
remote sensing  

Article

Soil Moisture Retrieval Model for Remote Sensing
Using Reflected Hyperspectral Information

Jing Yuan 1,2, Xin Wang 1,2, Chang-xiang Yan 1,3,*, Shu-rong Wang 1, Xue-ping Ju 1,2 and Yi Li 1,2

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; 15543665143@163.com (J.Y.); percyet@126.com (X.W.);
srwang@ciomp.ac.cn (S.-r.W.); juxueping14@mails.ucas.ac.cn (X.-p.J.); liyi_zju@163.com (Y.L.)

2 University of the Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials Science and Optoelectrics Engineering, University of Chinese Academy of Science,

Beijing 100049, China
* Correspondence: yancx0128@126.com; Tel.: +86-186-4307-5317

Received: 26 December 2018; Accepted: 7 February 2019; Published: 12 February 2019
����������
�������

Abstract: The variation and the spatial–temporal distribution of soil water content have significant
effects on heat balance, agricultural moisture, etc. A soil moisture (SM) retrieval model can provide a
theoretical basis for realizing a rapid test and revealing the spatial–temporal variation of the surface
water. However, remote sensors do not measure soil water content directly. Therefore, it is of great
importance to establish a SM retrieval model. In this paper, the relationship between SM and diffuse
reflectance was first derived using the absorption coefficient and scattering coefficient related to SM.
Then, based on Kubelka–Munk (KM) theory, the SM retrieval model using reflectance information
was further derived, which is a semi-empirical model with an unknown parameter obtained either
from fitting or from experimental measurements. The validity and reliability of the model were
confirmed with the validation set. The results showed that the root mean square errors of prediction
(RMSEPs) of four soils were generally less than 0.017, while the coefficients of determination (R2s) of
four soils were generally more than 0.85, and the ratios of the performance to deviation (RPDs) of
four soils were greater than 2.5 (470–2400 nm). Therefore, the model has high prediction accuracy,
and can be well applied to the prediction of water content in different sorts of soils.

Keywords: hyperspectral remote sensing; soil moisture retrieval model; reflectance;
semi-empirical model

1. Introduction

Soil moisture (SM) seriously affects the physical and chemical properties of soil and the growth of
vegetation. The monitoring of SM plays a decisive role in crop yield estimation, drought monitoring,
and evapotranspiration [1,2]. Compared with the traditional fixed-point monitoring method, the
remote sensing technology can be used to realize the real-time and dynamic monitoring of SM in
a large area. At present, there are four main methods of SM remote-sensing monitoring, namely
thermal inertia [3,4], microwave remote sensing [5], the vegetation index [6], and hyperspectral remote
sensing. By comparing these methods, the application of hyperspectral remote sensing in retrieving
SM has attracted the attention of researchers [7–16], because it can be used to identify the absorption
characteristics of SM at different spectral bands with high spectral resolution and spatial resolution.

In the light of the physical sense, three classes of optical models may be distinguished in this
article, which are the semi-empirical model [17–21], physical model [22–27], and empirical/statistical
model [28–32]. The key papers for these models are summarized in Table 1. The semi-empirical model
has higher accuracy than the physical model, and it has more generality than the statistical/empirical
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model. It not only uses measurement data, but also draws on basic physical principles [33]. Physical
models are fully formulated based on the physics of radiative transfer. These models are usually
exposed to input information that is difficult to determine. The empirical/statistical model is based
on machine learning techniques such as support vector machine and artificial neural networks et
al., and provides formidable tools for inferring the surface SM in complex/heterogeneous media.
However, these models are in defect regarding the physical origin, and thus require a vast database
for calibration. Consequently, studies on the quantitative retrieval of soil water content based on the
semi-empirical model that have crucial significance are provided.

Table 1. Summary of three classes of optical models.

Optical Model Author Key Results

Semi-empirical model

Liu et al. (2004)
Adopted the methods of relative reflectance, first-order
differential and difference in the prediction and modeling of
soil surface moisture.

Deng et al. (2004) Established a moisture content model of rough soil based on the
physical process of soil spectral scattering.

Whiting et al. (2004) Fitted an inverted Gaussian function to the continuum and
calibrated the area below the curve to soil moisture content (SMC).

