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A B S T R A C T

This paper explores the numerical simulation of the calibration algorithm for the parallel me-
chanism with six degrees of freedoms (DOFs), aiming to verify the algorithm’s robustness and
effectiveness. Specifically, a Matlab-based numerical simulation method was proposed in light of
the error modelling theory on inverse kinematics of the parallel mechanism. By this method, the
actual poses are calculated through negative and forward kinematics models from the nominal
values and errors of the parameters and several groups of nominal poses; then, the measuring
uncertainty is introduced to derive the measured poses, and thus the pose errors; after that, the
structural parameters are recognized by the least squares (LS) method, yielding the corrected
values of the parameters; next, the corrected poses and pose errors were obtained through error
compensation. The simulation results show that the positioning precision of the parallel me-
chanism was significantly improved through multiple iterations, indicating that the calibration
algorithm is both robust and effective. The research findings lay a solid basis for subsequent
calibration experiments.

1. Introduction

Recent years has seen a growing research interest in the calibration of kinematics parameters in parallel mechanism with six
degrees of freedoms (DOFs). The actual parameters of the parallel mechanism may deviate from the theoretical ones, owing to the
geometric errors in the manufacturing and assembly process. The resulting difference between the actual and nominal kinematics
models in the motion control will lead to pose errors in the parallel mechanism.

Compared with the precision design, the kinematics calibration [1] is a posterior method to solve the said precision problem. If
the mechanism is not manufactured or installed very precisely, this method can improve the precision of the mechanism without
changing the hardware. Many studies have proved kinematics calibration as the most economical way to enhance mechanism pre-
cision.

By measurement outputs, the calibration can be divided into two categories: the self-calibration and the external calibration. The
former constructs the error functional from the information acquired by the internal observer [2,3], and needs to install redundant
sensors on the passive hinge (mounting an encoder on the Hooke’s Joint, installing a grating scale on the mobile pair, etc.). The
precision of the self-calibration is limited, because this method needs to find the forward solution of the calibration model and cannot
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acquire all the information of the end pose. The external calibration, however, constructs the error functional from the information
collected by external measuring devices (e.g. laser range finder, laser interferometer and autocollimator). These devices are required
to obtain the motion information of the parallel robot motion platform [4–6].

Much research has been done on the calibration and pose error compensation of the parallel mechanism, yielding many cali-
bration and error compensation methods. For instance, Everett et al. [7] were the first to apply the self-calibration in closed-chain
motion mechanism. After analyzing the source of calibration error, Judd et al. [8] considered non-geometric error as a major in-
fluencing factor of the calibration precision of the parallel mechanism. Zhuang et al. [9] constructed a simple calibration model in
light of the structural features of the Stewart platform, which fixes the length of one branch to be identified and changes the length of
other branches; nonetheless, this approach greatly reduces the measurable workspace. Patel A.J. et al. [10] created a parallel machine
tool error model based on the Stewart platform, which can pinpoint all possible error sources. Considering the noisy environment of
the machine tool, Chai et al. [11] put forward a simple, practical and robust way to calibrate the branch length. Ting et al. [12]
proposed a three-point-three-axis calibration method. Pei Baoqing et al. [13] suggested analyzing the manufacturing and installation
error and hinge gap error of the joints on the Stewart platform separately by fitting the error ellipsoid. Fazenda et al [14] measured
Sigma 6 parallel mechanism by laser interferometer, photoelectron collimator and laser displacement sensor, and calibrated the
mechanism by the neural network algorithm. Shi et al. [15] presented a calibration method using a laser interferometer and a self-
collimator.

To sum up, the existing studies mainly concentrate on the error modeling and calibration methods for the parallel mechanism.
However, there is virtually no report on the numerical simulation of calibration algorithm. As a key step before calibration tests, the
numerical simulation is a drill of the entire calibration process, which helps to verify the validity and robustness of the calibration
algorithm and to determine the measurement uncertainty of measuring instruments on the calibration precision.

