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A B S T R A C T

Unlike rotational symmetric surfaces, free-form surfaces have sophisticated degrees of freedom, therefore, are
more difficult to be aligned. In this work, a practical and accurate correction method is proposed for the
misalignment removal of the free-form surface in a non-null interferometric testing system based on computer
modeling. The misalignment aberrations, introduced by axial location error, rotation error and non-axial attitude
error, are modeled and corrected step by step. The axial and non-axial positions of the free-form surface in the
computer model are adjusted from the ideal position to the misaligned one, matching the actual positions in
experiment for the correction. Since the modeled position are tuned to be consistent with the actual one, all the
misalignment aberrations can be removed from the test wavefront with the reconstruction algorithm. Computer
simulations are displayed to verify the accuracy of the proposed method. Experimental results after alignment
show basic consistency with the results of Taylor Hobson Profilometer, in which the peak-to-valley (PV) value
error of the profile line is better than 1/30𝜆.

1. Introduction

Compared with spherical and aspheric optics, free-form surfaces
can provide more degrees of freedom in optical design [1]. Therefore,
they are very popular in the field of lighting, display, and imaging,
etc. [2]. The fabrication technology for free-form surfaces has made a
great progress in recent years. To keep pace with the development of
fabrication, a high-precision metrology is needed. Currently, several as-
pheric and free-form surface testing methods have been proposed, such
as using Shack–Hartmann sensor [3], phase measuring deflectometry
[4,5], and interferometry [6–11], etc. As one of the most accurate testing
methods, interferometry has made great achievements in the testing of
free-form surfaces. With the help of special null optics, such as computed
generated holograms (CGH) [8], null interferometry can achieve high-
precision measurement. However, every test part requires one unique
null optics, which strongly reduces the versatility of null interferometry.
On the contrary, non-null interferometry such as sub-aperture stitching
interferometer (SSI) [10] and tilted-wave-interferometer (TWI) [11],
can provide much better versatility. By replacing the standard null
compensator with the partial null lens (PNL), the partial compensating
interferometer can obtain better versatility and keep high accuracy for
the free-form surface test with the retrace error correction algorithms.

In either null or non-null interferometry, the misalignment of the
free-form surface has always been one of the most important factors
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restricting the testing accuracy. The advantage of the null interfero-
metric setup is that the testing results directly show the deviation of
the test surface from the standard shape. Slight misalignment between
the interferometric setup and the free-form surface under test will
produce large aberrations, leading to high fringes density. Subsequently,
alignment can be adjusted effectively based on the density of testing
interference fringes. For non-null interferometric setup, it allows the
introduction of higher fringes density, usually with the additional
retrace error correction. However, the residual wavefront aberrations
in the test wavefront make it difficult to distinguish the misalignment
aberrations from the figure error and retrace error. Hou et al. [12]
removed the first four terms from Zernike coefficients of the test
wavefront directly and successfully aligned the aspheric under test.
Baer et al. [13] proposed a calibration method for the radial and axial
displacement of the aspheric based on TWI, which mainly includes the
adjustment of the interferometric setup, as well as the coarse and five-
dimensional adjustment of the test surface. Li et al. [14] proposed a
method for the rotation error controlling of free-form surface in TWI and
achieved promising results. These methods tried to adjust the position
in the experimental system close to the theoretical one, and achieve
relatively high accuracy. Hao et al. [15] proposed an alignment method
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Fig. 1. The sketch of non-null interferometric testing system.

based on computer modeling, which the position parameters of the free-
form surface in the model are consistently optimized to match the actual
ones in a ray tracing program.

In this paper, a practical and accurate correction method is pro-
posed for the misalignment removal of the free-form surface in a non-
null interferometric testing system. Firstly, the computer modeling of
interferometric configuration is set up accurately, according to the
corresponding parameters of each component in the actual experiment.
Then, the misalignment aberrations, introduced by axial location error,
rotation error and non-axial attitude error, are modeled and corrected
step by step with three specific methods. During the correction, the
position of free-form surface in the model is adjusted from the ideal
position to the misaligned one, matching that of the actual surface
in the experiment. Since the modeled position is consistent with the
actual one, the test wavefront in the model is also considered to be
consistent with that in the actual experiment. Therefore, the accurate
figure error of the free-form surface can be further obtained using
the computer reconstruction algorithms. This correction procedure is
carried out in the computer modeling, without troublesome alignment
for the free-form surface in the experiment. Both computer simulations
and experimental results show that the proposed method can correct the
misalignment of free-form surface effectively.

