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A B S T R A C T

We present a method for designing error-resistant phase-shifting algorithms to suppress error sources in phase-
shifting interferometry. Firstly, the partial-differential processing is applied to the weighted least squares
algorithm to obtain error sensitivity equations. Sequentially, bound equations are obtained to minimize error
sensitivity. Finally, the bound equations are solved to determine the weights, and the error-resistant phase-
shifting algorithms are developed. Aiming at a self-developed interferometer, the proposed method is used to
design phase-shifting algorithms which are resistant to given error sources. Theoretical analysis and numerical
simulations of the self-designed algorithms compared with a commercial algorithm are completed. Theoretical
analysis indicates that the self-designed algorithms meet the desired requirements. Numerical simulations verify
the correctness of theoretical analysis. And the comparisons show that the self-designed algorithm is more
resistant to error sources that needs to be suppressed. These results verify the proposed method and demonstrate
its effectiveness.

1. Introduction

In phase-shifting interferometry, the measured object is the phase
difference of reference and test wave fields. Phase-shifter introduces
additional OPD (optical path difference), which yields sequential in-
terferograms. These interferograms are captured by detector, and then
are processed using a given phase-shifting algorithm to calculate the
phase difference [1]. This technique reduces the influence of contrast,
and yields good results even if the interferograms have poor contrast.
Furthermore, it reduces the influence of background and nonuniformity
of the light source, and provides high accuracy [2].

In phase-shifting interferometers, PZT (piezoelectric transducers) is
commonly used as phase shifter, CCD (charge-coupled device) or CMOS
(complementary metal oxide semiconductor) is used as detector, and
laser is typically used as light source. The nonideal performance of
these devices usually causes measurement errors. Therefore, the phase-
shifting algorithm should be designed to suppress these error sources.

To date, many methods have been reported on designing phase-
shifting algorithms to minimize particular errors. Freischlad [3] pro-
posed a method to evaluate the performance of phase-shifting algo-
rithms through Fourier theory and Zhang [4] used this theory to derive
a new error-resistant algorithm. De Groot [5] designed algorithms
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via window functions such as the Hanning window. Surrel [6] pre-
sented a characteristic polynomial theory for designing phase-shifting
algorithms, and Zhu [7] designed a new algorithm by overlapping
averaged results of the old algorithm, making the new algorithm more
insensitive to phase-shift error. Phillion [8] proposed a method based
on recursion rules to design a new algorithm from the old one. Shi [9]
presented an effective approach to derive phase-shifting algorithms
based on the self-convolution of a rectangle window, and designed an
algorithm to suppress the phase-shift error and detector-response error
simultaneously. However, to the best of our knowledge, these methods
do not discuss the error sensitivity of algorithms, but only focus on
suppressing phase-shift error, detector-response error, or both, while
ignoring the other error sources.

This paper thus proposes an effective method for designing error-
resistant algorithms. By applying the partial-differential method, we get
sensitivity relationship between weighted least-square algorithm and
error sources, which named error sensitivity equations. When the error
sensitivity vanishes, the weighted least-square algorithm is insensitive
to corresponding error sources. And then, we get bound equations.
Sequentially, the bound equations are solved to determine the weights,
and finally, phase-shifting algorithms are obtained that are resistant to
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corresponding error sources. The designed error-resistant phase-shifting
algorithms effectively reduce the performance requirements for phase
shifter, detector, and light source.

This paper is organized as follows. Section 2 introduces the weighted
least-square phase-shifting algorithm. Section 3 introduces the main
error sources (phase-shift error, detector-response error, and light-
source-instability), analyses sensitivity relationship between weighted
least-square algorithm and these error sources, and then derives the
bound equations. Section 4 takes a self-designed interferometer as
an example to design algorithms which are capable of suppressing
the first-, second-, and third-order phase-shift error, the first- and
second-order detector-response error, and the first- and second-order
light-intensity–instability. Section 5 uses Fourier transform theory and
numerical simulations to evaluate the performance of self-designed
algorithms. The self-designed algorithms are compared with Zygo 13-
frames algorithm [10,11], and the results demonstrate the effectiveness
of the proposed method.