In light of the above, this paper attempts to verify the robustness and effectiveness of the calibration algorithm for the 6-DOF
parallel mechanism. To this end, the numerical simulation techniques of calibration algorithm were explored from the following
aspects: the error modeling based on inverse kinematics (Section 2), the data processing based on the least squares (LS) method
(Section 3), the evaluation indices of the calibration precision (Section 4) and the numerical simulation of calibration algorithm
(Section 5).

2. Error modeling based on inverse kinematics

The kinematics calibration of the parallel mechanism includes four steps: error modeling, pose measurement, parameter iden-
tification and error compensation [1]. Among them, error modeling reflects the essence of the mechanism and lays the basis for the
entire calibration process. In this paper, the error modeling is carried out based on inverse kinematics. The inverse kinematics refers
to solving the length of the output branch according to the known pose of the end effector. For the 6-DOF parallel mechanism, the
inverse kinematics is to determine the length l l l l l l[ , , , , , ]T

1 2 3 4 5 6 of the six driving branches from the known pose X Y Z α β γ[ , , , , , ]P P P
T

of the motion platform.
In Fig. 1, = …B i( 1, 2, ,6)i are the hinge points of the base platform, which fall on the same plane; = …P i( 1, 2, ,6)i are the hinge

points of the motion platform, which also fall on the same plane; = …l i( 1, 2, ,6)i are the length of the branches; O -XYZ is the static
coordinate system, with O being the geometric center of the base platform; P -XYZ is the dynamic coordinate system, with P being the
geometric center of the motion platform.

In Fig. 2, O and P are the origins of the static coordinate system O-XYZ and the dynamic coordinate system P-XYZ, respectively;
OP is the vector from the origin O of the static coordinate system to the origin P of the dynamic coordinate system; Bi are the vectors
from the origin O of the static coordinate system to the position of each hinge point of the base platform; Pi are the vectors from the

Fig. 1. Sketch map of the 6-DOF parallel mechanism.
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origin P of the dynamic coordinate system to the position of each hinge point of the motion platform; Li is the branch length vectors of
the static coordinate system.

The branch length li of the static coordinate system can be obtained according to the closed-loop vector formula:

= = + − = ⋯l L| | |R*P OP B |, (i 1, 2, ,6)i i i i (1)

If sin and cos are abbreviated as s and c, respectively, then the R, Pi, OP and Bi in the above formula can be expressed as:

=
⎡

⎣

⎢
⎢

− +
+ −

−

⎤

⎦

⎥
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cαcβ cαsβsγ sβcγ cαsβcγ sαsγ
sαbβ sαsβsγ cαcγ sαsβcγ cαsγ

sβ cβsγ cβcγ
R

(2)

=P X Y Z[ ]i Pi Pi Pi
T (3)

=OP X Y Z[ ]P P P
T (4)

=B X Y Z[ ]i Bi Bi Bi
T (5)

The length li of each driving branch can be obtained by substituting the mechanism parameters Bi and Pi as well as the pose
parameters R and OP of the motion platform into formula (1), marking the end of the inverse kinematics.

Then, the nonlinear equations with unknown pose parameters of the motion platform can be derived from the inverse kinematics
of the parallel mechanism:

+ − − = = ⋯R P OP B l i| * | 0, ( 1, 2, ,6)i i i
2 2 (6)

The above formula can be transformed into:

= = ⋯f X Y Z α β γ X Y Z l X Y Z i( , , , , , , , , , , , , ) 0, ( 1, 2, ,6)i P P P Bi Bi Bi i Pi Pi Pi (7)

The manufacturing and installation errors of the mechanism components may cause errors in the six branches. Through complete
differentiation, formula (7) can be transformed into:
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Switching the last 7 terms to the right side, formula (8) can be written as the matrix below:

⋅ =J dQ B (9)

where

Fig. 2. Vectors related to the i-th branch.
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This is the Jacobian matrix of the nonlinear Eq. (6).