Yang et al. (2011)
Established the soil water parametric (SWAP)–Hapke model by
introducing the soil water content information into the soil
bidirectional reflectance model (SOILSPECT).

Sadeghi et al. (2015) Proposed a model based on the Kubelka–Munk (KM) two-flux
radiative transfer model.

This study Established a SM retrieval model using the absorption coefficient
and scattering coefficient related to SM based on KM theory.

Physical model

Ångström (1925)
Proposed a simple model where a wet soil is regarded as a dry soil
covered with a thin film of liquid water.

Lekner and Dorf (1988) Improved the Ångström model by using the Fresnel coefficients
instead of Snell’s law

Bach and Mauser (1994)
Introduced the Beer–Lambert–Bouguer law to account for light
absorption in the water layer and extended the model to the
visible light-short-wave infrared (VIS-SWIR)

Kimmel and Baranoski (2007) Published a ray tracing model called SPLITS (spectral light
transport model for sand)

Philpot (2010) Proposed a simple waterborne soil reflectance spectrum
simulation model

Sun et al. (2015) Improved the Philpot model by exploring the relationship
between the soil water content and two parameters

Empirical/statistical model

Zaman et al. (2012) Established a moisture content model using relevance vector
machines and support vector machines

Hassan Esfahani et al. (2015) Developed an artificial neural network (ANN) model to quantify
the effectiveness of using spectral images to estimate surface SM

Wang et al. (2017) Proposed a soil near-infrared spectroscopy prediction model
based on deep sparse learning

Wang et al. (2015) Developed a regression model between polarization and SM.

Wu et al. (2015)
Developed a SM prediction model with multiple linear regression,
principal component regression, and partial least-squares
regression, respectively

However, the accuracy of the semi-empirical SM retrieval model remains to be raised. To solve this
problem, we present a concise model with physically definable parameters based on the KM theory.
The model is designed to describe the diffuse scattering of the absorbing and scattering medium.
In previous studies, the diffuse reflectance in the Kubelka–Munk (KM) model is usually regarded as
a parameter that needs to be inverted or constant for a given material and illumination wavelength.
Nevertheless, it is found that diffuse reflectance is not only related to the material and wavelength,
but also to the soil water content. The reason is that the absorption and scattering coefficients of soil
are both affected by the soil water content, and diffuse reflectance is the function of the absorption
and scattering coefficients based on the KM model. The model could estimate the water content of
different sorts of soils with higher accuracy than before.
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In this study, we aimed to: (1) investigate the influence of SM on the reflectance spectra; (2) present
a concise model with physically definable parameters, which has good applicability and high accuracy,
based on the KM theory; (3) verify whether the model can estimate the water content of different sorts
of soils with high accuracy.

2. Materials and Methods

2.1. Soil Sample Preparation and Rewetting Experiment

In 2016, black soil samples were collected in Qiqihar (126◦40′18.71′′E, 47◦37′18.28′′N,
Hei Long-jiang Province). In 2018, loessial soil, forest brown soil, and agricultural brown soil
samples were collected in Changchun (respectively from 125◦24′9.26′′E, 43◦47′8.27′′N; 125◦26′34.3′′E,
43◦47′6.2′′N; and 125◦25′36.86′′E, 43◦47′15.71′′N, Ji Lin Province). The major types of land are
forestland and farmland. For each kind of soil, the soil samples come from the same sampling
site, so it is considered that the same kind of soil has the uniform soil particle property (i.e., mineral
composition, organic matter, nutrients, etc.), ignoring the influence on the reflectance spectra of slight
differences in organic matter, etc. The granulometric analysis with the mineralogical composition of
four soils is shown in Table 2. The collected soil samples were further air-dried, and crushed to pass
through a one-mm sieve so that stones, roots, and the vegetation litter were avoided from soils.

Table 2. Granulometric analysis with the mineralogical composition of four soils.

