑡)−𝜙(𝑡−𝜏𝑑 )+𝜙′(𝑡)+𝜔0𝜏𝑑 ] (3)

𝑖1 and 𝑖2 are current components of reference beams and measure-
ment beams respectively. In the laser heterodyne detection system over
tens meters, ignoring the influence of atmospheric turbulence and target
modulation, the beam from the laser is divided into reference and
measurement beams with a beam splitter.

We will use the Wiener–Khinchin theorem to calculate the power
spectral density of photocurrent with the phase noise. The Wiener–
Khinchin theorem indicates that the power spectral density of photocur-
rent is the Fourier transform of its autocorrelation function. This can be
summarized as

𝑃 (𝜔) = 𝐹 [𝑅 (𝜏)] (4)

𝑅 (𝜏) is the autocorrelation function of photocurrent.
To work out the spectrum of this photocurrent, we calculate the

autocorrelation firstly

𝑅 (𝜏) = 𝐸
[

𝑖 (𝑡 + 𝜏) 𝑖 (𝑡)∗
]

(5)

Fig. 1. Representation of the possible statistically independent (non-overlapping) inter-
vals in the stochastic phase noise time line. Only positive values of 𝜏 are considered here
but negative values should be considered also.

Continuing the calculation we get

𝑅 (𝜏) =
(

𝑖1 + 𝑖2
)2

+𝐸
{

2
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)√
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[
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+ 𝑒−𝑖(𝜔𝑠𝑡+𝜙(𝑡)−𝜙(𝑡−𝜏𝑑 )+𝜙′(𝑡)+𝜔0𝜏𝑑 )
]

+ 4𝑖1𝑖2𝑒𝑖(𝜔𝑠𝜏+𝜙(𝑡+𝜏)−𝜙(𝑡+𝜏−𝜏𝑑 )−𝜙(𝑡)+𝜙(𝑡−𝜏𝑑 )+𝜙′(𝑡+𝜏)−𝜙′(𝑡))
}

(6)

When working with expectations, we can use

𝐸 [𝑋 + 𝑌 ] = 𝐸 [𝑋] + 𝐸 [𝑌 ] (7)

Even if X and Y are not statistically independent, we should consider
each term separately. The second and third terms look like that they will
average to zero due to the term 𝑒𝑖𝜔𝑠𝑡. The terms will be independent of
𝜏 and so can only contribute to the DC term of the spectral density (in
the second term a substitution of 𝜑 = 𝑡+ 𝜏 shows its independence from
t). So, we will consider the fourth term and the phase error terms in its
exponent

𝜙 (𝑡 + 𝜏) − 𝜙
(

𝑡 + 𝜏 − 𝜏𝑑
)

− 𝜙 (𝑡) + 𝜙
(
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)

(8)

We know that the phase noise is a Wiener process and so we assume
that

𝜙 (𝑡 + 𝜏) − 𝜙 (𝑡) = Δ𝜙 (𝑡, 𝜏) (9)

This is a random variable in the form of Gaussian white noise. The
one-dimensional probability density function of phase noise Δ𝜙 (𝑡, 𝜏)
obeys a Gaussian distribution with 𝜇 = 0. The variance 𝜎2 is proportional
to |𝜏| and we will define 𝜎2 = 𝑏 |𝜏|.

It can be simplified to two Gaussian white noise variables and there
are two ways of doing this. Either

Δ𝜑
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)
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|

𝑡=𝑡−𝜏𝑑 (11)

The absolute time of the variables is shown explicitly in order
to distinguish two random variables. If we want to further combine
them, we need to know whether they are correlated or statistically
independent. From the properties of Wiener processes, we know that the
intervals will be independent as long as they do not overlap. In Fig. 1
we see that if 𝜏 ≥ 𝜏𝑑 the first expression ensures that the two terms are
statistically independent but if 𝜏 ≤ 𝜏𝑑 the second expression should be
used to get independent statistics. Subsequently we can get
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2Δ𝜙 (𝑡, 𝜏) = 𝑁 (0, 2𝑏 |𝜏|) |𝜏| ≤ 𝜏𝑑 (13)
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We see that combining noisy variables use a different kind of
mathematical rules (see Appendix A). It is not completely clear here
but the same final results are found when 𝜏 is negative, hence we have
included modulus signs around 𝜏 in the above expressions.

