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The annular subaperture stitching method is an effective method for testing rotationally symmetric aspherical
surfaces. To create a full aperture map of this kind of asphere, we propose an annular subaperture stitching
algorithm. The algorithm is based on triangulation interpolation theory, least-square fitting method, and ray
tracing method. We first show the principle of our stitching algorithm. Then, the performance of the proposed
method is analyzed by simulation testing to evaluate the accuracy of the above algorithm. In the end, the experi-
ment is given to demonstrate the correctness of our method. Both the simulation and experiment results show that
the introduced method is quite effective for the testing of rotationally symmetric aspherical surfaces. © 2019

Optical Society of America

https://doi.org/10.1364/AO.58.007073

1. INTRODUCTION

Aspherical surfaces and free-form surfaces are widely used in
modern optical systems because of their ability to extend the
freedom of optical design, which can simplify optical construc-
tion, reduce the weight of the optical system, and correct
aberrations. However, there have been problems for the manu-
facturing and testing of such complex surfaces, which restrict
their application for long periods of time. Then, a null lens and
computer-generated hologram are developed to overcome the
difficulty of testing aspherical surfaces, thus promoting the
wide application of aspherical surfaces [1–7]. Unfortunately,
to achieve the null testing of aspherical surfaces, these kinds
of auxiliary elements must be customized, and their compen-
sating errors are hardly measured independently.

Subaperture stitching is now commonly employed to test
aspherical surfaces, especially surfaces extending the aperture size
limitations and slope sampling limitations of a conventional
interferometer. This kind of testing was first proposed in the
1980s to overcome the limitations [8–12]. According to the sub-
aperture shapes, circular subapertures and annular subapertures
were developed separately. It is a more general method for
circular subaperture testing and can be applied in not only
rotationally symmetric aspherical surfaces but also in off-axis

aspherical surfaces [13–17]. However, when applying the
circular subaperture method to test rotationally symmetric
aspherical surfaces, more subapertures are needed to cover the
full aperture relative to the annular subaperture testing. Hence,
the computational efficiency of a stitching algorithm, the
reconstruction accuracy of the full aperture map, and the de-
mands of a high precision hardware platformwill introduce extra
difficulties. In this case, annular subaperture testing is more
efficient [18–22]. The number of complementary subapertures
is relatively fewer, and stitching efficiency is higher.

In this paper, we focus on the iterative annular subaperture
stitching algorithm and experimental demonstration of the
high accuracy measurement for a rotationally symmetric
aspherical surface. To evaluate the performance of the above
stitching algorithm, it has been applied for the simulation test-
ing and a 250 mm rotationally symmetric aspherical surface
testing experiment. The paper is organized as follows. In
Section 2, the basic theory of an annular subaperture stitching
algorithm is introduced. In Section 3, the effectiveness of our
method is shown by simulation. In Section 4, we demonstrate
the performance of our stitching algorithm by testing a
250 mm rotationally symmetric aspherical surface. Finally,
the conclusion is given in Section 5.
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2. THEORY

A. Non-Null Testing Errors for Annular Subapertures
Consider that annular subaperture testing is efficient in the
measurement for a rotationally symmetric aspherical surface.
The sketch map of the testing setup is shown in Fig. 1.

In the measurement, the aspheric surface is moved gradually
away from the interferometer to make the reference spherical
surface match the corresponding annular subaperture zone.
Thus, in the zone areas, the fringes can be resolved by the
charge-coupled Device (CCD). As in the annular subaperture
testing, a standard spherical surface is treated as the reference
surface to test the annular area of the aspherical surface; further,
the testing rays will follow different paths from the reference
rays, which introduce extra aberrations in the interferogram.
These kinds of non-null testing errors can be calculated with
the ray tracing method; in addition, it should be removed
before stitching, as it’s not a manufactory surface error but
an extra aberration due to the non-null testing.