In Section 2, a non-null interferometric testing system and the analy-
sis of misalignment are presented. In Section 3, a detailed illustration of
the correction method is presented. Simulations, involving the accuracy
analysis and the error consideration, is presented in Section 4. In
Section 5, experiments are carried out to verify the practical feasibility
of the proposed method. Conclusions are summarized in Section 6.

2. Misalignment for free-form surface in non-null interferometric
testing system

2.1. Non-null interferometric testing system

A non-null interferometric testing system based on Twyman–Green
structure is illustrated in Fig. 1. The laser beam collimated by beam
expander is divided into two by the beam splitter. One is reflected
by a reference mirror on which a piezoelectric ceramic transducer
(PZT) is mounted, serving as the reference beam; the other travels
through the PNL, and is then reflected by the free-form surface under
test, serving as the test beam after traveling through the PNL again.
The PNL, which could be regarded as the part under test in common
interferometers, is imaged onto the Charge-coupled Device (CCD) de-
tector, in which the interference fringes are visible. The PZT is used
to produce phase shifting between the reference and the test beams.
During testing, the free-form surface is moved along the optical axis
monitored by the displacement measuring interferometer (DMI) and
multiple interferograms are recorded by the CCD. The test wavefront
can be further extracted from the interferograms with the phase-shifting

Fig. 2. Schematic diagrams of the free-form surface misalignments. (a) Three-dimensional
sketch. (b) Vertical (x-y) cross section. (c) Horizontal (y-z) cross section.

algorithm, which are employed to get the figure error. Meanwhile,
the non-null interferometric testing system is modeled in a ray tracing
program according to the parameters of actual setup for the figure error
reconstruction.

Note that, the testing results of figure error are largely influenced by
the retrace error and the aberrations caused by the misalignment of free-
form surface. For non-null interferometric system, the PNL is employed
to produce an aspheric reference wavefront, which partially compen-
sates the longitudinal normal aberration of the free-form surface. The
rays traveling through the PNL, however, may slightly deviate from the
normal of the free-form surface under test, which cause the reflected
rays to be further separated from the incident ones, leading to the retrace
error. In our previous work [16], the computer modeling and reverse
optimizing reconstruction (ROR) algorithm is employed for the retrace
error correction and accurate figure error reconstruction. However, the
ROR procedure requires a high-precision computer modeling. If the test
surface is misaligned, the reconstructed results will be largely affected.
Therefore, it is important to correct the misalignment of the free-form
surface.
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Fig. 3. Interferograms with misalignment.

2.2. Misalignment analysis

In this paper, the misalignment refers to the deviation between the
ideal system model and the actual experiment, which are illustrated
in Fig. 2. The three-dimensional sketch of a misaligned test surface
deviating from the ideal location is exhibited in Fig. 2(a), while the
Figs. 2(b) and 2(c) show the vertical (x-y) cross section and horizontal
(y-z) cross section, respectively. In 3D Cartesian space, there are six
basic misalignments including three translations (𝑑𝑥, 𝑑𝑦 and 𝑑𝑧) and
three rotations (𝜃𝑥, 𝜃𝑦 and 𝜃𝑧) about respective axes. Considering the
adjustment accuracy of the test surface is limited by the actual system,
the test surface is placed as close as possible to the ideal location; then
the free-form surface in model is adjusted to actual location to minimize
the misalignment.