=dQ dX dY dZ dα dβ dγ[ ]P P P
T (11)

This is the pose error resulted from the errors in structural parameters.
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Formula (9) is the error model of the 6-DOF parallel mechanism error model based on inverse kinematics. After measuring the
pose data at each point, J can be deduced from formula (10), dQ can be directly obtained from the measured pose data, and B, which
contains the above 42 independent error parameters, can be calculated by formula (9) from multiple sets of measured pose data.

3. LS-based parameter identification

Considering that each pose point can be described by 6 equations only, at least 7 sets of pose data should be measured to solve the
42 unknown parameters of the parallel mechanism. To ensure the rationality of the calibration results, more than 7 sets of pose data
were measured to set up the function of the error between the actual and theoretical poses. After that, the motion parameters of the
system were identified by the LS to obtain the error of the parallel mechanism. Finally, the parameters of the mechanism model were
corrected to offset the error and complete the calibration. The LS can easily solve the unknown data and minimize the sum of squared
errors of prediction (SSE) between the solution and the actual data.

A set of six equations can be established after measuring each set of pose data. Let n (n≥7) be the number of pose data sets. Then,
a total of 6n equations, evenly distributed in n sets, can be established:
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where Aj (j= 1, 2, 3,..., n) are n pose measuring positions; ∂
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and dγ (i = 1,2,3,…, 6) are the data acquired by pose measurement at each measuring position; dXBi, dYBi, dZBi, dli, dXPi, dYPi and dZPi
(i= 1,2,3,…, 6) are the unknown error parameters acquired by pose measurement at each measuring position. In total, 84 data and
42 unknown error parameters were acquired by pose measurement.

The 6n equations can be integrated into 6 sets of equations, each of which contains n equations:
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where i= 1, 2, …, 6 are the six branches of the parallel mechanism; A1, A2,…, An are the n pose measuring positions. Each set of
equations only has one error parameters of the branch. Solving each set by the LS, it is possible to determine the error parameters of
the parallel mechanism.

4. Evaluation indices of calibration precision

The precision evaluation indices are responsible to express the kinematics error of the mechanism and demonstrate the calibration
effect during the calibration of mechanism error parameters. As a result, the following two issues must be considered for the rational
design of precision evaluation indices: First, the magnitude and impact of the errors should be depicted in a comprehensive and
accurate manner, after full consideration of the distribution of mechanism errors in the 6D pose space; Second, the calibration results
should be evaluated scientifically, rigorously and conveniently. In view of the features of pose errors and the form of pose information
in the 6-DOF parallel mechanism, this paper designs the precision evaluation indies through the following two steps.

4.1. Determination of the integrated error

The original pose error dQ was derived from the pose information acquired at a measuring point in the workspace. Then, the
position error, the orientation error and the integrated error can be calculated by Formulas (15), (16) and (17), respectively.

= = + +dQ dX dY dZ dX dY dZ[ ]P P P
T

P P P1 2
2 2 2 (15)

= = + +dQ dα dβ dγ dα dβ dγ[ ]T
2 2

2 2 2 (16)

= +dQ dQ dQint 1 2 (17)

The modulus of the position error and orientation error at the measuring point, defined in the form of 2-norm, can clearly reflect
the kinematics error of the 6-DOF parallel mechanism at this point [9].

4.2. Balance between the error components

The components dQ1 and dQ2 in the original error dQint should be balanced, i.e., the magnitude of the position error and the
orientation error in the original error should be balanced, while dQ1 and dQ2 are being reduced. In other words, the numerical
difference between dXP, dYP and dZP as well as that between dα, dβ and dγ must be controlled to a small value.

5. Numerical simulation of calibration algorithm

Before calibrating the parallel mechanism, it is necessary to numerically simulate the error compensation and calibration. The
simulation aims to verify the robustness and effectiveness of the calibration algorithm. For simplicity, the definitions of the symbols
used in the numerical simulation are listed in Table 1 below.