Soil Name Sand Contents/% Silt Contents/% Clay Contents/% Mineralogical Composition

Black soil 40.63 24.87 34.50 Illite, montmorillonite

Forest brown soil 19.22 40.06 40.72
Hydromica,

montmorillonite, and
kaolinite

Agricultural brown soil 26.92 45.01 28.07 Hydromica, kaolinite, and
vermiculite

Loessial soil 28.36 17.89 53.75 Kaolinite, illite, and
montmorillonite

The soil water content in this literature refers to the weight water content (the ratio of the weight
of water in the soil to the weight of dry soil). Prior to the rewetting experiment, all of the soil samples
were oven-dried at 105 ◦C for 24 h to eliminate soil water. Approximately 100 g of oven-dried soil for
each sample was weighed using a scale (accuracy = 0.01 g) in the laboratory, and then placed in a petri
dish. In order to prepare samples with different humidity gradients, they were wetted with different
amounts of water. Water was sprayed into each soil sample while stirring so that the soil and water
were fully mixed. After spraying, the soil sample was placed in a sealed bag with a good sealing effect
and kept for 24 h, with the consequence that the soil could fully absorb water (Figure 1). The SM could
be calculated from the amount of the water added. As a result, black soil samples, loessial soil samples,
forest brown soil samples, and agricultural brown soil samples were prepared with 15 different SM
levels, 14 different SM levels, 15 different SM levels, and 16 different SM levels, respectively.
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2.2. Spectral Measurement and Pre-Processing

The hyperspectral reflectance data were acquired in a dark room using an ASD FieldSpec.3
Portable Spectrometer (Analytical Spectral Devices, Boulder, CO, USA). The main geometric
parameters of the spectrometer set-up were illustrated as follows (Figure 2): a 50-W halogen lamp as
the unique light source with a 30◦ incident angle was used to reduce the shadow effect caused by soil
roughness.The lamp was set 10 cm away from the petri dish; the probe was mounted vertically about
five cm above the dish, and the field angle of the probe was one degree. The soil depth was one cm.
In order to obtain the absolute reflectance, the reflectance was standardized using a white Spectralon
reference panel [34]. The arithmetic average of 10 spectral curves collected from each soil sample was
regarded as the actual reflectance spectrum data.

Before the original spectral data were exported, splice corrections were calculated using view
Spec™ software (version 6.0.0, ASD Inc., Longmont, CO, USA) to solve the breakpoint phenomena
around 1000 nm and 1800 nm. The reflectance of each spectrum was narrowed to 470–2400 nm.
To eliminate the noise in the spectra, the study applied RLOWESS smoothing to the original reflectance
spectra curve.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 
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2.3. KM Model

The KM [35] model describes radiative transfer, considering a downward and an upward light
propagation flux (I and J, respectively), in an absorbing and scattering medium, perpendicular to the
layer (Figure 3). The model assumes that (i) the layer exhibits an infinite lateral extension (so that the
edge effects can be neglected); (ii) the light absorbing and scattering particles are uniformly distributed
in the layer; (iii) particle dimensions are much smaller than the layer thickness, d, and (iv) the whole
layer is homogeneously illuminated with a monochromatic diffuse light source [36,37].
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The KM model consists of two differential equations describing the light fluxes, I(λ, z) and J(λ, z),
at a given wavelength, λ (nm), and at a depth in the layer, z (cm), with a light absorption coefficient,
k (cm−1), and a light scattering coefficient, s (cm−1):

dI(λ, z)
dz

= −(k + s)I(λ, z) + sJ(λ, z), (1)

dJ(λ, z)
dz

= (k + s)J(λ, z)− sI(λ, z). (2)

By analytically solving these equations, reflectance (R) can be obtained [38]:

R =
(1− β)2[exp(αd)− exp(−αd)]

(1 + β)2exp(αd)− (1− β)2exp(−αd)
, (3)

where α =
√

k(k + 2s); β =
√

k/(k + 2s)
With increasing layer thickness, d, the reflectance reaches the infinite reflectance value, R∞, which

is used in diffuse reflectance spectroscopy, because a further increase of the sample thickness does not
affect the measured signal. In this case, the calculation of the infinite reflectance in Equation (3) can be
drastically simplified:

R∞ =
(1− β)

(1 + β)
= 1 +

k
s
−

√(
k
s

)2
+ 2

k
s

. (4)

By solving this equation for k/s, one gets the so-called Kubelka–Munk function:

r =
k
s
=

(1− R∞)2

2R∞
. (5)