In this paper, the misalignments, which are shown in Fig. 2, are
divided into three categories, namely axial location error, rotation error,
and non-axial attitude error, which are corrected sequentially. The
interferograms of a biconic surface with different kinds of misalignments
are illustrated in Fig. 3. The axial location error refers to the deviation
of the absolute position along the optical axis (z axis) direction. For
non-null interferometric configuration, the axial displacement of the
free-form surface is monitored by the DMI. However, the initial axial
location (𝐷𝑝𝑓 ) between the PNL and the test surface is difficult to be
accurately determined, which will directly affect the system modeling
accuracy. In this case, other correction methods cannot be precisely
applied. Therefore, it is necessary to remove axial location error first.
The angular deviation around the optical axis (𝜃𝑧) is named rotation
error. Since the free-form surface generally do not have rotational
symmetric structures, the influence of rotation misalignment should be
considered. For practical interferometric setup, it is difficult to obtain
the exactly consistency of coordinate between the computer model
and the actual experiment. The inconsistency in the rotation direction
between the model and the actual experiment causes large rotation error
and therefore producing the inconsistency of interferograms at the same
position. Considering that the inconsistency of interferograms would
influence the correction of the non-axial attitude error, the rotation error
must be corrected next. Generally, the non-axial attitude error is the
deviation between the symmetric axis of the test surface and that of the
interferometer. However, the free-form surface may not have a classical
optical axis, making it impossible to determine whether it coincides
with the optical axis of the interferometer. In this paper, the non-
axial attitude error of the free-form surface refers to position deviations
between the system model and the actual experiment other than the
axial location error and rotation error, including tilt and decentering
around x and y axis (𝜃𝑥, 𝜃𝑦, 𝑑𝑥 and 𝑑𝑦) and remaining small amount of
defocus (𝑑𝑧). The non-axial attitude error is corrected at last.

3. Misalignment correction for free-form surface

3.1. Axial location error correction

The axial location error introduces the defocus aberration into the
test wavefront, causing the Zernike defocus coefficient of the test

Fig. 4. The principle of continuous axial curve matching method. . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

wavefront in the actual experiment shifted from the corresponding one
in the model. Consequently, when the Zernike defocus coefficient in
the model is consistent with that in the actual experiment, the initial
axial location in the actual experiment can be aligned to be consistent
with the model one. However, for free-form surface, there may be more
than one axial location where the Zernike defocus coefficients of the test
wavefront are the same due to non-symmetry of surface, which indicates
that the axial location cannot be determined by one defocus coefficient
alone. Therefore, a continuous axial curve matching method is proposed
for the axial location error correction. Fig. 4 illustrates the principle
of the proposed method. In the actual experimental system, the free-
form surface is continuously placed at different axial locations, whose
axial displacement are monitored by the DMI. Extracted from the test
wavefronts at different locations, the Zernike defocus coefficients are
fitted into a curve, shown as the red solid line. Meanwhile, a longer
period of the axial locations is obtained from the computer model and
the Zernike defocus coefficients of the corresponding wavefronts are
served as target curve, shown as the red dotted line. Searching the
overlaps of the fitting curve in the target curve, the initial location is
obtained and the axial location error can be aligned to zero when the
initial axial location in the model is moved to be consistent with the
actual one in the experiment.

Note that, the accuracy of the axial location solution can be affected,
if the free-form surface has slight rotation error or other misalignments.
In such case, other aberrations considering the surface features should
be also selected as an auxiliary curve to jointly solve the axial location
error of the free-form surface in the actual experiment. In addition, if
the departure of the free-form surface increases, it would not be able to
obtain the resolvable interferogram in the full aperture. It is necessary
to calculate the defocus and other aberrations coefficients in an effective
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Fig. 5. Moire fringes created by superposition of interferograms with the rotation error.

circular area where fringes are sparse, and then the Zernike coefficients
in the full aperture can be obtained by mathematical conversion which
is described in detail in Section 3.3.