2. Weighted least-square algorithm

In phase-shifting interferometry, the nth irradiance 𝐼𝑛(𝑥, 𝑦) at a point
(𝑥, 𝑦) could be expressed as follows [12],

𝐼𝑛 (𝑥, 𝑦) = 𝐴 (𝑥, 𝑦) + 𝐵 (𝑥, 𝑦) × cos
[

𝜙 (𝑥, 𝑦) + 𝛿𝑛 (𝑥, 𝑦)
]

(1)

where 𝐴 (𝑥, 𝑦) is the background intensity, 𝐵 (𝑥, 𝑦) is the amplitude of
modulation, the quantity to be measured 𝜙 (𝑥, 𝑦) is the phase difference
of the wave fields that interfere, and 𝛿𝑛 (𝑥, 𝑦) is the phase shift of the nth
irradiance. Eq. (1) can be rewritten as,

𝐼𝑛 (𝑥, 𝑦) = 𝐴 (𝑥, 𝑦) + 𝐵𝑐𝑜𝑠 (𝑥, 𝑦) cos
[

𝛿𝑛 (𝑥, 𝑦)
]

+ 𝐵𝑠𝑖𝑛 (𝑥, 𝑦) sin
[

𝛿𝑛 (𝑥, 𝑦)
]

(2)

where,

𝐵𝑐𝑜𝑠 (𝑥, 𝑦) = 𝐵 (𝑥, 𝑦) cos [𝜙 (𝑥, 𝑦)]

𝐵𝑠𝑖𝑛 (𝑥, 𝑦) = −𝐵 (𝑥, 𝑦) sin [𝜙 (𝑥, 𝑦)] (3)

Then, the phase difference can be calculated from 𝐵𝑠𝑖𝑛 (𝑥, 𝑦) and
𝐵𝑐𝑜𝑠 (𝑥, 𝑦) by,

𝜙 (𝑥, 𝑦) = arctan
[

−
𝐵𝑠𝑖𝑛 (𝑥, 𝑦)
𝐵𝑐𝑜𝑠 (𝑥, 𝑦)

]

(4)

The phase at point (𝑥, 𝑦) is only determined by the intensity and
phase shift at this point, so we omit the explicit dependence (𝑥, 𝑦) on
position. Phase-shifting algorithm can be developed from the principle
of weighted least-square estimation [13]. With the weight function, the
error function 𝜖 could be defined as,

𝜖 =
𝑁
∑

𝑛=1
𝑤𝑛

(

𝐼𝑛 − 𝐼𝑛
)2

=
𝑁
∑

𝑛=1
𝑤𝑛

[

𝐴 + 𝐵𝑐𝑜𝑠 cos(𝛿𝑛) + 𝐵𝑠𝑖𝑛 sin(𝛿𝑛) − 𝐼𝑛
]2

(5)

where 𝐼𝑛 represents the nth actual irradiance and 𝑤𝑛 is the nth weight.
The 𝜖 is minimized when the derivatives of 𝜖 with respect to 𝐴, 𝐵𝑠𝑖𝑛 and
𝐵𝑐𝑜𝑠 vanish. This condition yields the following matrix equation,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁
∑

𝑛=1
𝑤𝑛

𝑁
∑

𝑛=1
𝑤𝑛 cos(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 cos(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 cos2(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛) cos(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛) cos(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛 sin

2(𝛿𝑛)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

𝐴
𝐵𝑐𝑜𝑠
𝐵𝑠𝑖𝑛

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛

𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 cos(𝛿𝑛)

𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 sin(𝛿𝑛)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

If the weights are selected to satisfy the following conditions,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑁
∑

𝑛=1
𝑤𝑛 = 1

𝑁
∑

𝑛=1
𝑤𝑛 cos(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

= 0

𝑁
∑

𝑛=1
𝑤𝑛 cos2(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin

2(𝛿𝑛) = 𝑄

(7)

where Q is a non-zero constant, the phase difference 𝜙 can be calculated
by,

𝜙 = arctan

[

−
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 sin(𝛿𝑛)
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 cos(𝛿𝑛)

]

(8)

Eq. (8) is the formula of weighted phase-shifting algorithm. When
appropriate weights are selected, weighted phase-shifting algorithm
could be resistant to given error sources.

3. Sensitivity analysis for error sources

In this section, we analyze sensitivity of weighted phase-shifting
algorithm to phase-shift error, detector-response error, and light-source-
instability, which are main error sources in phase-shift interferometry.
And finally, we obtain the bound equations to minimize the influence
of these error sources.

3.1. Phase-shift error

In the case of a linear or nonlinear miscalibration, the actual nth
phase shift 𝛿′𝑛 may be expressed as a polynomial of ideal phase shift
𝛿𝑛 [14]. Note that in the first irradiance, phase shift is zero, so 𝛿′1 =
𝛿1 = 0. For equal-interval phase shift, 𝛿𝑛 = (𝑛 − 1) 𝛿, where 𝛿 is single
phase shift interval. When 𝑘 order phase-shift errors exist, 𝛿′𝑛 is a k order
polynomial of frames number n, as,

𝛿′𝑛 =
[(

1 + 𝜁1
)

(𝑛 − 1) + 𝜁2 (𝑛 − 1)2 +⋯ + 𝜁𝑘 (𝑛 − 1)𝑘
]