Now we note that X and Y are statistically independent

𝐸 [𝑋𝑌 ] = 𝐸 [𝑋]𝐸 [𝑌 ] (14)

This means that the fourth term in Eq. (6) can become

4𝑖1𝑖2𝑒𝑖𝜔𝑠𝜏𝐸
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)
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(15)

Δ𝜙 (𝑡, 𝜏)′ = 𝜙′ (𝑡 + 𝜏) − 𝜙′ (𝑡) is the contribution of the extra phase
noise and there is a 𝑏′ accordingly which is also the Brown noise.

We have worked out these expectations and we can get directly

𝑅 (𝜏) = 𝑅0 + 4𝑖1𝑖2𝑒𝑖𝜔𝑠𝜏𝑒−𝑏
′
|𝜏|∕2

{
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(16)

𝑅0 is equal to
(

𝑖1 + 𝑖2
)2or something else for dc due to the neglected

second and third terms. This can be written as

𝑅 (𝜏) = 𝑅0 + 4𝑖1𝑖2𝑒𝑖𝜔𝑠𝜏𝑒−𝑏
′
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𝑟𝑒𝑐𝑡 (𝑥) is the rectangular function which is equal to 1 for −0.5 < x <
0.5 and zero elsewhere. We now get the power spectral density by the
Fourier transform of its autocorrelation function.

𝐹 [𝑅 (𝜏)] = 𝑅02𝜋𝛿 (𝜔) + 4𝑖1𝑖22𝜋𝐿
(
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)
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(
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} (18)

𝐿 (𝜔,Δ𝜔) is a Lorentzian function centered at 0 and with a linewidth
(FWHM) of Δ𝜔.

𝐿 (𝜔,Δ𝜔) = 1
𝜋

Δ𝜔∕2
(Δ𝜔)2 ∕4 + 𝜔2

(19)

Now consider this notation
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To simplify it we treat 𝜏𝑑 as positive
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This Eq. (21) according to Eq. (19) can be simplified to
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Therefore, the power spectral density is

𝑃 (𝜔) ∝ 𝑅02𝜋𝛿 (𝜔) + 4𝑖1𝑖22𝜋𝐿
(

𝜔 − 𝜔𝑠, 𝑏
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Note also that if 𝑏 → 0 then 𝐿
(

𝜔 − Δ𝜔, 𝑏′
)

→ 𝛿 (𝜔 − Δ𝜔)

2.2. The displacement resolution

From Section 2.1 there are three components included in the light
intensity of a heterodyne detection signal and so each photocurrent
comprises three components. First two terms are proportional to the

Fig. 2. Basic configuration for balanced detection.

individual power of each interference field, while the third one is
proportional to a coherent term that depends on the phase of the
photocurrent. The balanced detection is an effective suppression of the
local oscillator intensity noise in the heterodyne detection. However,
dominant noise sources are not eliminated by means of the balanced
detection and a careful matching of the carrier frequencies is necessary
to avoid a severe system impairment. The photodiodes are connected
together to provide the differential current [17], (See Fig. 2.)

𝐼1 (𝑡) = 𝐾
{

𝐸2
𝑟
2 + 𝐸2

𝑚
2 + 𝐸𝑟𝐸𝑚 cos

[

𝜔𝑠𝑡 + 𝜑
(

𝑡 + 𝜏𝑑
)

− 𝜑 (𝑡)
]

}

𝐼2 (𝑡) = 𝐾
{

𝐸2
𝑟
2 + 𝐸2

𝑚
2 − 𝐸𝑟𝐸𝑚 cos

[

𝜔𝑠𝑡 + 𝜑
(

𝑡 + 𝜏𝑑
)

− 𝜑 (𝑡)
]

}

Δ𝐼 (𝑡) = 𝐼1 (𝑡) − 𝐼2 (𝑡) = 2𝐾
√

𝑃r (𝑡)𝑃𝑚 (𝑡) ⋅ cos
[

𝜔𝑠𝑡 + 𝜑
(

𝑡 + 𝜏𝑑
)

− 𝜑 (𝑡)
]

(24)

K is the conversion parameter 𝐾 = 𝜂𝑞∕ℎ𝜐, h is the Planck constant, 𝜈
is the optical frequency, 𝜂 is the quantum efficiency and q is the charge of
an electron. 𝐸𝑟 and 𝐸𝑚 are amplitudes of the reference and measurement
beams respectively. 𝐼1(t) and 𝐼2(t) are output differential currents of
the balanced detector. 𝑃𝑟 and 𝑃𝑚 are the optical powers of the reference
and measurement beams respectively, 𝜔𝑠 is the angular frequency of
intermediate frequency signal and 𝜙 (𝑡) is phase fluctuations caused by
the laser linewidth. And