3.2. Rotation error correction

Moire-fringe technology is applied here to correct the rotation error
of the free-form surface between the model and the actual experiment.
As shown in Fig. 5, the Moire fringes are produced by superposing the
experimental and the model interferograms. The fringe spacing of Moire
fringes W can be expressed as

𝑊 = 𝑑
𝜃
, (1)

where d is the spacing of the interference fringes, while 𝜃 is the relative
angle caused by the rotation error between the two interferograms.
Eq. (1) illustrates that the introduction of Moire fringes is related to
the rotation error angle 𝜃 of the free-form surface between the model
and the experiment. If the rotation error angle 𝜃 becomes smaller, the
fringe spacing W increases and therefore decreases the number of Moire
fringes in the interferogram. In this case, the rotation error ought to
be corrected to zero with the disappearing of the Moire fringes. In
practical testing, usually a precise mechanical rotation stage is employed
to control the rotation angle of the free-form surface in the experimental
configuration, but it is still difficult to manually adjust the rotation angle
to be consistent with that of the model. However, it is relatively easy
and more accurate to adjust the rotation angle of the free-form surface
in the model system. This procedure can be described as: if the Moire
fringes are created by superposing the model and the experimental
interferograms, it means that the rotation error exists in the test surface
between the model and the actual experiment. Then, revision of the
rotation angle should be carried out in the model to match the actual
rotation of the free-form surface in the experiment, until the Moire
fringes disappear.

3.3. Non-axial attitude error correction

The aberrations of the test wavefront due to non-axial attitude error
has been discussed in detail [17]. It is evident that some low-order
aberrations (tilt, defocus and coma) coefficients would be enough to
correct non-axial attitude error. In addition, the other aberrations may
be attributed to the combination of misalignment, retrace error and
figure error, which cannot be used for misalignment correction.

A correction model is proposed in previous work [18] for rota-
tional symmetric aspherics. In the previous work, the misalignment
coefficients of annular sub-apertures are employed to calculate the
corresponding full aperture misalignment due to the limited resolution.
The specific misalignment of the test surface is revised in the model
to be consistent with the actual one according to the acquired full

Fig. 6. Valid calculation area (VCA). (a) the interferogram of free-form surface, (b) the
choice of VCA. . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

aperture misalignment coefficients. However, this procedure cannot
be employed effectively to the free-form surface testing because the
resolvable interferogram of the free-form surface may have irregular
aperture shape, as illustrated in Fig. 6(a). Only top half circular area at
the full aperture is resolvable and can be detected by the CCD, shown
as the blue area. To be noted, the test wavefront in the resolvable
area is fitted with Zernike coefficients and the non-axial attitude error
coefficients are obtained. We choose a circular area from the resolvable
area, serving as the valid calculation area (VCA) to calculate the non-
axial attitude error of the full aperture, as shown in Fig. 6(b). The
specific conversion between the VCA and the full aperture is indicated
below.

Fig. 7(a) shows the normalized aperture of the VCA, where the
normalized coordinate of the point A is (𝜌′, 𝜃′). Fig. 7(b) shows the nor-
malized aperture of the full aperture, where the normalized coordinate
of the same point A is (𝜌, 𝜃).

Since the rotation error has been corrected, the misalignment aber-
rations introduced by the non-axial attitude error of the random point A,
which are consistent in the VCA and the full aperture, can be expressed
as the sum of tilt, coma and defocus as follows

Wdefocus(𝜌, 𝜃) + Wtilt (𝜌, 𝜃) + Wcoma(𝜌, 𝜃)

= Wdefocus(𝜌′, 𝜃′) + Wtilt (𝜌′, 𝜃′) + Wcoma(𝜌′, 𝜃′).
(2)
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Fig. 7. Coordinate conversion, (a) VCA, (b) full aperture, (c) coordinate conversion.

The misalignment aberrations in Eq. (2) can be expanded into
standard Zernike polynomials, and the Eq. (2) can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝐶2 cos 𝜃 +
√

8𝐶8(3𝜌3 − 2𝜌) cos 𝜃 = 2𝐶s2 cos 𝜃′ +
√

8𝐶s8(3𝜌′3 − 2𝜌′) cos 𝜃′

2𝐶3 sin 𝜃 +
√

8𝐶7(3𝜌3 − 2𝜌) sin 𝜃 = 2𝐶s3 sin 𝜃′ +
√

8𝐶s7(3𝜌′3 − 2𝜌′) sin 𝜃′

𝐶4 ⋅ 𝑆2
𝑟 = 𝐶s4

,

(3)

where 𝐶2 and 𝐶3 are x tilt and y tilt coefficients, 𝐶7 and 𝐶8 are x coma
and y coma coefficients, 𝐶4 is defocus coefficient of the test wavefront in
the full aperture, and 𝐶𝑠2, 𝐶𝑠3, 𝐶𝑠4, 𝐶𝑠7 and 𝐶𝑠8 are to the corresponding
ones in the VCA. The coordinate conversion as shown in Fig. 7(c) can
be expressed as