𝛿 (9)

where, 𝜁𝑘 is the coefficient of the kth order phase-shift error. The phase-
shift error defined as the difference between 𝛿′𝑛 and 𝛿𝑛 is,

𝛥𝛿𝑛 =
[

𝜁1 (𝑛 − 1) + 𝜁2 (𝑛 − 1)2 +⋯ + 𝜁𝑘 (𝑛 − 1)𝑘
]

𝛿 (10)

From the partial derivative of Eq. (8) with respect to 𝛿𝑛, we get
phase extraction error caused by phase-shift error (see Box I). Using
Eq. (7), the denominator and numerator of Eq. (11) can be simplified
respectively as,

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 =

[

𝐵 cos(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 cos2

(

𝛿𝑛
)

]2

+

[

−𝐵 sin(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝐼𝑛 sin

2 (𝛿𝑛
)

]2

= 𝐵2𝑄2 (12)

and,

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝐵2𝑄

{

cos(𝜙)

[

sin(𝜙)
2

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

𝛥𝛿𝑛

+ cos(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 sin

2 (𝛿𝑛
)

𝛥𝛿𝑛

]

sin(𝜙)

[

cos(𝜙)
2

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

𝛥𝛿𝑛

+ sin(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 cos2

(

𝛿𝑛
)

𝛥𝛿𝑛

]}

(13)
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𝛥𝜙 =
𝐵
[

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑛 cos

(

𝛿𝑛
)
∑𝑁

𝑛=1 𝑤𝑛 sin
(

𝛿𝑛
)

sin
(

𝜙 + 𝛿𝑛
)

𝛥𝛿𝑛 −
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 sin
(

𝛿𝑛
)
∑𝑁

𝑛=1 𝑤𝑛 cos
(

𝛿𝑛
)

sin
(

𝜙 + 𝛿𝑛
)

𝛥𝛿𝑛
]

[

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑛 cos

(

𝛿𝑛
)

]2
+
[

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑛 sin

(

𝛿𝑛
)

]2
(11)

Box I.

𝛥𝜙 =
sin2(𝜙)

∑𝑁
𝑛=1 𝑤𝑛 cos2

(

𝛿𝑛
)

𝛥𝛿𝑛 + cos2(𝜙)
∑𝑁

𝑛=1 𝑤𝑛 sin
2 (𝛿𝑛

)

𝛥𝛿𝑛 +
1
2 sin (2𝜙)

∑𝑁
𝑛=1 𝑤𝑛 sin

(

2𝛿𝑛
)

𝛥𝛿𝑛
𝑄

(14)

Box II.

Hence, we obtain the error sensitivity equation with respect to phase-
shift error 𝛥𝛿𝑛 as Eq. (14) given in Box II . If the following conditions
are satisfied,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁
∑

𝑛=1
𝑤𝑛 cos2

(

𝛿𝑛
)

𝛥𝛿𝑛 =
𝑁
∑

𝑛=1
𝑤𝑛 sin

2 (𝛿𝑛
)

𝛥𝛿𝑛

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

𝛥𝛿𝑛 = 0

(15)

the phase extraction error is a point-independent constant, which does
not influence the measurement. Thus, we get the bound equations for
suppressing k order phase-shift errors as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 cos

(

2𝛿𝑛
)

=
𝑁
∑

𝑛=1
(𝑛 − 1)2 𝑤𝑛 cos

(

2𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘 𝑤𝑛 cos

(

2𝛿𝑛
)

= 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 sin

(

2𝛿𝑛
)

=
𝑁
∑

𝑛=1
(𝑛 − 1)2 𝑤𝑛 sin

(

2𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘 𝑤𝑛 sin

(

2𝛿𝑛
)

= 0

(16)

3.2. Detector-response error

The detector-response error is caused by the linear and nonlinear
relationship between the irradiance incident upon a detector and the
voltage it outputs. When 𝑘 order detector-response errors exist, the
output signal 𝐼 ′𝑛 may be expressed as a 𝑘 order polynomial of the
incident irradiance 𝐼𝑛 [15],

𝐼 ′𝑛 =
(

1 + 𝜂1
)

𝐼𝑛 + 𝜂2𝐼
2
𝑛 +⋯ + 𝜂𝑘𝐼

𝑘
𝑛 (17)

The detector-response error is,

𝛥𝐼𝑛 = 𝜂1𝐼𝑛 + 𝜂2𝐼
2
𝑛 +⋯ + 𝜂𝑘𝐼

𝑘
𝑛 (18)

From the partial derivative of Eq. (8) with respect to 𝐼𝑛, phase extraction
error caused by detector-response error is expressed as,

𝛥𝜙 =
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 sin
(

𝛿𝑛
)
∑𝑁

𝑛=1 𝑤𝑛𝛥𝐼𝑛 cos
(

𝛿𝑛
)