The numerical simulation adopts the following program:
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(1) Initialize the nominal poses QN, nominal parameters BN and PN, and errors d BN, d PN and d lN of the 6-DOF parallel
mechanism.

(2) Calculate the actual poses QA: Determine the nominal branch lengths lN by substituting the given nominal poses QN, nominal
parameters BN and PN, and errors d BN, d PN and d lN into the inverse kinematics formula of the 6-DOF parallel mechanism.
Next, derive the actual hinge parameters BA and PA and actual branch lengths lA from the given hinge parameter errors d BN
and d PN and the branch length errors d lN. After that, compute the actual poses QA by the forward kinematics formula.

(3) Calculate the measured poses QM: Obtain the measured poses QM after introducing the measuring uncertainty σ.
(4) Calculate the pose errors dQ : Obtain the pose errors dQ through the subtraction between the measured poses QM and the

nominal poses QN.
(5) Recognize parameter errors: Obtain the parameter errors d BC’, d PC’ and d lC’ through LS processing of the above data.
(6) Compensate for the errors: Obtain the corrected parameters BC, PC and lC by adding parameter errors to the corresponding

nominal parameters, thus completing error compensation.
(7) Calculate corrected poses Qc: Obtain the corrected poses by substituting the corrected parameters into the forward kinematics

formula.
(8) Calculate corrected pose errors dQc: Obtain the corrected pose errors through the subtraction between the measured poses QM

and the corrected poses QC.
(9) Judge whether the corrected errors meet the requirements: Calculate integrated error = ⋯dQ j n( 1, 2, )j

int . If ≤
≤ ≤

dQ εmax( )
j n

j

1
int ,

terminate the iteration and take the current parameters BC, PC and lC as the actual structure parameters of the mechanism;
otherwise, go to Step 10.

(10) Replace dQ with dQC and return to Step 5, and repeat the above steps until ≤
≤ ≤

dQ εmax( )
j n

j

1
int .

The entire numerical simulation process is illustrated in Fig. 3 below.
After iterative calculation, the latest parallel mechanism parameters were obtained. These parameters can be viewed as the actual

structural parameters of the mechanism. Then, the parallel mechanism parameters in the control program were corrected according
to the calculation results, thereby offsetting the error and improving the positioning precision of the mechanism.

5.1. Determining the nominal kinematics parameter errors

A digital model was established for the 6-DOF parallel mechanism. The 42 kinematic parameters of the mechanism 42 are shown
in Table 2, and the errors of these parameters are assumed as shown in Table 3.

5.2. Generating analog measured data

Ten poses were selected from the workspace (Table 4) and imported to the inverse kinematics model with error-free diving

Table 1
Symbol definitions.

Serial No. Parameter symbol Definition

1 QN Nominal pose
2 BN Nominal lower hinge parameter
3 PN Nominal upper hinge parameter
4 lN Nominal branch length
5 d BN Lower hinge parameter error
6 d PN Upper hinge parameter error
7 d lN Branch length error
8 BA Actual lower hinge parameter
9 PA Actual upper hinge parameter
10 lA Actual branch length
11 QA Actual pose
12 σ Measuring uncertainty
13 QM Measured pose
14 dQ Pose error
15 d BC’ Unknown lower hinge parameter error
16 d PC’ Unknown upper hinge parameter error
17 d lC’ Unknown branch length error
18 BC Corrected lower hinge parameter
19 PC Corrected upper hinge parameter
20 lC Corrected branch length
21 QC Corrected pose
22 dQC Corrected pose error
23 dQint Integrated error
24 ε Iterative tolerance
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Fig. 3. Flow chart of numerical simulation.

Table 2
Nominal values of 42 kinematic parameters.