⎧
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⎪
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⎨
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⎩

cos 𝜃 =
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[

(

𝑆𝑥 + 𝑆𝑟𝜌′ cos 𝜃′
)2 +

(

𝑆𝑦 + 𝑆𝑟𝜌′ sin 𝜃′
)2
]1∕2

sin 𝜃 =
𝑆𝑦 + 𝑆𝑟𝜌′ cos 𝜃′

[

(

𝑆𝑥 + 𝑆𝑟𝜌′ cos 𝜃′
)2 +

(

𝑆𝑦 + 𝑆𝑟𝜌′ sin 𝜃′
)2
]1∕2

𝜌 =
[

(

𝑆𝑥 + 𝑆𝑟𝜌′ cos 𝜃′
)2 +

(

𝑆𝑦 + 𝑆𝑟𝜌′ sin 𝜃′
)2
]1∕2

, (4)

where (𝑆𝑥, 𝑆𝑦) is the normalized coordinate of the VCA in the full
aperture, and 𝑆𝑟 is the ratio of radius between the full aperture and
the VCA. These three parameters can be easily obtained from the
interferogram. From Eqs. (2)–(4) we can obtain
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⎪

⎪
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𝐶2 = 𝐶s2 ⋅
(
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8
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√

8
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𝑟
)

− 𝑇
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(

1∕𝑆3
𝑟
)

𝐶8 = 𝐶s8 ⋅
(

1∕𝑆3
𝑟
)

, (5)

where P, Q, T are expressed as
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]
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𝑦
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(
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]
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𝑟
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√

6
(

𝐶s8𝑆𝑥 + 𝐶s7𝑆𝑦
)

𝑆4
𝑟

. (6)

Eqs. (5) and (6) provide the conversion of non-axial attitude error
coefficients between the VCA and the full aperture. Firstly, the non-
axial attitude error coefficients of the full aperture are obtained from the
corresponding ones of the VCA. Then, the specific misalignment of the

full aperture is corrected in the computer model, making the modeled
position consistent with the actual experimental one. This method of
correcting the position of the test surface in the model, was proposed in
our previous work [17].

In addition, the usage of VCA has two advantages. On the one hand,
the VCA is easy to be located in the circular full aperture, while the
corresponding Zernike coefficients are also easy to be converted. On
the other hand, the standard Zernike coefficients in the VCA are still
corresponding to Seidel aberrations, which is facilitate to describe the
misalignment.

3.4. Procedure of free-form surface misalignment correction

The specific procedure of the free-form surface misalignment correc-
tion is as follows:

(a) Set up the theoretical model in a ray tracing program according
to the parameters of the experimental system.

(b) Move the test surface as close as possible to the ideal location
in model. Collect multiple interferograms from CCD detector and fit the
test wavefront with Zernike polynomials.

(c) Search the initial axial location with the method of continuous
axial curve matching, and set the initial axial location in the model to
be consistent with the actual one in the experiment

(d) Superpose the interferograms of the model and the experiment,
and adjust the rotation angle in the model based on the Moire fringes.

(e) Choose a suitable VCA from the actual interferogram in the
experiment, and get its non-axial attitude error coefficients (𝐶𝑠2, 𝐶𝑠3,
𝐶𝑠4, 𝐶𝑠7, 𝐶𝑠8).

(f) Calculate the non-axial attitude error coefficients of the full
aperture (𝐶2, 𝐶3, 𝐶4, 𝐶7, 𝐶8) according to the corresponding ones of the
VCA.

(g) Revise the attitude of the test surface in the model according
to the results of (f), until it is consistent with the actual one in the
experiment.