−
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑛 cos
(

𝛿𝑛
)
∑𝑁

𝑛=1 𝑤𝑛𝛥𝐼𝑛 sin
(

𝛿𝑛
)

[

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑛 cos

(

𝛿𝑛
)

]2
+
[

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑛 sin

(

𝛿𝑛
)

]2

(19)

From Eq. (12), the denominator of Eq. (19) equals to constant 𝐵2𝑄2.
Using Eq. (7), the numerator of Eq. (19) can be simplified as,

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = −𝐵𝑄

[

sin(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝛥𝐼𝑛 cos

(

𝛿𝑛
)

+ cos(𝜙)
𝑁
∑

𝑛=1
𝑤𝑛𝛥𝐼𝑛 sin

(

𝛿𝑛
)

]

(20)

Thus, we get the error sensitivity equation with respect to detector-
response error 𝛥𝐼𝑛 as,

𝛥𝜙 = −
sin(𝜙)

∑𝑁
𝑛=1 𝑤𝑛𝛥𝐼𝑛 cos

(

𝛿𝑛
)

+ cos(𝜙)
∑𝑁

𝑛=1 𝑤𝑛𝛥𝐼𝑛 sin
(

𝛿𝑛
)

𝐵𝑄
(21)

For linear detector-response error (𝑘 = 1), phase extraction error 𝛥𝜙
vanishes. For higher order harmonics (𝑘 ≥ 2), phase extraction error 𝛥𝜙
can be expressed as,

𝛥𝜙 = −
sin(𝜙)𝜂𝑘

∑𝑁
𝑛=1 𝑤𝑛𝐼𝑘𝑛 cos

(

𝛿𝑛
)

+ cos(𝜙)𝜂𝑘
∑𝑁

𝑛=1 𝑤𝑛𝐼𝑘𝑛 sin
(

𝛿𝑛
)

𝐵𝑄
(22)

where 𝐼𝑘𝑛 is the 𝑘th order detector response, and it can be expressed as,

𝐼𝑘𝑛 =
[

𝐴 + 𝐵 cos
(

𝜙 + 𝛿𝑛
)]𝑘 =

∑

𝑝+𝑞=𝑘

𝑘!
𝑝!𝑞!

𝐴𝑝𝐵𝑞 cos𝑞
(

𝜙 + 𝛿𝑛
)

(23)

where 𝑞 and 𝑝 are integers from 0 to 𝑘, and the sum of 𝑞 and 𝑝 equals to
𝑘. If 𝑞 is odd,

cos𝑞
(

𝜙 + 𝛿𝑛
)

= 1
2𝑞−1

𝑞−1
2
∑

𝑚=0
𝐶𝑚
𝑞 cos

[

(𝑞 − 2𝑚)
(

𝜙 + 𝛿𝑛
)]

(24)

If 𝑞 is even,

cos𝑞
(

𝜙 + 𝛿𝑛
)

= 1
2𝑞−1

⎧

⎪

⎨

⎪

⎩

𝑞
2−1
∑

𝑚=0
𝐶𝑚
𝑞 cos

[

(𝑞 − 2𝑚)
(

𝜙 + 𝛿𝑛
)]

+ 1
2
𝐶

𝑞
2
𝑞

⎫

⎪

⎬

⎪

⎭

(25)

Considering the last term in square brackets in Eq. (25) is a point-
independent constant, which does not influence the phase extraction
error. Bring Eq. (23), Eq. (24) and Eq. (25) into Eq. (22), we get,

𝛥𝜙 = −1
𝐵𝑄

{

sin(𝜙)𝜂𝑘
𝑁
∑

𝑛=1

[

𝑤𝑛 cos
(

𝛿𝑛
)

𝑘
∑

𝑞=0
𝜉𝑞 cos

[

𝑞
(

𝜙 + 𝛿𝑛
)]

]

+ cos(𝜙)𝜂𝑘
𝑁
∑

𝑛=1

[

𝑤𝑛 sin
(

𝛿𝑛
)

𝑘
∑

𝑞=0
𝜉𝑞 cos

[

𝑞
(

𝜙 + 𝛿𝑛
)]

]}
(26)
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where 𝜉𝑞 is constant determined by 𝐴, 𝐵, 𝑞 and 𝑘, and is independent of
𝑛. Thereby, Eq. (26) can be rewritten as,

𝛥𝜙 =
−𝜂𝑛
𝐵𝑄

{

sin(𝜙)
𝑘
∑

𝑞=0
𝜉𝑞

[

cos (𝑞𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

𝑞𝛿𝑛
)

cos
(

𝛿𝑛
)

− sin (𝑞𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

𝑞𝛿𝑛
)

cos
(

𝛿𝑛
)

]