2.4. SM Retrieval Model

For wet soil, reflectance, which is related to SM, mainly depends on diffuse scattering [39].
The relationship can be expressed as:

R = Rd = (1− Ri)
(1− k2)R∞

1− k2R∞
, (6)

where k2 is the Fresnel reflectance for diffuse light that exits the material and transits a thin layer–air
interface at the material surface. In general, k2 is a function of the surface roughness, refractive index,
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and scattering angles. It is often assumed to be approximately equal to Ri or treated as a constant [39].
Ri is the Fresnel reflectance for light incident in air upon the target surface [21]:

Ri =

(
nwater − nair
nwater + nair

)2
, (7)

where nwater is the refractive indices of water (≈1.33), and nair is the refractive indices of air (≈1).
Equation (6) can be rearranged as:

R∞(R) =
R

(1− Ri)
2 + R·Ri

. (8)

Combining Equations (5) and (8) yields:

r(R) =
k
s
=

(1− R∞)2

2R∞
=
{1− [ R

(1−Ri)
2+R·Ri

]
2}

2R
(1−Ri)

2+R·Ri

. (9)

Variables R∞ and r can be expressed mutually using Equations (4) and (5). The absorption and
scattering coefficients are both affected by soil water content; thus, in the following modeling process,
they will be equally considered as remotely sensible variables to estimate the SM.

Equation (9) shows that reflectance R is affected by the absorption and scattering coefficients
(k and s) of the soil, because they are functions of the soil particle characteristics (i.e., mineral
composition, organic matter, nutrients, etc.) and the soil water content. A frequently effective and
commonly accepted assumption is that the absorption and scattering coefficients of a mixed medium
can be regarded as a simple sum function of the absorption and scattering coefficients weighted by
their composition proportions [38,40,41]. Given this assumption, we can describe the k and s of the
soil surface as:

k(θ) = ksolid(1− θ) + kwaterθ, (10)

s(θ) = ssolid(1− θ) + swaterθ, (11)

where θ is the soil water content, ksolid and kwater are the absorption coefficients of solid and water, and
ssolid and swater are the scattering coefficients of solid and water, respectively. The optical properties
of soil water are different from pure water, as it contains not only pure water, but also dissolved
organic matter and ions in addition to suspended particles, and the water itself is partially bound to
the soil [26]. When the soil water content is θ1, the absorption and scattering coefficients of the soil,
which are denoted as k1 and s1, can be written as:

k1 = ksolid(1− θ1) + kwaterθ1, (12)

s1 = ssolid(1− θ1) + swaterθ1. (13)

Equations (10) and (11) can be written as:

k(θ) = k1

(
1− θ

1− θ1

)
+ kwater

(
θ − θ1

1− θ1

)
, (14)

s(θ) = s1

(
1− θ

1− θ1

)
+ swater

(
θ − θ1

1− θ1

)
, (15)

Combining Equations (14), (15), and (5) yields:
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r(θ) =
k(θ)
s(θ)

=
k1

(
1−θ
1−θ1

)
+ kwater

(
θ−θ1
1−θ1

)
s1

(
1−θ
1−θ1

)
+ swater

(
θ−θ1
1−θ1

) . (16)

The absorption and scattering coefficients of a soil sample, whether dry or wet, can be directly
measured. Nonetheless, a more convenient and practical algorithm is one in which the numerator
and denominator on the right side of Equation (16) are simultaneously divided by the scattering
coefficient s1:

r(θ) =
r1

(
1−θ
1−θ1

)
+ a1

(
θ−θ1
1−θ1

)
(

1−θ
1−θ1

)
+ a2

(
θ−θ1
1−θ1

) , (17)

with:
a1 =

kwater

s1
, (18)

a2 =
swater

s1
, (19)

r1 =
k1

s1
=

(1− R1)
2

2R1
, (20)

where R1 is the reflectance of the soil in which the water content is θ1.
Mainly due to the strong absorption of water in the soil, the scattering of water in the soil is very

weak, and even can be ignored compared with the scattering of water-bearing soil. Thus, a2 = 0 [15],
the model contains only one unknown parameter, and Equation (17) can be simplified to:

r(θ) =
r1

(
1−θ
1−θ1

)
+ a1

(
θ−θ1
1−θ1

)
(

1−θ
1−θ1

) . (21)