It is important to note that, the calculation of the figure error of
the free-form surface is based on a high-precision modeling of the
experimental system. With the proposed correction method, the axial
and non-axial position of free-form surface in the model is adjusted
from the ideal position to the misaligned one, matching that of the
actual surface in the experiment. All the misalignment aberrations are
further removed from the test wavefront by the ROR algorithm and
accurate figure error can be obtained. This correction is carried out in
the computer modeling, without troublesome alignment for the actual
surface in the experiment.
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Fig. 8. The axial position error correction, (a) Zernike defocus coefficients, (b) Zernike astigmatism coefficients. . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. The axial position error correction, (a) Zernike defocus coefficients, (b) Zernike astigmatism coefficients. . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4. Simulation analyses

To validate the proposed correction method, a biconic surface is
simulated in the ray tracing program and the performance of the
proposed method is tested. In addition, the error of each method is
analyzed separately.

The axial location error is corrected by the curve of Zernike defocus
coefficients. However, the defocus aberration of the test wavefront
may be affected by the modeling error of the interferometric setup,
i.e. figure error, thickness, refractive index and radius of curvature
of each component, which need to be considered in practice. Under
this consideration, the Zernike defocus coefficient (𝑍4) of the test
wavefronts at different locations both in the ideal model and simulated
experiment are fitted as curves, shown as the blue line and red one in
Fig. 8(a). However, there are two axial locations corresponding to a
same Zernike defocus coefficient, which might mislead the correction.
Since the test surface have large astigmatism, the curve of Zernike
astigmatism coefficient (𝑍6) is also selected as an auxiliary to assist
the alignment, as shown in Fig. 8(b). The Zernike defocus coefficient

(𝑍4) is given a greater weight considering that the defocus aberration is
more easily limited during fabrication. By searching the overlaps of the
curves, the initial axial location (𝐷𝑝𝑓 ) of the test surface can be located
at 302.5041 mm, with the accuracy better than 0.005 mm (design value
is 302.5 mm).

The correction accuracy of the rotation error largely depends on the
discernibility of the Moire fringes. Fig. 9(a) illustrates a series of Moire
fringes with different rotation error, created by superposing interfero-
grams obtained from the ideal model and the simulated experimental
system. It can be seen that the rotation errors are 1 deg, 2 deg, 4 deg,
and 6 deg with the same 27 fringes, respectively. Fig. 9(b) shows the
Moire fringes with different PV values of 9𝜆 (632.8 nm), 18𝜆, 27𝜆 and
36𝜆 with the same rotation error of 2 deg. We could find that the Moire
fringes decrease with the decrease of the rotation error. In this way, the
rotation error can be easily controlled within 1 deg, so that the PV value
deviation of figure error obtained by the ROR algorithm is better than
0.1𝜆 while the root-mean-square (RMS) value deviation is better than
0.01𝜆, compared to when there is no rotation error. Furthermore, the
greater departure of the free-form surface is, the denser the interference
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Fig. 10. Interferogram and reconstructed figure error. (a) Simulated experimental interferogram, (b) true figure error, (c) interferogram in model before alignment, (d) reconstructed
figure error by (c) with ROR, (e) interferogram in model after alignment, (f) reconstructed figure error by (e) with ROR.

Table 1
Parameter of non-axial attitude error.
𝑑𝑥 (mm) 𝑑𝑦 (mm) 𝐷𝑝𝑓 + 𝑑𝑧 (mm) 𝜃𝑥 (deg) 𝜃𝑦 (deg)

0.0013 0.0013 301.65 + 0.03 −0.0005 −0.0002

fringes are, and there will be more Moire fringes at the same rotation
error, which means using this method to correct the rotation error can
achieve higher precision.