𝜔𝑠𝑡 =
4𝜋𝑠 (𝑡)

𝜆
+ 2𝜋𝑓𝐴𝑂𝑀 𝑡 (25)

s(t) is the target vibration signal that we try to acquire. And
frequency fluctuations of the laser can convert into the phase noise
according to the signal and noise theory mentioned above. After the
quadrature demodulation algorithm we can obtain two quadrature I&Q
signals.

𝐼 (𝑡) =
[

Δ𝐼 (𝑡) × sin
(

2𝜋𝑓𝐴𝑂𝑀 𝑡
)]

∗ ℎ𝐿𝑃𝐹

= 𝐾
√

𝑃r (𝑡)𝑃𝑚 (𝑡) cos
(

4𝜋𝑠 (𝑡)
𝜆

+ 𝜙
(

𝑡 + 𝜏𝑑
)

− 𝜙 (𝑡)
)

𝑄 (𝑡) =
[

Δ𝐼 (𝑡) × cos
(

2𝜋𝑓𝐴𝑂𝑀 𝑡
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+ 𝜙
(
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)

− 𝜙 (𝑡)
)

(26)

𝑓𝐴𝑂𝑀 is the frequency of AOM and ℎ𝐿𝑃𝐹 denotes the function of
low-pass filter. Through an arctangent approach and removing the
coefficient we can get the phase caused by the target vibration

𝜙 =
4𝜋𝑠 (𝑡)

𝜆
+ 𝜙

(

𝑡 + 𝜏𝑑
)

− 𝜙 (𝑡) (27)

We consider the phase noise as a Wiener process, which obeys a
Gaussian distribution with zero-mean-value

𝑓 [Δ𝜙 (𝑡, 𝜏)] = 1
√

2𝜋𝜎2
𝑒−[Δ𝜙(𝑡,𝜏)]

2∕2𝜎2 (28)

The variance of phase noise is different in the Gauss spectrum and
Lorentz spectrum due to laser oscillation lineshapes [13]

𝜎Gauss
2 =

⟨

(

𝜙
(

t + 𝜏𝑑
)

− 𝜙 (𝑡)
)2
⟩

=
(

2𝜋Δ𝜔Gauss
)2 𝜏2𝑑

𝜎Lorentz
2 =

⟨

(

𝜙
(

t + 𝜏𝑑
)

− 𝜙 (𝑡)
)2
⟩

= 2𝜋Δ𝜔Lorentz𝜏𝑑
(29)

The delay time 𝜏𝑑 = 2𝑑∕𝑐, d is the detection distance, c is the velocity
of light, Δ𝜔Gauss is the lineshape of the Gauss spectrum and Δ𝜔Lorentz is
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the lineshape of the Lorentz spectrum. Then we can get the probability
distribution model of phase noise expressed by

𝑓𝐺auss [Δ𝜙 (𝑡, 𝜏)] = 1

𝜎Gauss
√

2𝜋
𝑒

(

− (Δ𝜙(𝑡,𝜏)−𝜇)2

2𝜎Gauss2

)

= 1

2𝜋𝜏𝑑Δ𝜔Gauss
√

2𝜋
𝑒

(

− [Δ𝜙(𝑡,𝜏)]2

2×(2𝜋𝜏𝑑Δ𝜔Gauss)2
)

𝑓Lorentz [Δ𝜙 (𝑡, 𝜏)] = 1
√

2𝜋𝜎Lorentz
𝑒

(

− (Δ𝜙(𝑡,𝜏)−𝜇)2

2𝜎Gauss2

)

= 1
2𝜋 ⋅

√

𝜏𝑑Δ𝜔Lorentz
𝑒

(

− [Δ𝜙(𝑡,𝜏)]2
2×2𝜋𝜏𝑑Δ𝜔Lorentz

)

(30)

The Gaussian distribution obeys ‘3𝜎 standards’ which is that the
probability in the range (𝜇 − 𝜎, 𝜇 + 𝜎) is 68.27%, the probability in
the range (𝜇 − 2𝜎, 𝜇 + 2𝜎) is 95.45% and the probability in the range
(𝜇 − 3𝜎, 𝜇 + 3𝜎) is 99.74%. We can believe that the value of Δ𝜙 is almost
concentrated in the range of (𝜇 − 3𝜎, 𝜇 + 3𝜎). The probability beyond
this range does not exceed 0.3%. We can get the worst demodulation
result.