+cos(𝜙)
𝑘
∑

𝑞=0
𝜉𝑞

[

cos (𝑞𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

𝑞𝛿𝑛
)

sin
(

𝛿𝑛
)

− sin (𝑞𝜙)
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

𝑞𝛿𝑛
)

sin
(

𝛿𝑛
)

]}

(27)

When 𝛥𝜙 vanishes, the algorithm is insensitive to the 𝑘th order detector-
response error. It is obvious that if 𝑞 = 0,1, 𝛥𝜙 = 0. We get the following
bound equations for suppressing the 𝑘th order detector-response error,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁
∑

𝑛=1
𝑤𝑛 cos

(

2𝛿𝑛
)

cos
(

𝛿𝑛
)

=
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

3𝛿𝑛
)

cos
(

𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

𝑘𝛿𝑛
)

cos
(

𝛿𝑛
)

= 0

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

cos
(

𝛿𝑛
)

=
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

3𝛿𝑛
)

cos
(

𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

𝑘𝛿𝑛
)

cos
(

𝛿𝑛
)

= 0

𝑁
∑

𝑛=1
𝑤𝑛 cos

(

2𝛿𝑛
)

sin
(

𝛿𝑛
)

=
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

3𝛿𝑛
)

sin
(

𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 cos

(

𝑘𝛿𝑛
)

sin
(

𝛿𝑛
)

= 0

𝑁
∑

𝑛=1
𝑤𝑛 sin

(

2𝛿𝑛
)

sin
(

𝛿𝑛
)

=
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

3𝛿𝑛
)

sin
(

𝛿𝑛
)

= ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 sin

(

𝑘𝛿𝑛
)

sin
(

𝛿𝑛
)

= 0

(28)

Through above derivation, it is easy to get a conclusion that, if the
algorithm is insensitive to the 𝑘th-order detector-response error, it is
insensitive to the 𝑚th-order (𝑚 < 𝑘) detector-response error too. So,
if Eq. (28) is satisfied, the algorithm is insensitive to 𝑘 order detector-
response errors.

3.3. Light-source-instability

The light-source-instability includes intensity instability and fre-
quency instability. The former changes the background intensity and
amplitude of modulation of the interferogram; and the latter introduces
additional phase shift.

3.3.1. Intensity instability
The intensity 𝐼𝑙𝑖𝑔ℎ𝑡𝑠𝑜𝑢𝑟𝑐𝑒 of the light source fluctuates over time 𝑡.

When 𝑘 order intensity instabilities exist, 𝐼𝑙𝑖𝑔ℎ𝑡𝑠𝑜𝑢𝑟𝑐𝑒 can be expressed as
𝑘 order polynomial of intensity 𝐼 at 𝑡 = 0, as,

𝐼𝑙𝑖𝑔ℎ𝑡𝑠𝑜𝑢𝑟𝑐𝑒 =
[

1 + 𝛾1𝑡 + 𝛾2𝑡
2 +⋯ + 𝛾𝑘𝑡

𝑘] 𝐼 (29)

so, the 𝑛th irradiance 𝐼 ′𝑛 may be written as a polynomial of frames
number 𝑛 in discrete form,

𝐼 ′𝑛 =
[

1 + 𝛾1 (𝑛 − 1) + 𝛾2 (𝑛 − 1)2 +⋯ + 𝛾𝑘 (𝑛 − 1)𝑘
]

𝐼𝑛 (30)

The difference between the actual fringe pattern and the ideal fringe
pattern is then expressed as,

𝛥𝐼𝑛 =
[

𝛾1 (𝑛 − 1) + 𝛾2 (𝑛 − 1)2 +⋯ + 𝛾𝑘 (𝑛 − 1)𝑘
]

𝐼𝑛 (31)

From the partial derivative of Eq. (8) with respect to 𝐼𝑛, we get the phase
extraction error 𝛥𝜙 caused by the light-source-intensity instability 𝛥𝐼𝑛

, and it has the same formula with Eq. (21). Bring irradiance deviation
expressed in Eq. (31) into Eq. (21), the phase extraction error can be
rewritten as,

𝛥𝜙 = −1
𝐵𝑄

{

𝐴 sin(𝜙)𝛾1
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1) cos(𝛿𝑛)

+ 𝐵 sin(𝜙)𝛾1
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1) cos(𝜙 + 𝛿𝑛) cos(𝛿𝑛) +⋯

+ 𝐴 sin(𝜙)𝛾𝑘
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1)𝑘 cos(𝛿𝑛)

+ 𝐵 sin(𝜙)𝛾𝑘
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1)𝑘 cos(𝜙 + 𝛿𝑛) cos(𝛿𝑛)

+ 𝐴 cos(𝜙)𝛾1
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1) sin(𝛿𝑛)

+ 𝐵 cos(𝜙)𝛾1
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1) cos(𝜙 + 𝛿𝑛) sin(𝛿𝑛) +⋯