An interferogram in annular subaperture testing includes
not only the surface error of the testing aspheric surface but
also the non-null testing error, alignment error, and retrace
coordinate error [23]. The relative wavefront obtained can
be expressed as follows:

Winterferometer �Wnon-null ⊕Walignment ⊕Wcoordinate ⊕ Wtest,

(1)

where Winterferometer is the measured wavefront, Wnon-null is the
non-null testing error of the annular subaperture, Walignment is
the alignment error between interferometer and the testing
annular subaperture, Wcoordinate is the non-null testing coordi-
nate error, and Wtest is the surface error of the annular suba-
perture. Note that “⊕ ” in Eq. (1) denotes the variables not
simply added up. Thus, the testing map of interferometer
Winterferometer depends on the non-null testing error, the align-
ment error, the non-null testing, and the surface error of the
annular subaperture.

According to the designed optical testing path, the non-null
testing error can be calculated with the ray tracing method. The
relative wavefront aberration is obtained by tracing rays to the
exit pupil of the interferometer. If the parameters of the internal
optics in the interferometer are known, we can continue to

trace rays to the image plane of the interferometer. For the cen-
tral subaperture, which is a rotational symmetric circular sub-
aperture, the non-null testing error behaves like a combination
of power and spherical aberrations, as shown in Fig. 2. For the
other annular subapertures, the behavior of the non-null testing
errors is shown in Fig. 3.

After acquiring the non-null testing errors, the non-null test-
ing error and the non-null testing coordinate error can be
removed from the subaperture testing map at the same time.
The alignment errors between subapertures can be separated
with the triangulation interpolation stitching algorithm for
the annular subapertures introduced in Section 2.B.

B. Triangulation Interpolation Stitching Algorithm
for Annular Subapertures
The whole aspherical surface map reconstruction process of our
triangulation interpolation stitching algorithm for annular
subapertures is illustrated in Fig. 4.

Before stitching, the non-null testing errors of subapertures
should be removed from annular subaperture maps, and all the
coordinates of each subaperture should be unified in a global
coordinate at this time.

The coordinates’ relationship between adjacent annular sub-
apertures is shown in Fig. 5. There is an overlapping area
between adjacent subapertures, and the relative overlapping
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Fig. 1. Sketch map of testing setup.

Fig. 2. Non-null testing error for central subaperture.

Fig. 3. Non-null error for annular subapertures.

7074 Vol. 58, No. 26 / 10 September 2019 / Applied Optics Research Article



correspondence should be found in advance to calculate the
stitching coefficients of each subaperture. To accomplish this
work, grid points, which represent the same points between
subapertures, should be defined.

A uniform grid is defined on the X -Y plane, as shown in
Fig. 5. For the sake of brevity, only the grid points in the over-
lapping area are displayed in Fig. 5. The coordinates of the grid
points in the z direction can be calculated in their respective
subapertures.

Considering the grid points in the overlapping area, the test-
ing points are displayed as “×”, and the triangle is the Delaunay
triangulation result to the phase data of the ith subaperture, as
shown in Fig. 6.

The plane equation of each triangle can be described by
Eq. (2):  x1 y1 1

x2 y2 1
x3 y3 1

! a
b
d

!
�
 −z1
−z2
−z3

!
, (2)

where �x1, y1, z1�, �x2, y2, z2�, and �x3, y3, z3� are the coordi-
nates of the three points making up the triangle. a, b, and d are
plane coefficients to be solved of the equation

z � −ax − by − d , (3)

which is used to describe the plane equation of the triangle.
As the grid points in the overlapping area will fall into a

triangle obtained with Delaunay triangulation, the coordinates
in the z direction of grid points in each annular subaperture can
be acquired by Eqs. (2) and (3).

After obtaining the coordinates of grid points in the
z direction in each subaperture, stitching coefficients should
be calculated in order to remove the alignment errors between
subapertures, as described in the following.

For convenience, we assume that there are N subapertures,
and the N th subaperture is taken as a standard; then, the phase
map of the ith subaperture can be expressed as

Z 0
i�x, y� � Z i�x, y� �

XL
j�1

aijf j�x, y�, (4)

where Z i�x, y� is the testing map of the ith annular subaper-
ture, and f j�x, y� is the misalignment error functions for an-
nular subaperture, while aij is the relative stitching coefficient
to be fitted.

Applying the least-square method to Eq. (4),

min �
X

i�1…N

Xi∩k
k�1…N

k≠i

"�
Z i�x, y� �

XL
j�1

aijf j�x, y�
!