Branch 1# XB1 YB1 ZB1 l1 XP1 YP1 ZP1
120 −140 0 233.23808 120 −20 0

Branch 2# XB2 YB2 ZB2 l2 XP2 YP2 ZP2
120 140 0 233.23808 120 20 0

Branch 3# XB3 YB3 ZB3 l3 XP3 YP3 ZP3
61.243557 173.92305 0 233.23808 −42.679489 113.92304 0

Branch 4# XB4 YB4 ZB4 l4 XP4 YP4 ZP4
−181.24356 33.92305 0 233.23808 −77.320511 93.923042 0

Branch 5# XB5 YB5 ZB5 l5 XP5 YP5 ZP5
−181.24356 −33.92305 0 233.23808 −77.320511 −93.923042 0

Branch 6# XB6 YB6 ZB6 l6 XP6 YP6 ZP6
61.243557 −173.92305 0 233.23808 −42.679489 −113.92304 0

Table 3
Errors in the 42 kinematic parameters.

Branch 1# dXB1 dYB1 dZB1 dl1 dXP1 dYP1 dZP1
0.02 0.03 −0.05 −0.02 0.04 0.03 −0.01

Branch 2# dXB2 dYB2 dZB2 dl2 dXP2 dYP2 dZP2
−0.03 0.02 0.04 0.02 0.05 −0.02 −0.03

Branch 3# dXB3 dYB3 dZB3 dl3 dXP3 dYP3 dZP3
0.01 −0.05 0.04 −0.01 −0.02 0.01 0.04

Branch 4# dXB4 dYB4 dZB4 dl4 dXP4 dYP4 dZP4
−0.05 −0.02 0.02 0.04 −0.04 −0.04 0.01

Branch 5# dXB5 dYB5 dZB5 dl5 dXP5 dYP5 dZP5
−0.02 0.05 −0.01 −0.05 0.04 0.02 −0.05

Branch 6# dXB6 dYB6 dZB6 dl6 dXP6 dYP6 dZP6
0.05 −0.04 −0.02 0.04 0.02 0.03 0.04
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parameters, thereby finding the theoretical driving parameters of each branch. The theoretical parameters were inputted into the
error-containing forward kinematics model, yielding the actual poses of the motion platform. On this basis, a random error
within ± 0.001mm was added to simulate the measuring uncertainty caused by the controller, the measuring instruments and
environmental factors. After the addition, the data were adopted as the analog measured data (Table 4).

5.3. Initializing iteration positioning error

The analog measured pose data were compared with the nominal pose data to obtain the initial positioning error (Table 4).

5.4. Iterative solution

The positioning error was substituted into the set of equations in the calibration model of the parallel mechanism. Then, the set of
equations were solved through Matlab program, yielding 42 unknown error coefficients. Through the iterative calculation, the

Table 4
Pose data selected from the workspace.

X(mm) Y(mm) Z(mm) α(rad) β(rad) γ(rad)

A1 PT 10 0 200 0.017453292 0.034907 0.05236
PP 10.02907 −0.04008 199.991 0.017814 0.034796 0.051874
E1=PP-PT 0.02907 −0.04008 −0.009 0.000360708 −0.00011 −0.00049

A2 PT 10 10 200 0.034906584 −0.03491 0.017453
PP 10.0562 9.9385 199.9848 0.0352 −0.035 0.0174
E1=PP-PT 0.0562 −0.0615 −0.0152 0.000293416 −0.0000934 −0.0000533

A3 PT 0 10 200 0.052359877 0.034907 −0.01745
PP 0.040607 9.958774 199.9928 0.052729 0.034775 −0.01794
E1=PP-PT 0.040607 −0.04123 −0.0072 0.000369123 −0.00013 −0.00049

A4 PT −10 10 200 −0.05235988 −0.01745 0.017453
PP −9.96499 9.955117 199.9963 −0.05197 −0.0176 0.016979
E1=PP-PT 0.03501 −0.04488 −0.0037 0.000389877 −0.00015 −0.00047

A5 PT −10 0 200 −0.01745329 0.017453 0.034907
PP −9.96692 −0.04496 199.9954 −0.01707 0.017326 0.034433
E1=PP-PT 0.03308 −0.04496 −0.0046 0.000383292 −0.00013 −0.00047