For remote-sensing applications, one needs to retrieve the soil water content from the reflectance
data. For such an application, Equation (21) can be solved explicitly for soil water content as:

θ(R) =
r(R)−r1

a1
+ θ1

r(R)−r1
a1

+ 1
, (22)

with:

r1 =
k1

s1
=

(1− R1)
2

2R1
, (23)

r(R) =
{1− [ R

(1−Ri)
2+R·Ri

]
2}

2R
(1−Ri)

2+R·Ri

. (24)

2.5. Calibration and Validation

Data sets partitioning methods include the concentration gradient, random sampling,
Kennard–Stone (KS), the sample set partitioning based on the joint x–y distance (SPXY), and the
concentration gradient method that is used in this paper.

Different sorts of soil were similarly treated as follows: the whole set (n = 14, 15, or 16) was sorted
in ascending order according to the SM level; one sample was selected as θ1, and we used a stratified
sampling approach to separate the samples into four strata with three or four intervals, and one sample
was selected from each stratum as an independent validation set. The remaining samples were selected
as a calibration set.
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The root mean square error of prediction (RMSEP), R2, and ratio of the performance to deviation
(RPD) between the predicted and measured SM were selected to evaluate the model performance.
Generally, the larger R2, the RPD, and the smaller RMSEP were indicators of a superior model.
Interpretations of RPD values were classified into five classes: RPD < 1.4 indicated unacceptable
models/predictions; 1.4 ≤ RPD < 1.8 indicated fair models/predictions; 1.8 ≤ RPD <2.0 indicated
good models/predictions; 2.0 ≤ RPD < 2.5 indicated very good models/predictions; and RPD ≥ 2.5
indicated excellent models/predictions [42,43]. All of the data analyses were carried out in Matlab
R2014b (The Math Works Inc.: Natick, MA, USA).

2.6. Unknown Parameter Acquirement

The unknown parameter a1 is the ratio of kwater, the absorption coefficient of soil water, to s1, the
scattering coefficient of soil with a water content of θ1. a1 is wavelength dependent, because kwater is
dependent on the wavelength. It needed to be acquired according to the calibration set based on a
least-squares algorithm. The best criterion for model parameter selection is to minimize the residual
sum of squares between the simulated and the measured value. The optimization objective function is
constructed as follows:

min∆R(θ) = ∑(Rmeasure − Rmodel)
2, (25)

where Rmeasure is the measured value for the laboratory, and Rmodel is the theoretical value of the model.
All of the data analyses were carried out in Matlab R2014b.

3. Results

3.1. Descriptive Statistics of SM

The summary statistics of SM for the whole, calibration, and validation sets are provided in
Table 3, respectively, for four soils. For black soil, agricultural brown soil, and loessial soil, the values
of the mean, standard deviation (SD), and coefficient of variation (CV) from three sets in every soil
sample were relatively similar. As for forest brown soil, the calibration set varied from 0.08 (100 g of
dry soil includes eight grams of water) to 0.22 with a CV of 30.76%, and the range in the validation set
was from zero to 0.2 with a CV of 68.51%. Generally speaking, the characteristic statistics of both the
calibration and the validation set were similar to the whole set, indicating that they were well divided
to represent the whole set. In addition, the moisture contents of the various samples were relatively
uniformly distributed across their range.

Table 3. Statistical description of SM contents for four sorts of soils. CV: coefficient of variation.

Soil Dataset
Name Number Maximum Minimum Mean SD CV (%)

Black soil
whole 14 0.24 0 0.1421 0.0662 46.6

calibration 10 0.24 0 0.1460 0.0701 48.02
validation 4 0.2 0.06 0.1325 0.0640 48.28

Forest
brown soil

whole 14 0.22 0 0.1393 0.0566 40.66
calibration 10 0.22 0.08 0.1430 0.0440 30.76
validation 4 0.2 0 0.1300 0.0891 68.51

Agricultural
brown soil

whole 15 0.23 0 0.1493 0.0649 43.43
calibration 11 0.23 0 0.1418 0.0698 49.24
validation 4 0.22 0.1 0.1700 0.0510 30.00