+ 𝐴 cos(𝜙)𝛾𝑘
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1)𝑘 sin(𝛿𝑛)

+𝐵 cos(𝜙)𝛾𝑘
𝑁
∑

𝑛=1
𝑤𝑛(𝑛 − 1)𝑘 cos(𝜙 + 𝛿𝑛) sin(𝛿𝑛)

}

(32)

when 𝛥𝜙 vanishes, the algorithm is insensitive to the 𝑘 order light-
source-intensity instabilities, and we get the bound equations for sup-
pressing 𝑘 order light-source-intensity instabilities as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 sin(𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 sin(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 sin(𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 cos(𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 cos(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 cos(𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 sin(2𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 sin(2𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 sin(2𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 cos(2𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 cos(2𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 cos(2𝛿𝑛) = 0

(33)

3.3.2. Frequency instability
In interferometry, the phase difference is directly proportional to

the frequency of the light source. Thus, the frequency instability 𝛥𝜈
introduces the following additional phase difference,

𝛥𝛿 = 2𝜋 × 𝑂𝑃𝐷 × 𝛥𝜈
𝐶

(34)

Here, 𝑂𝑃𝐷 is the optical path difference and 𝐶 is a constant. It is
clear that additional phase difference is proportional to light-source-
frequency instability. When the 𝑘 order frequency instabilities exist, the
frequency of 𝑛th irradiance may be expressed as 𝑘 order polynomial of
𝑛. Thus, the additional phase difference caused by frequency instability
is the same as Eq. (10). So, the bound equations for frequency instability
can be expressed as Eq. (16) too.
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3.4. Combination of bound equations

To design an algorithm that is insensitive to 𝑘 order phase-shift er-
rors, 𝑘 order detector-response errors and 𝑘 order light-source-instabilities,
the following bound equations must be satisfied,
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑁
∑

𝑛=1
𝑤𝑛 = 1

𝑁
∑

𝑛=1
𝑤𝑛 cos(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 cos(2𝛿𝑛)

=
𝑁
∑

𝑛=1
𝑤𝑛 sin(2𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 cos(𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 cos(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 cos(𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 cos(2𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 cos(2𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 cos(2𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 sin(𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 sin(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 sin(𝛿𝑛) = 0

𝑁
∑

𝑛=1
(𝑛 − 1)𝑤𝑛 sin(2𝛿𝑛) =

𝑁
∑

𝑛=1
(𝑛 − 1)2𝑤𝑛 sin(2𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
(𝑛 − 1)𝑘𝑤𝑛 sin(2𝛿𝑛) = 0

𝑁
∑

𝑛=1
𝑤𝑛 cos(2𝛿𝑛) cos(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 cos(3𝛿𝑛) cos(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 cos(𝑘𝛿𝑛) cos(𝛿𝑛) = 0

𝑁
∑

𝑛=1
𝑤𝑛 cos(2𝛿𝑛) sin(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 cos(3𝛿𝑛) sin(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 cos(𝑘𝛿𝑛) sin(𝛿𝑛) = 0

𝑁
∑

𝑛=1
𝑤𝑛 sin(2𝛿𝑛) cos(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin(3𝛿𝑛) cos(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 sin(𝑘𝛿𝑛) cos(𝛿𝑛) = 0

𝑁
∑

𝑛=1
𝑤𝑛 sin(2𝛿𝑛) sin(𝛿𝑛) =

𝑁
∑

𝑛=1
𝑤𝑛 sin(3𝛿𝑛) sin(𝛿𝑛) = ⋯

=
𝑁
∑

𝑛=1
𝑤𝑛 sin(𝑘𝛿𝑛) sin(𝛿𝑛) = 0

(35)

4. Error-resistant algorithms to obtain desired properties

To obtain the desired performance of an interferometer, we cus-
tomize the error-resistant algorithm to suppress the given error sources.
For example, the main error sources of the self-developed interferometer
are the first-, second-, and third-order phase-shift error, the first- and
second-order detector-response error, and the first- and second-order
light-source-intensity instability. We use the proposed method to design
phase-shifting algorithm to suppress these error sources. Single phase
shift interval is 𝜋∕2. Assuming the weights are symmetrical, the bound
equations Eq. (35) are solved simultaneously to obtain the following

weights as,

𝑤1 = 𝑤13 =
0.25(𝛽 − 40)

64
; 𝑤2 = 𝑤12 =

0.25(𝛽 − 39)
32

;

𝑤3 = 𝑤11 =
0.25(𝛽 − 36)

32

𝑤4 = 𝑤10 =
0.25(𝛽 − 31)

32
; 𝑤5 = 𝑤9 =

0.25(72 − 𝛽)
64

;