𝜙Gauss = 𝜙𝑠 ± 3𝜎Gauss =
4𝜋𝑠(𝑡)
𝜆 ± 12𝜋𝑑

𝑐 Δ𝜔Gauss

𝜙Lorentz = 𝜙𝑠 ± 3𝜎Lorentz = 4𝜋𝑠(𝑡)
𝜆 ± 3 ⋅

√

4𝜋𝑑
𝑐 Δ𝜔Lorentz

(31)

We establish linkages between the vibrations of target and the phase
noise of photocurrent. Basically, there are three ultimate sources of
noise in the signal process of a laser heterodyne detection system: shot
noise, thermal noise of the detector or preamplifier combination and
quantization noise. Here taking the above observations into account,
physical limits are set here by the quantum nature of light generating
shot noise which is usually the dominant noise source.

The photocurrent consists of a direct-current component propor-
tional to the total optical power 𝑃𝑟 + 𝑃𝑚 and an alternating current
component with a mean square value representing the power of the
heterodyne carrier signal. The total power 𝑃𝑟 + 𝑃𝑚 not only generates a
DC component but also produces the shot noise described by the mean
square noise current

𝑖𝑠ℎ
2
= 2𝐾 ⋅ 𝑞 ⋅ 𝐵

(

𝑃r + 𝑃𝑚
)

(32)

B is the detector bandwidth. Another noise source is the thermal
noise of the detector or preamplifier combination and the mean square
noise current here is

𝑖𝑡ℎ
2
= 4𝑘 ⋅ 𝑇 ⋅ 𝐵

𝑅
(33)

k is the Boltzmann constant, T is the absolute temperature and R
is the load resistance of photodetector. The shot noise power signifi-
cantly exceeds thermal noise power under given conditions where the
reference power is usually higher. Hence this system is called shot noise
limited and produces the best available signal-to-noise ratio. To simplify
the model and neglect the thermal noise and quantization noise, the
signal-to-noise power ratio can be consequently given by [18,19]

𝑆𝑁𝑅 =
𝑃𝑠
𝑃𝑛

=
𝑖𝑠
2

𝑖𝑠ℎ
2
=

2𝐾2𝜀2𝑃𝑟𝑃𝑚

2𝐾 ⋅ 𝑞 ⋅ 𝐵
(

𝑃𝑟 + 𝑃𝑚
) =

𝜂𝜀2𝑃𝑟𝑃𝑚

ℎ ⋅ 𝜈 ⋅ 𝐵
(

𝑃𝑟 + 𝑃𝑚
) (34)

K, 𝜂, h, 𝜈, B are already-introduced parameters, 𝜀 is the efficiency
factor. The reference power is usually higher (𝑃𝑟 >> 𝑃𝑚), this Eq. (34)
simplifies to

𝑆𝑁𝑅 =
𝜂𝜀2𝑃𝑚
ℎ ⋅ 𝜈 ⋅ 𝐵

(

𝑃𝑟 ≫ 𝑃𝑚
)

(35)

A factor of
√

2 is particularly attractive as an alternative due to its
contribution to noise modulation below and above the carrier frequency.
Consequently, a carrier signal with power 𝑃𝑐 ≫ 𝑃𝑛 brings a peak phase

deviation caused by the spectral noise power density 𝑃 ′
𝑛 = 𝑃𝑛∕𝐵 in 1 Hz

bandwidth according to

Δ𝜙′ ≈

√

2𝑃 ′
𝑛

𝑃𝑐
=
√

2
𝐶𝑁𝑅′ (36)

𝐶𝑁𝑅′ is the carrier–noise ratio of the photocurrent calculated for
B=1 Hz.