A6 PT −10 −10 200 0.017453292 −0.05236 0.017453
PP −9.96952 −10.0419 199.9906 0.01787 −0.05245 0.016936
E1=PP-PT 0.03048 −0.0419 −0.0094 0.000416708 −9E-05 −0.00052

A7 PT 0 −10 200 0.034906584 0.05236 −0.03491
PP 0.03019 −10.0384 199.9892 0.035264 0.052294 −0.03537
E1=PP-PT 0.03019 −0.0384 −0.0108 0.000357416 −6.6E-05 −0.00046

A8 PT 10 −10 200 0.052359877 0.017453 0.05236
PP 10.02686 −10.0388 199.9887 0.052733 0.017372 0.051853
E1=PP-PT 0.02686 −0.0388 −0.0113 0.000373123 −8.1E-05 −0.00051

A9 PT 0 0 210 −0.03490658 0.034907 −0.05236
PP 0.031535 −0.04165 209.9913 −0.03457 0.034827 −0.05282
E1=PP-PT 0.031535 −0.04165 −0.0087 0.000336584 −8E-05 −0.00046

A10 PT 0 0 210 0.034906584 −0.03491 0.034907
PP 0.034993 −0.04456 209.9916 0.035298 −0.03502 0.034362
E1=PP-PT 0.034993 −0.04456 −0.0084 0.000391416 −0.00011 −0.00054

Fig. 4. Iteration curve.
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theoretical values of 42 kinematics parameters were continuously corrected until the terminal condition ≤ = ×
≤ ≤

−dQ εmax( ) 1 10
j n

j

1
int

6

was fulfilled. As shown in Fig. 4,
≤ ≤

dQmax( )
j n

j

1
int dropped below the termination condition after 2 iterations, thus ending the iteration. At

this time, the 42 kinematics parameters converged to the corresponding actual values one by one. Each actual value is the algebraic
sum of the nominal parameter value and the unknown parameter error.

For better understanding of the variation of the kinematics parameters in the iteration, Table 5 compares the pre- and post-
calibration errors of each kinematic parameter. The initial error of each parameter was determined by the difference between the
actual and nominal values of the parameter. The difference is given in Step (1) of the numerical simulation. The final error of each
parameter was determined by the difference between the actual value of the parameter and the value under the termination con-
dition. As shown in Table 5, the errors of most parameters decreased significantly after the iterative calibration, indicating that the
LS-based calibration works correctly for the kinematic parameters. It should be noted that parameter errors are inevitable even with
multiple iterations, because the actual measurement and the iterative calculation will lead to additional errors.

Table 6 compares the poses errors before and after the calibration. It can be seen that the positioning precision of the parallel
mechanism was significantly improved through the calibration. This means the calibration algorithm can effectively enhance the pose
precision of the mechanism. Similar to parameter errors, the pose errors cannot be fully eliminated despite multiple iterations,
because additional errors will occur in the actual measurement and the iterative calculation.

6. Conclusions

This paper explores the numerical simulation of calibration algorithm for the 6-DOF parallel mechanism, in an attempt to verify

Table 5
Comparison of parameter errors before and after calibration (unit: mm).

Branch 1# dXB1 dYB1 dZB1 dl1 dXP1 dYP1 dZP1
before 0.02 0.03 −0.05 −0.02 0.04 0.03 −0.01
after (*e-3) −0.0016 0.4274 0.7004 −0.8464 0.0016 −0.0123 −0.0237

Branch 2# dXB2 dYB2 dZB2 dl2 dXP2 dYP2 dZP2
before −0.03 0.02 0.04 0.02 0.05 −0.02 −0.03
after (*e-3) −0.0098 −0.2020 0.3315 −0.3144 0.0056 −0.0452 0.0588

Branch 3# dXB3 dYB3 dZB3 dl3 dXP3 dYP3 dZP3
before 0.01 −0.05 0.04 −0.01 −0.02 0.01 0.04
after (*e-3) −0.1447 −0.0758 0.2493 −0.4092 0.0494 0.0204 −0.0985