−

 
Zk�x, y� �

XL
j�1

akjf j�x, y�
!�

2

: (5)

A group of linear equations can be transformed from Eq. (5), as
shown in Eq. (6):

P � Q · R, (6)

where P, Q , and R are defined as follows:

1. P is a vector in length of �N − 1� × L row, and the
element in it can be expressed as

P�M−1�·j �
X
M−1

XN
i�1

i≠�M−1�

f j�x, y��Z �M−1��x, y� − Z i�x, y��ci�M−1�,

(7)

 Two dimens
correlation c

sion Cross-
calculation

N subapertu

Triangulation i

Calculate the stitch

Full m

Calculate the r

Whether the resi
requirem

Non-null testing 
from each su

ure maps

interpolation

hing coefficients 

map

residual map 

idual meet the 
ment?

error removed 
ubaperture

 
Fig. 4. Flow chart of annular subapertures stitching.

Fig. 5. Annular subaperture projection on the X -Y plane.

Fig. 6. Triangulation interpolation for annular subaperture.

Research Article Vol. 58, No. 26 / 10 September 2019 / Applied Optics 7075



where P�M−1�·j is the ��M − 1� · L� j�th row of the vector P
and

cij �
�

1 i ∩ j ≠ Ø
0 i ∩ j � Ø

: (8)

2. Q is a matrix in size of �N − 1� × L, and the element in
it can be expressed as

Q ��M−1�·j���H−1�·k�

�

8>><
>>:

−
P

�M−1�

PN
i�1

i≠�M−1�
f j�x, y� · f k�x, y� · ci�M−1� M � H

P
M−1

P
H−1

f j�x, y� · f k�x, y� · c�M−1��H−1� M ≠ H
,

(9)

where Q ��M−1�·j���H−1�·k� is the element of row
��M − 1� · L� j�, column ��H − 1� · L� k� in the matrix Q .

3. R is a vector n length of �N − 1� × L row, and the
element in it can be expressed as

R�M−1�·j � a�M−1�j, (10)

where R�M−1�·j is the element of the row ��M − 1� · L� j� in
the vector R.

Stitching coefficients can be obtained by Eqs. (6)–(10), and
the alignment errors can be removed from each annular sub-
aperture. After combining subapertures together, the full aper-
ture map is acquired [24].

3. SIMULATION

We carried out a simulation to demonstrate the effectiveness of
our proposed method. For a rotationally symmetric hyperbol-
oid surface whose conic constant k is −1.03, the diameter is
250 mm, and the vertex radius of the convex mirror is about
513.6 mm, the departure between the above aspheric surface
and the best-fit sphere is shown in Fig. 7.

In the simulation, four annular subapertures are tested.
Their positions and departures are shown in Fig. 8.
Overlapping areas exist between every adjacent subaperture.

The original map of the tested surface within the diameter
region of 28 to 80 mm is shown in Fig. 9.

The PV and RMS of the original map in the simulation is
0.1513λ and 0.0193λ, respectively. Four tested subapertures
are cut from Fig. 9, as shown in Fig. 10.

In actual testing, 6-dof of relative adjustment errors between
subapertures will introduce extra aberrations in the testing map.
By adding the alignment errors, including piston/tip/tilt to
each annular subaperture and considering 2 μm alignment
accuracy along the X , Y , and Z directions, respectively, the
full-aperture map stitching map can be achieved with our
proposed stitching algorithm for annular subapertures. The
relative stitching map is shown in Fig. 11.

The PV and RMS of the stitching map is 0.1472λ and
0.0194λ, respectively. Figures 9 and 11 show that the stitching
map is consistent with the original map. To better evaluate the

Fig. 7. Departure between aspheric surface and best-fit sphere.

Fig. 8. Positions and departures of tested subapertures.
(a) Departure of annular subaperture in the position of 28 to
50 mm in the diameter direction. (b) Departure of annular subaper-
ture in the position of 45 to 60 mm in the diameter direction.
(c) Departure of annular subaperture in the position of 55 to
70 mm in the diameter direction. (d) Departure of annular subaper-
ture in the position of 65 to 80 mm in the diameter direction.