The definition of CNR is the ratio of the alternating current compo-
nent of the detector’s output signal to shot noise

𝐶𝑁𝑅 =
𝑃𝐴𝐶

𝑖𝑠ℎ
2
=

4𝐾2𝑃s𝑃𝐿𝑂

2𝐾𝑞𝐵
(

𝑃𝑠 + 𝑃𝐿𝑂
) =

2𝜂𝑃𝑠
ℎ𝜈𝐵

(37)

Then we get the linkage between the SNR and CNR which is 𝐶𝑁𝑅 =
2𝑆𝑁𝑅∕𝜀2. A phase deviation caused by the spectral noise power density
in 1 Hz bandwidth is given by Δ𝜙′

𝑛 = 𝜀∕
√

𝑆𝑁𝑅′, accordingly 𝑆𝑁𝑅′

is calculated for B=1 Hz. A phase deviation of the Doppler signal is
calculated for the desired calibration points according to

Δ𝜙 = 4𝜋
𝜆
Δ𝑠 (38)

The micro-vibration amplitude of the target which is equal to the
amplitude of noise in the spectral distribution is considered as the
minimum resolvable displacement. Then we can get

𝑠Gauss =
𝜀𝜆Δ𝜙𝑛
4𝜋 = 𝑁𝜀𝜆𝜎Gauss

4𝜋

𝑠Lorentz = 𝜀𝜆Δ𝜙𝑛
4𝜋 = 𝑁𝜀𝜆𝜎Lorentz

4𝜋

(39)

If the value of N is equal to 3, the probability of accurate detection
of target vibration is 99.74%.

𝑠Gauss =
3𝜀𝜆𝜎Gauss

4𝜋 = 3𝜀𝜆𝑑
𝑐 Δ𝜔𝐺𝑎𝑢𝑠𝑠

𝑠Lorentz = 3𝜀𝜆𝜎Lorentz
4𝜋 = 3𝜀𝜆

2

√

𝑑Δ𝜔Lorentz
𝜋𝑐

(40)

Subsequently we can obtain the noise-equivalent mean square dis-
placement

𝑠′𝑛 =
1
√

2
⋅
𝜆
4𝜋

Δ𝜙′
𝑛 =

1
√

2
⋅

𝜆𝜀

4𝜋
√

𝑆𝑁𝑅′
(41)

It is clear that we have obtained the displacement resolution of
different laser oscillation lineshapes for a general heterodyne detection
system. It can be concluded that the minimum resolvable displacement
is affected by the wavelength of light source, the detection distance
and linewidth. However the noise-equivalent mean square displacement
is affected by the wavelength of light source and measurement beam
power. This can provide a theoretical support for the displacement
resolution and engineering application of the heterodyne detection. (See
Table 1.)

3. Numerical results

The probability density distribution of phase noise, the power spec-
trum of photocurrent and the displacement resolution are studied by
numerical simulations. The simulation parameters include the wave-
length 𝜆 of light source, laser linewidth, detection distance and mea-
surement beam power, which are used to obtain the numerical results
illustrating our analyses above. According to Eqs. (40) and (41), the
displacement resolution is determined by the quantum efficiency 𝜂,
the efficiency factor 𝜀, the laser wavelength 𝜆, the detection distance
and laser linewidth. Firstly, we set some global parameters: 𝑃𝑟 ≫
𝑃𝑚, the quantum efficiency 𝜂 = 0.8, the efficiency factor 𝜀 = 0.5,
the intermediate frequency 𝜔𝑠 = 20 MHz and the laser wavelength
𝜆=1550 nm. Fig. 3(a–b) shows the power spectrum of photocurrent in
the detection distance of 100m. Fig. 4(a–d) illustrates the probability
density distribution of phase noise under the different laser lineshapes.
Fig. 5(a–d) demonstrates that the minimum resolvable displacement
varies with the laser linewidth under different detection distances. And
Fig. 6 suggests that the noise-equivalent mean square displacement for
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Table 1
Minimum resolvable displacement for different oscillation lineshape.

Oscillation lineshape Variance of phase noise Minimum resolvable displacement

1 Lorentz 𝜎2
Lorentz = 2𝜋𝛥𝜔Lorentz𝜏𝑑 𝑠Lorentz = 3𝜀𝜆

2

√

𝑑𝛥𝜔Lorentz
𝜋𝑐

2 Gauss 𝜎2
Gauss =

(

2𝜋𝛥𝜔Gauss
)2 𝜏2𝑑 𝑠Gauss =

3𝜀𝜆𝑑
𝑐

𝛥𝜔Gauss

Fig. 3. The power spectral distribution for a photocurrent varies with laser linewidth (a) or linewidth fluctuations (b)

Fig. 4. The probability density distribution of phase noise in the detection distance of 100 m.

B=1 Hz varies with the measurement beam power according to the
spectral signal-to-noise power ratio Eq. (35).