𝑤6 = 𝑤8 =
0.25(51 − 𝛽)

16

𝑤7 =
0.25(52 − 𝛽)

16
; 40 < 𝛽 < 51

(36)

where 𝛽 is an integer. In this case, we get 10 self-designed algorithms
which have the same formula as follows,

𝜙 = arctan
[

−
𝑤2(𝐼2 − 𝐼12) −𝑤4(𝐼4 − 𝐼10) +𝑤6(𝐼6 − 𝐼8)

𝑤1(𝐼1 + 𝐼13) −𝑤3(𝐼3 + 𝐼11) +𝑤5(𝐼5 + 𝐼9) −𝑤7𝐼7

]

(37)

5. Theoretical analysis and numerical simulations

In this section, we use Freischlad’s [3] spectral analysis method to
analyze the self-designed algorithms. In this theory, phase-shifting is
explained as a filtering process in the frequency domain, which allows
us to analyze the performance of phase-shifting algorithms based on
their frequency response. By using Parseval’s identity, Eq. (8) can be
rewritten in continuous format as,

𝜙 = arctan

[

−
∫ 𝑤(𝑡)𝐼(𝑡) sin(𝜈0𝑡)𝑑𝑡

∫ 𝑤(𝑡)𝐼(𝑡) cos(𝜈0𝑡)𝑑𝑡

]

= arg
[

∫ 𝑊 (𝑡)𝐼(𝑡)𝑑𝑡
]

= arg
[

∫ 𝑊 (𝜈)𝐼∗(𝜈)𝑑𝜈
]

(38)

where 𝑊 (𝜈) and 𝐼(𝜈) are the Fourier transform of the window function
𝑊 (𝑡) and the signal 𝐼(𝑡), respectively. Considering the 𝑝 order phase-
shifting errors and 𝑞 order detector-response errors, Shi [9] obtained
the following approximate expression for phase-shifting algorithm,

𝜙′ = arg

{ 𝑞
∑

𝑘=−𝑞

𝜂𝑘
2

exp(𝑖𝜙−𝑘)

[

𝑊 (𝑘𝜈0) + 𝑘
𝑝
∑

𝑗=1
(−𝑖)𝑗+1𝜁𝑗𝑊 𝑗 (𝑘𝜈0)

]}

(39)

Shi obtained the necessary and sufficient condition for 𝜙′ = 𝜙1 as
follows: The Fourier transform of the window function must have 2𝑞
equidistant multiple roots of order 𝑝+ 1 except at 𝑘 = −1, which gives,

𝑊 𝑗 (𝑘𝜈0) = 0, 𝑗 = 0, 1,… , 𝑝,𝑘 = −𝑞,… ,−2, 0, 1,… , 𝑞 (40)

The window function for Algorithm A is,

𝑊 =
[

𝑤1 𝑖𝑤2 −𝑤3 − 𝑖𝑤4 𝑤5 𝑖𝑤6 −𝑤7 − 𝑖𝑤8 𝑤9

𝑖𝑤10 −𝑤11 − 𝑖𝑤12 𝑤13
] (41)

Fig. 1 shows the normalized amplitude spectrum of Algorithm A and
of Zygo 13-buckets algorithm. The Fourier transforms of the window
function of Algorithm A clearly satisfy,

𝑊 𝑗 (𝑘𝜈0) = 0, 𝑗 = 0, 1, 2, 3,𝑘 = −𝑞,… ,−2, 0, 1, 2 (42)

which means self-designed algorithms are simultaneously resistant to a
phase-shift nonlinearity up to third-order and a signal nonlinearity up
to second-order.

From Fig. 1, it is clear that, with the increase of 𝛽, the bandwidth of
window function reduces, side-lobe level increases, and order of zeros
at the integer harmonics of the window function remains unchanged.
It means that, with the increase of 𝛽, the suppression capability of
algorithm to random noise becomes stronger, the order of phase-shifting
error which can be suppressed is unchanged, and the suppression
capability of algorithm to higher order harmonics is weaker [8,16]. So,
if random noise is large, an algorithm with larger 𝛽 should be chosen,
conversely, an algorithm with smaller 𝛽 should be chosen.

From theoretical analysis, we get a conclusion that self-designed
algorithms meet the desired requirements listed in Section 4. Next, we
present some numerical simulations, with example of 𝛽 = 42 named as

56



J. yu et al. Optics Communications 433 (2019) 52–59

Fig. 1. Normalized amplitude spectrum of Algorithm A and of Zygo 13-buckets algorithm.

Fig. 2. (a) PV phase extraction error versus 1st-order light-source-intensity instability. (b) PV phase extraction error versus 2nd-order light-source-intensity instability.

Table 1
Settings of error sources for simulation of light-source-intensity instability.