Loessial
soil

whole 13 0.18 0.04 0.1092 0.0427 39.10
calibration 9 0.18 0.04 0.1089 0.0459 42.20
validation 4 0.15 0.07 0.1100 0.0408 37.11
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3.2. Reflectance Spectral Feature of Four Soils at Different SM Levels

To analyze the influence of SM on the reflectance spectra, the spectral reflectance of four soils at
different SM levels was partially investigated (Figure 4). The spectral curves at different SM levels
showed similar shapes, which were parallel in substance, but with different intensities. Three obvious
absorption peaks around 1420 nm, 1940 nm, and 2200 nm were exhibited in all of the SM levels.
The difference of spectral reflectance for four soils at different SM levels depended on the location and
depth of the shift of water absorption peak. The visible bands were less sensitive to changes in SM
than the short-wave infrared (SWIR) bands. From Figure 4, it could be seen that the reflectance spectra
of different sorts of soils were diverse, which was mainly because the soil particle characteristics
(i.e., mineral composition, organic matter, nutrients, etc.) of different sorts of soils were distinct.
The diversity of the soil optical properties exhibited in Figure 4 illustrate how the proposed models
work for a range of soils.
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The visible bands were less sensitive to changes in SM than the SWIR bands. The study from
Liu et al. [44] also pointed out that the change of soil spectral reflectance with water content in the
SWIR band was significantly larger than that in the visible band, and the effect of water content on the
soil spectral reflectance in the SWIR band was stronger than that in the visible band. The reflectance in
the visible light band tends to saturate the change of soil water content. In the visible light band, the
only role that water plays is to change the relative refractive index of the soil particle surface. With the
increase of the soil water content, water is absorbed to the surface of the soil particle first, and then
filled into smaller and larger pore sizes in turn. Therefore, once enough water is absorbed on most of
the surface soil particles, the remaining water is filled into larger pores, which has little effect on the
reflectivity of the visible light band. On the contrary, the SWIR spectral reflectance varies greatly with
the increase of SM.
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3.3. SM Retrieval Model

The θ1 values of black soil, forest brown soil, agricultural brown soil, and loessial soil were
respectively 0.04, 0.04, 0.08, and 0.06. The unknown parameter a1 was acquired by the least-squares
algorithm combining the calibration set, wavelength-by-wavelength, in the range of 470 to 2400 nm
(Figure 5).Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 
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3.4. SM Estimation

Using the model mentioned in Equation (22), we could estimate the SM with a validation set.
The retrieved result is displayed in Figure 6. The RMSEPs between the estimated and measured SM
were computed wavelength-by-wavelength in the range of 470 to 2400 nm. Figure 6a is a spectrum
diagram of the RMSEPs of black soil, which were generally less than 0.015, and the RMSEP at 1917 nm
was 0.009879, which was the smallest. As for forest brown soil, the RMSEPs, which are shown in
Figure 6b were generally less than 0.015, and the RMSEP at 1930 nm was 0.00665, which was the
smallest. As shown in Figure 6c, the RMSEPs of agricultural brown soil were generally less than 0.017,
and the RMSEP at 520 nm was 0.01145, which was the smallest. As for loessial soil, the RMSEPs, which
are shown in Figure 6d, were generally less than 0.014, and the RMSEP at 608 nm was 0.007487, which
was the smallest. In summary, the model had high prediction accuracy and could be well applied to
the prediction of moisture content in different sorts of soils.

The R2 values between the estimated and measured SM were computed in the range of 470 to
2400 nm, wavelength by wavelength. The R2 values of black soil, forest brown soil, agricultural brown
soil, and loessial soil were generally more than 0.925 (Figure 7a), 0.96 (Figure 7b), 0.85 (Figure 7c), and
0.85 (Figure 7d), respectively. Thus, the model had high stability.

From Figure 8, the RPDs of the four soils were greater than 2.5. The model had good prediction
ability, and it could be well applied to the prediction of moisture content of different sorts of soils.

In the range of 470 to 2400 nm, the study used four validation samples to confirm the retrieved
results, wavelength by wavelength (Figure 9). It could be observed that there was a significant linear
relationship between the SM derived from the estimation and the actual measurement results.
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In order to concretely depict the accuracy of the model mentioned in Equation (22), the RMSEs of
the measured and simulated moisture content of four validated samples of four soils were computed
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in the range of 470 to 2400 nm (Table 4), which ranged from 0.0053 to 0.0218, it further showed that the
model could estimate the moisture content of different soils with high accuracy.