Fig. 9. Original map in the simulation.
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performance of our proposed stitching method, the residual
map, which is calculated by subtracting the data between
the original full aperture map and the stitching map point
by point, is analyzed, as shown in Fig. 12.

It can be seen from Fig. 12 that the PV and RMS of the
residual map is 0.0051λ and 0.0011λ (λ � 632.8 nm), respec-
tively. It is obvious that the original full aperture map matches
the stitching map very well, which means the stitching can be

Fig. 10. Tested subapertures: (a) Subaperture 1 (PV 0.138λ, RMS 0.0162); (b) Subaperture 2 (PV 0.143λ, RMS 0.0181); (c) Subaperture 3 (PV
0.113λ, RMS 0.0183); (d) Subaperture 4 (PV 0.146λ, RMS 0.0191λ).

Fig. 11. Stitching map. Fig. 12. Residual map.
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accomplished with our proposed non-null annular subaperture
stitching algorithm with satisfactory accuracy.

4. EXPERIMENT

An experiment is carried out to validate the performance of
our proposed annular stitching algorithm based on current
equipment in the laboratory. In the experiment, a 6-dof plat-
form and a 150 mm interferometer with an F #1.1 standard
transmission sphere are applied for the annular subaperture
testing, as shown in Fig. 13. The 6-dof platform include the
X , Y , Z , A, B, and C axes. The relative relationship between
each axis is shown in Fig. 14. The range of movement and
relative accuracy of each axis can be found in Table 1. For
the rotationally symmetric hyperboloid surface, its internal
diameter is 56 mm, while its external diameter is 250 mm.
The conic constant k is −1.03, and the vertex radius of the con-
vex mirror is about 513.6 mm.

In the testing, four subapertures are tested, as shown in
Fig. 15. For each testing subaperture, the retrace error is in-
cluded in the testing maps. After removing the retrace error
in each subaperture, the full aperture map can be obtained
by stitching with our proposed stitching algorithm. The relative
stitching map is shown in Fig. 16.

It can be seen from Fig. 16 that the PV and RMS of
the stitching map are 2.135λ and 0.291λ (λ � 632.8 nm),
respectively.

To better evaluate the performance of our proposed stitch-
ing algorithm, another subaperture, different from the ones
used for stitching, is chosen for stitching accuracy evaluation,
as shown in Fig. 17. The residual map between the stitching
map and the self-examine subaperture shown in Fig. 17 can be
obtained by subtracting the phase data point to point, as shown
in Fig. 18.

Fig. 13. Experimental setup.

Fig. 14. Description of 6-dof platform.

Fig. 15. Four measured annular subapertures.

Table 1. Description of 6-dof Platform

Axis Range of Movement Accuracy

X 1000 mm 0.01 mm
Y 500 mm 0.01 mm
Z 800 mm 0.02 mm
A 90° 4 0 0

B 3° 4 0 0

C 360° 10 0 0

Fig. 16. Stitching map.
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It is further shown that the PV and RMS errors of the
residual map are 0.046λ and 0.005λ, respectively (λ �
632.8 nm). Considering the alignment accuracy in X , Y ,
and Z directions in the testing and the environmental effect,
the residual is acceptable, and our proposed method is effective
for testing rotationally symmetric aspherical surfaces.

5. CONCLUSION

We have proposed an annular subaperture stitching algorithm
to test rotationally symmetric aspherical surfaces, which is
based on the triangulation interpolation and least-square fitting
theory. At the same time, in the non-null stitching, the retrace
error in the testing is also analyzed based on the ray tracing
method for the central subaperture and annular subaperture,
respectively. Simulation is carried out to show that our pro-
posed annular stitching method is effective in the testing for
rotationally symmetric aspherical surfaces. To further justify
the performance of our stitching method, we tested a rotation-
ally symmetric hyperboloid surface in the experiment, which
demonstrated the feasibility of our proposed stitching method.
As the experimental stitching testing study is now mainly for
mild rotationally symmetric aspherical surfaces, further research
is needed for more complex surface forms such as strong
aspherical surfaces and free-form surfaces.

Funding. National Natural Science Foundation of China
(NSFC) (61805089, 61605202).
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