Error sources Value

1st-order phase-shift error 5%(𝑤𝑖𝑡ℎ 𝑝ℎ𝑎𝑠𝑒 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
2nd-order phase-shift error −0.5%(𝑤𝑖𝑡ℎ 𝑝ℎ𝑎𝑠𝑒 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
3rd-order phase-shift error 0.025%(𝑤𝑖𝑡ℎ 𝑝ℎ𝑎𝑠𝑒 𝑢𝑛𝑖𝑡 𝑟𝑎𝑑𝑖𝑎𝑛𝑠)
1st-order detector-response error 10%(𝑎𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙)
2nd-order detector-response error 10%(𝑎𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙)

Algorithm A, to evaluate the performance of self-designed algorithms
and the Zygo 13-frames algorithm.

PV (peak-to-valley) of phase difference 𝜙(𝑥, 𝑦) influences the phase
extraction error. If the PV of 𝜙(𝑥, 𝑦) is less than a phase period 2𝜋, the
PV of phase extraction error is nearly proportional to the PV of 𝜙(𝑥, 𝑦),
otherwise it is irrelevant. Therefore, we set the PV of 𝜙(𝑥, 𝑦) to be 10
radians (greater than 2𝜋) in following numerical simulations.

Fig. 2(a) and (b) show the phase extraction error induced by the
first- and second-order light-source-intensity instability, respectively.
Table 1 lists the settings of the other error sources for this simulation.
The abscissa gives the coefficient of light-source-intensity instability
expressed in Eq. (29). The curves in Fig. 2 show clearly that the PV phase
extraction error of Algorithm A is very small (from 0.0002 to 0.0006
radians) and changes less with the increase of the coefficient. However,
the PV phase extraction error of Zygo 13-frames algorithm is quite
different: it is nearly proportional to light-source-intensity instability,
and it is much larger, even reaches 0.049 radians. So, Algorithm
A is more insensitive to first- and second-order light-source-intensity
instability.

Fig. 3(a)–(c) show the phase extraction errors induced by the first-,
second-, and third-order phase-shifting errors, respectively. The Zygo
13-frames algorithm is sensitive to light-source-intensity instability, so
this simulation is done without it, but with 10% first-order and 10%
second-order detector response error (at normalized gray level). The red
curves, which represent Algorithm A, shown in Fig. 3(a)–(c) are always
below the green curves, which represent Zygo 13-frames algorithm. It
means PV phase extraction error of Algorithm A is always smaller than
that of the Zygo 13-frames algorithm. Even if the coefficients reach
the maximum, the PV phase extraction error of Algorithm A is small
than one third of the PV phase extraction error of Zygo 13-frames
algorithm. This simulation proves that Algorithm A is more resistant
to first-, second-, and third-order phase-shifting errors.

Fig. 4(a) and (b) show the phase extraction errors induced by
the first- and second-order detector-response error, respectively. This
simulation is done without light-source-intensity instability for the
same reason as above, but with 5% first-order, −0.5% second-order,
and 0.025% third-order phase-shift error (with the phase in units of
radians). As shown in Fig. 4(a), both curves do not change with the
increase of coefficient, it means both algorithms are resistant to first-
order detector-response error. The curves in Fig. 4(b) are quite different.
The red curve, which represents Algorithm A, is always below the green
one, which represents Zygo 13-frames algorithm, and it changes much
slower. And the green curve is 3 − 5 times larger than the red one.
Obviously, Algorithm A is more resistant to first- and second-order
detector-response errors.

In summary, Algorithm A, which is designed by the proposed
method, is resistant to first-, second-, and third-order phase-shifting
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Fig. 3. (a) PV phase extraction error versus first-order phase-shift error. (b) PV phase extraction error versus second-order phase-shift error. (c) PV phase extraction error versus third-order
phase-shift error.

Fig. 4. (a) PV phase extraction error versus first-order detector-response error. (b) PV phase extraction error versus second-order detector-response error.

error, first- and second-order detector-response error, and first- and
second-order light-source-intensity instability. These results verify the
proposed method and demonstrate its effectiveness.

6. Conclusions

This paper proposes a comprehensive method to design effective
phase-shifting algorithms which are resistant to various error sources,
such as the multi-order phase-shift error, detector-response error, and
light-source-instability. Aiming at a self-designed interferometer, we
consider the error source induced by nonideal performance of devices,
and use the proposed method to design phase-shifting algorithms which

are capable of suppressing interested error sources. The self-designed
algorithms are evaluated through Fourier transform spectral analysis
and numerical simulations. The results indicate that the self-designed
algorithms are resistant to the given error sources, meet the desired
requirements, and its PV phase extraction error is much smaller than
that of the Zygo 13-frames algorithm. Therefore, the proposed method
is verified and its effectiveness is demonstrated.
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