Table 4. RMSE of four validation samples of four soils in the range of 470 to 2400 nm. RMSE: root
mean square error.

Soil Moisture Contents RMSE

Black soil

0.06 0.0159
0.10 0.0181
0.17 0.0088
0.02 0.0063

Forest brown soil

0.00 0.0218
0.15 0.0130
0.17 0.0054
0.20 0.0062

Agricultural brown soil

0.10 0.0171
0.17 0.0118
0.19 0.0189
0.22 0.0118

Loessial soil

0.07 0.0061
0.08 0.0160
0.14 0.0053
0.15 0.0118

To further verify the validity of the model, four samples were randomly selected from the
whole sets of the four soils as the validation sets, and the remaining samples were calibration sets.
The unknown parameter a1 in Equation (22) was inverted using the validation set, and then the SM
was estimated by randomly selecting four verification samples. The RMSEPs between the estimated
and measured SM were computed at six wavelengths corresponding to various bands of Landsat TM
and ETM+ satellite, including band one (blue, 480 nm), band two (green, 560 nm), band three (red,
660 nm), band four (near infrared, 830 nm), band five (SWIR, 1650 nm), and band seven (SWIR, 2210
nm). The above procedure was repeated 50 times, and the minimum value, the maximum value, and
the average value of RMSEPs were calculated at six wavelengths, respectively. The results (Table 5)
show that the mean value of the RMSEPs of four soils ranged from 0.0084 to 0.0297, which reveals that
the model can effectively invert the soil water content, and the partitioning of the validation set and
the calibration set has an impact on the accuracy of the model, even though the impact is not great.
Compared with the random sampling, the concentration gradient method for the data sets’ partition
can obtain relatively high-precision results.

Table 5. Statistical description of RMSEPs; these are calculated 50 times.

Wavelength 480 nm 560 nm 660 nm 830 nm 1650 nm 2210 nm

Black soil

Concentration gradient 0.0148 0.0116 0.0119 0.0112 0.0147 0.0134
Minimum 0.0106 0.0083 0.0087 0.0062 0.0107 0.0102
Maximum 0.0335 0.0225 0.0220 0.0209 0.0254 0.0230

Mean 0.0260 0.0149 0.0149 0.0152 0.0180 0.0182

Forest brown soil

Concentration gradient 0.0082 0.0135 0.0131 0.0150 0.0136 0.0117
Minimum 0.0025 0.0059 0.0046 0.0069 0.0109 0.0099
Maximum 0.0283 0.0188 0.0183 0.0201 0.0261 0.0358

Mean 0.0168 0.0121 0.0117 0.0135 0.0220 0.0297

Agricultural
brown

Soil

Concentration gradient 0.0155 0.0176 0.0159 0.0154 0.0156 0.0135
Minimum 0.0034 0.0067 0.0078 0.0054 0.0072 0.0121
Maximum 0.0284 0.0236 0.0220 0.0215 0.0195 0.0275

Mean 0.0141 0.0170 0.0164 0.0152 0.0161 0.0181

Loessial soil

Concentration gradient 0.0152 0.0087 0.0077 0.0090 0.0106 0.0121
Minimum 0.0055 0.0048 0.0029 0.0040 0.0053 0.0075
Maximum 0.0257 0.0151 0.0132 0.0125 0.0157 0.0144

Mean 0.0160 0.0101 0.0086 0.0084 0.0121 0.0123
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4. Discussion

KM theory is widely used to model the diffuse scattering behavior in the bulk of the material.
Le Hors et al. [39] simplified the original KM theory by developing a diffuse scattering coefficient,
which is the ratio of the diffuse scatter intensity to the scatter from a perfect Lambertian surface.
Yang et al. [45] regarded the diffuse reflectance in the KM model as a parameter that needs to be
inverted. Zhan et al. [46] regarded the diffuse reflectance in the KM model as a constant for a given
material and illumination wavelength. However, the study found that diffuse reflectance was not
only related to material and wavelength, but also to soil water content. Combining the absorption
coefficient and scattering coefficient related to soil water content, the relationship between soil water
content and diffuse reflectance was derived. Furthermore, the SM retrieval model using reflectance
information was established, which is a semi-empirical model with an unknown parameter obtained
either from fitting or from experiment measurements.