Branch 4# dXB4 dYB4 dZB4 dl4 dXP4 dYP4 dZP4
before −0.05 −0.02 0.02 0.04 −0.04 −0.04 0.01
after (*e-3) 0.1426 0.0957 0.3049 −0.1162 0.104 0.067 0.1984

Branch 5# dXB5 dYB5 dZB5 dl5 dXP5 dYP5 dZP5
before −0.02 0.05 −0.01 −0.05 0.04 0.02 −0.05
after (*e-3) 0.1309 −0.0577 0.2294 0.0607 0.1569 −0.0691 0.2837

Branch 6# dXB6 dYB6 dZB6 dl6 dXP6 dYP6 dZP6
before 0.05 −0.04 −0.02 0.04 0.02 0.03 0.04
after (*e-3) −0.117 0.0603 0.2108 −0.2272 0.01 −0.0135 −0.0244

Table 6
Comparison of pose errors before and after calibration.

　 　 dX(mm) dY(mm) dZ(mm) dα(mrad) dβ(mrad) dγ(mrad)

A1 before 0.02907 −0.04008 −0.009 0.000360708 −0.00011 −0.00049
　 after 4.85E-07 4.00E-08 3.37E-07 −1.52E-10 −2.92E-10 −2.01E-10
A2 before 0.0562 −0.0615 −0.0152 0.000293416 −0.0000934 −0.0000533
　 after −6.68E-08 −4.00E-07 −2.98E-07 4.06E-10 −1.65E-09 −1.77E-09
A3 before 0.040607 −0.04123 −0.0072 0.000369123 −0.00013 −0.00049
　 after −2.87E-09 −1.39E-08 5.17E-07 −3.64E-10 1.19E-09 5.74E-10
A4 before 0.03501 −0.04488 −0.0037 0.000389877 −0.00015 −0.00047
　 after 4.01E-07 −9.99E-08 −2.29E-07 −2.55E-11 −5.39E-10 −9.22E-10
A5 before 0.03308 −0.04496 −0.0046 0.000383292 −0.00013 −0.00047
　 after −5.59E-08 −2.93E-08 −8.94E-08 6.45E-10 −6.79E-10 6.67E-10
A6 before 0.03048 −0.0419 −0.0094 0.000416708 −9.00E-05 −0.00052
　 after −2.61E-07 −3.08E-07 3.34E-07 −1.54E-09 3.24E-10 1.87E-09
A7 before 0.03019 −0.0384 −0.0108 0.000357416 −6.60E-05 −0.00046
　 after 2.39E-08 −4.08E-07 −5.91E-07 5.92E-10 −1.14E-09 −1.06E-09
A8 before 0.02686 −0.0388 −0.0113 0.000373123 −8.10E-05 −0.00051
　 after 8.91E-08 4.18E-07 −5.91E-08 1.20E-09 8.06E-10 −4.49E-12
A9 before 0.031535 −0.04165 −0.0087 0.000336584 −8.00E-05 −0.00046
　 after −5.92E-07 2.22E-07 1.39E-07 −3.87E-10 1.70E-10 8.43E-10
A10 before 0.034993 −0.04456 −0.0084 0.000391416 −0.00011 −0.00054
　 after 1.25E-08 5.16E-07 −7.75E-08 −3.91E-10 1.57E-09 9.54E-11
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the algorithm’s robustness and effectiveness. Firstly, the composition of the 6-DOF parallel mechanism was introduced, and a cali-
bration algorithm was proposed based on inverse kinematics. Inspired by the LS, the algorithm tries to find the 42 main kinematics
parameters of the 6-DOF parallel mechanism. Then, the solution process of the calibration algorithm was discussed in details, and the
algorithm was verified by computer simulation. The simulation results show that the parallel mechanism enjoyed better pose pre-
cision after its kinematics parameters were calibrated by our algorithm. This means the proposed algorithm is both robust and
effective, laying a solid basis for subsequent calibration experiments.
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