Fig. 3 illustrates the power spectral distribution of photocurrent for a
linewidth of 1 kHz and a detection distance of 100 m. The relative ratio
of power in Fig. 3(a) has variations (in comparison with the maximum
power) with frequency fluctuations. The linewidth fluctuation 𝑏′ is
smaller, the spectral lineshape is closer to the Lorentz lineshape. And the
linewidth fluctuation has no effects on the spectral peak value. For that,
in Fig. 3(b) we get simulation results of the power spectral variations

with laser linewidth. We found that when the laser linewidth 𝑏 ≪ 1MHz,
its impact on the power spectrum is very slight. But if 𝑏 approaches or
exceeds MHz, it has a significant impact on the power spectrum. Besides,
the value of 𝑏 do not change the lineshape of the power spectrum. The
two terms lead to quite different power spectrums from the Eq. (23).

Fig. 4 shows that the probability distribution model of phase noise
obeys a Gaussian distribution. The linewidths of Gauss lineshape and
Lorentz lineshape in Fig. 4(a–c) keep consistent, which are 1 kHz, 10 kHz
and 100 kHz respectively. In Fig. 4(d) the linewidth of Gauss lineshape

72



Y. Chun-Hui, W. Ting-Feng, L. Yuan-Yang et al. Optics Communications 435 (2019) 68–74

Fig. 5. Minimum resolvable displacement varies with the laser linewidth under the different detection distance. Detection distance of (a–d) is 20 m, 50 m, 100 m, 200 m, respectively.

is 218 kHz and the linewidth of Lorentz lineshape is 100 kHz. Obviously,
there is a certain linewidth value making two different lineshapes
coincided and then two laser sources bring the same phase noise—
this means that laser source has same impacts on the displacement
resolution. Besides, for the linewidth of 1 kHz, 5 kHz, 80 kHz and 1
MHz of Lorentz lineshape, the ratio of Δ𝜔Gauss∕Δ𝜔Lorentz making two
lineshapes coincided are about 21.8, 9.78, 2.44, and 0.69, respectively.
Generally speaking, there are significant differences among laser sources
with the same linewidth but different lineshape. We can use numerical
results to select appropriate laser source so as to achieve the higher
displacement resolution.

Fig. 5 demonstrates that the minimum resolvable displacement
increases as the laser linewidth increases. The abscissa of crossing
point decreases as the detection distance increases, which indicates the
laser linewidth with the same minimum resolvable displacement. The
smaller the abscissa of crossing point, the larger the detection distance.
However, if we want to achieve a long-range heterodyne detection
we have to take into account the atmospheric turbulence. Therefore
it is evident that we should select the appropriate laser source overall
considering laser linewidth, detection distance and the wavelength of
light source for different precision requirements.

Fig. 6 suggests that the noise-equivalent mean square displacement
is inversely proportional to the root-mean-square of measurement light
power. When measurement beam power 𝑃𝑚 = 0.1 mW, 0.01 mW, 1μ W,
the noise-equivalent mean square displacement is 3.5 × 10−15 m∕

√

Hz
1.1 × 10−14 m∕

√

Hz, 3.5 × 10−14 m∕
√

Hz, respectively.
Based on above theoretical analyses and numerical results, the

limited displacement resolution of the heterodyne detection is studied
in detail. If we want to achieve the higher displacement resolution, we
have to narrow the linewidth, reduce the detection distance or shorten
the laser wavelength. Besides, the displacement resolution has heavy

Fig. 6. The noise-equivalent mean square displacement varies with measurement beam
power.

dependence on laser oscillation lineshapes. The results of theoretical
analyses and numerical simulations match each other.

It should be noted here that the preceding calculations of noise
limited resolution are estimations of the physical limits. In reality,
there are additional broadband noise and spurious noise components
in the heterodyne detection, which may push the practical limits
of displacement resolution to a lower level. As mentioned, the high
resolution is feasible only under the provision of sufficiently small
resolution bandwidth of the subsequent signal acquisition system or
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using an adequate number of averages. This is usually not a problem
when analyzing stationary vibrations or repetitive dynamic processes.