The unknown parameter a1 was acquired by the least-squares algorithm combining the calibration
set, wavelength by wavelength, in the range of 470 to 2400 nm (Figure 5). The trend of spectra was
consistent with the SM absorption spectrum that was studied by William Philpot [26]. There are three
moisture absorption bands which are around at 1420 nm, 1940 nm, and 2800 nm [26]. The spectrum of
about before 1200nm was caused by the absorption of dissolved organic material, which was described
by a model suggested by Bricaud et al. Absorption by the soil pore water is not the same as absorption
by pure water [47,48]. The absorption spectrum of moisture was modified, which was probably due to
absorption by substances dissolved in the moisture and/or as a result of water being partially bound
to the soil [26].

The results of moisture content estimation indicated that the model could be well applied to the
prediction of moisture content in different sorts of soils with high prediction accuracy (RMSEPs of four
soils ≤0.017), high stability (R2 values of four soils ≥0.85), and good prediction ability (RPDs of four
soils ≥2.5). Figures 6–8 indicate a greater potential of SWIR bands than the visible and near-infrared
bands for the remote sensing of SM, because reflectance values in the SWIR bands correspond to unique
levels of SM. This study further verifies previous findings [19,49] that the SWIR wavelengths provide
the optimal bands in the solar domain (i.e. wavelength between 350–2500 nm) for the remote sensing
of SM. Compared with other soils, the prediction accuracy of loess is higher. The different behavior
of the loessial soil may be related to its porosity and organic carbon content, which are significantly
lower than those of the three other soils. The results in Table 5 show that for semi-empirical models,
the partitioning of the validation set and the calibration set has an impact on the accuracy of the
model, which is consistent with many previous studies. In order to obtain high-precision results, the
partitioning of set algorithms such as the concentration gradient, KS, and SPXY are useful.

One significant advantage of the proposed model is that it has high prediction accuracy and
can be well applied to the estimation of moisture content of different sorts of soils. Another crucial
advantage of the model is that it is not restricted to a single band or wavelength. Properly calibrated,
it is competent to describe the response of reflectance to water content over the full optical range.
A distinct constraint of the model is that it contains an unknown parameter, and thus requires soil
information a priori to be solved (i.e. calibration). This is not an unvanquishable prerequisite, given
that our master intent in modeling the SM–reflectance relationship has been to remotely retrieve
surface SM for environmental and agricultural applications. All of the optical methods will suffer from
a shallow penetration depth of the optical bands, as well as limited applicability in vegetated soils.

5. Conclusions

In this literature, firstly, based on the KM theory, the relationship between spectral reflectance and
diffuse reflectance was established, and then the relationship between soil water content and diffuse
reflectance was derived using the absorption coefficient and scattering coefficient related to soil water
content. Then, finally, an SM retrieval model using reflectance information was established, which is a
semi-empirical model with an unknown parameter obtained either from fitting or from experiment
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measurements. Combined with the spectral reflectance data measured by experiment, the model
parameter was acquired based on the least square algorithm. The validity and reliability of the model
were verified with an independent validation set. The results showed the following. (1) The RMSEPs
of four soils between estimated and measured soil water content were generally less than 0.017, and in
the range of 470 to 2400 nm. Comparing the accuracy of four soils, the highest accuracy was found in
forest brown soil; its RMSEP at 1930 nm was 0.00665, which was the smallest. The R2 values of four
soils were generally more than 0.85. The RPDs of four soils were greater than 2.5. (2) The RMSEs of
four validated samples of four soils that were computed in the range of 470 to 2400 nm ranged from
0.0053 to 0.0218. Therefore, the model has high prediction accuracy and can well be applied to the
prediction of water content in different sorts of soils.

This study was the first step toward focusing on the theoretical aspects of the model and its
testing under well-controlled laboratory conditions. Future studies are underway to examine/extend
the model for field and large-scale applications when facing challenges such as high degrees of
heterogeneity, surface roughness, topographical features, shadow effects, etc.
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