4. Conclusion

Based on the Wiener–Khinchin theorem, the power spectral density
has been derived to evaluate the performance of the optical heterodyne
detection system. According to the probability distribution of the phase
noise, we build up the physical models of the minimum resolvable
displacement and the noise-equivalent mean square displacement with
the key parameters including the laser wavelength, the detection dis-
tance, the laser linewidth and signal power. We conclude that the noise-
equivalent mean square displacement is inversely proportional to the
root-mean-square of measurement light power. The noise-equivalent
mean square displacement can reach 3.5 × 10−15 m∕

√

Hz under the
given parameters. This can provide a theoretical reference for the
displacement resolution and engineering application for micro-vibration
measurement by the heterodyne detection technique.
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Appendix A. Random variables

If we are dealing with a Gaussian random variable then we must re-
member that the rules of addition and subtraction are different from nor-
mal. Consider a random variable 𝑁𝑋

(

𝜇, 𝜎2
)

where 𝑁𝑋
(

𝜇, 𝜎2
)

indicates
a random variable with a normal distribution with the expected value
𝜇 and the variance𝜎2.

𝑓 (𝑥) = 1
√

2𝜋𝜎2
𝑒−(𝑥−𝜇)

2∕
(

2𝜎2
)

If we transform the variable 𝑋 → 𝑎𝑋 + 𝑐 we can equivalently write
this as 𝑁𝑋

(

𝑎𝜇 + 𝑐, 𝑎2𝜎2
)

. Now consider two statistically independent
variables X and Y

𝑋 ± 𝑌 = 𝑍

≡ 𝑁𝑋
(

𝜇𝑋 , 𝜎𝑋
2) ±𝑁𝑌

(

𝜇𝑌 , 𝜎𝑌
2) = 𝑁𝑍

(

𝜇𝑋 ± 𝜇𝑌 , 𝜎𝑋
2 + 𝜎𝑌

2)

𝑋𝑌 = 𝑍

≡ 𝑁𝑋
(

𝜇𝑋 , 𝜎𝑋
2)𝑁𝑌

(

𝜇𝑌 , 𝜎𝑌
2) = 𝑁𝑍

(

𝜇𝑋𝜇𝑌 , 𝜇
2
𝑋𝜎𝑋

2 + 𝜇2
𝑌 𝜎𝑌

2)

𝑋∕𝑌 = 𝑍

≡ 𝑁𝑋
(

𝜇𝑋 , 𝜎𝑋
2) ∕𝑁𝑌

(

𝜇𝑌 , 𝜎𝑌
2) = 𝑁𝑍

(

𝜇𝑋∕𝜇𝑌 ,
𝜎2𝑋
𝑌 2

+ 𝑋2

𝑌 4
𝜎𝑌

2

)

The last case is not strictly true since a division of two Gaussian
variables leads to a Cauchy distributed random variable. In general for
a function of statistically independent Gaussian white noise variables,
we have

𝑓 (𝑋, 𝑌 ,𝑍)

𝜎2𝑓 ≈
(

𝛿𝑓
𝛿𝑋

)2
𝛿2𝑋 +

(

𝛿𝑓
𝛿𝑌

)2
𝛿2𝑌 +

(

𝛿𝑓
𝛿𝑍

)2
𝛿2𝑍

However, if the variables are correlated, then we should use for
example

𝑎𝑋 ± 𝑏𝑌 = 𝑍
𝜎2𝑍 = 𝑎2𝜎2𝑋 + 𝑏2𝜎𝑌 2 ± 2𝑎𝑏cov𝐴𝐵

cov𝐴𝐵 = 𝐸
[(

𝐴 − 𝐴
)(

𝐵 − 𝐵
)]

. We can now consider the case

𝑋 +𝑋 = 𝑍

and find that

𝜎2𝑍 = 𝜎2𝑋 + 𝜎2𝑋 + 2𝜎2𝑋 = 4𝜎2𝑋 ,

which is what we would expect for

2𝑋 = 𝑍

In the derivations of this note, we most often add or subtract two
statistically independent variables with means of zero and the same
variance

𝑁𝑋
(

0, 𝜎2𝜏
)

+𝑁𝑌
(

0, 𝜎2𝜏
)

= 𝑁𝑍
(

0, 2𝜎2𝜏
)

,

which leads to the slightly contra-intuitive statement

𝑁𝑋
(

0, 𝜎2𝜏
)

+𝑁𝑌
(

0, 𝜎2𝜏
)

=
√

2𝑁𝑍
(

0, 𝜎2𝜏
)

This topic is known as the ‘propagation of uncertainty’ and can be
found in many books. In the most general case, we would need to
construct a matrix of the correlations between the variables in order
to calculate the error accurately.
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