The method described in Section 3.3 is employed here to correct the
non-axial attitude error. The simulated experimental interferogram of
test surface with non-axial attitude error is illustrated in Fig. 10(a), and
the additive errors are listed in Table 1. If the position of the computer
model is exactly same as the actual one, the true figure error of the full
aperture can be reconstructed by ROR, as shown in Fig. 10(b). Figs. 10(c)
and 10(d) exhibit the interferogram and reconstructed figure error when
the model is in the ideal location without misalignment correction. It
can be seen that the true figure error is seriously obscured due to the
presence of the non-axial attitude error. The non-axial attitude error
coefficients are further obtained from Fig. 10(a), and are employed
to adjust the model position. Fig. 10(e) illustrates the interferogram
in the model after the alignment, which is almost consistent with the
actual one. Subsequently, the figure error reconstructed from it with
the same algorithm is also basically consistent with the real one, shown
in Fig. 10(f). The PV value error is 7.862×10−5𝜆 and the RMS value error
is 1.107 × 10−5𝜆. With the help of the correction method, the modeled
position is adjusted to be consistent with the actual one, and therefore
the reconstructed figure error would be credible and accurate.

5. Experimental verification

Experiments were carried out in a testing system as shown in Fig. 1
to verify the practical feasibility of the proposed correction method, in
which a biconic surface with an aperture of 20 mm was tested. The
nominal shape of biconic surface is

𝑧 =

1
𝑅𝑥

𝑥2 + 1
𝑅𝑦

𝑦2

1 +
√

1 − (1 + 𝑘𝑥)
𝑥2

𝑅2
𝑥
− (1 + 𝑘𝑦)

𝑦2

𝑅2
𝑦

, (7)

Table 2
Parameter of PNL.

Surface Radius (mm) Thickness (mm) Glass (𝑁d, 𝑉d) Conic (uint)

1 89.15 10.65 1.52, 64.28 0
2 −50.68 0

where 𝑅𝑥 = 242 mm and 𝑅𝑦 = 238 mm are the vertex radius of curvature
in x and y direction, 𝑘𝑥 = −1.2 and 𝑘𝑦 = −0.8 are the conic coefficients in
x and y direction, respectively. The test wavelength of the interferometer
is 632.8 nm. The PNL is a single lens and the parameters are listed in
Table 2. The measurement range of DMI is 40 m, with the precision of
±0.5 × 10−3 mm.S

Firstly, the non-null interferometric testing system was modeled in a
ray tracing program according to the parameters of the experimental
system. With the help of commercial measurement instruments, the
figure error of the PNL and other mirrors could be better than 0.05𝜆
(PV), which was almost negligible [17]. The measurement accuracy of
refractive index, thickness, and radius of curvature of each component
were also better than ±10−5, 5 μm and 0.005%, respectively [19], which
made sure the model was consistent with the actual system.

Secondly, the biconic surface under test was moved along the optical
axis and multiple interferograms at different locations were detected
by the CCD. With the phase-shifting algorithm, a series of actual test
wavefronts were obtained and then fitted with Zernike polynomials.
The locations obtained by DMI and the corresponding Zernike defocus
coefficients were collected for fitting curve, as the red line shown
in Fig. 11. Meanwhile, the Zernike defocus coefficients of the test
wavefront in the model were obtained with a longer period of locations
from 301 mm to 302 mm, served as the target curve shown as the blue
line. By matching the two curves, the initial axial location (𝐷𝑝𝑓 ) of the
biconic in the actual experimental system was located at 301.087 mm.

The test surface was moved to 301.087 mm both in the experiment
and the model, then the rotation error should be corrected. Fig. 12(a)
shows the experimental interferogram at the above location. In order to
prevent the influence of noise, the phase was demodulated by phase-
shifting algorithm and reconstruct into Fig. 12(b). In the computer
model, the interferogram of the test surface at the same location was
obtained, as illustrated in Fig. 12(c). By superposing the interferograms
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Fig. 11. Fitting curve and target curve of Zernike defocus coefficients. . (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

of the model and the experiment, six Moire fringes were created (see
Fig. 12(d)), which indicated the existence of the rotation error between
the experiment and the model. Therefore, relatively revision of the
rotation angle was carried out in the model. The test surface in the model
was rotated by 5.4 deg clockwise and therefore two Moire fringes were
obtained in the superposed interferogram, as shown in Figs. 12(e) and
12(f). The result was the basically consistent with the actual experiment.
In this case, the rotation angle of the test surface was kept unchanged
both in the model and the experiment.

After the axial error correction, the non-axial attitude error would
be corrected. The test surface in the experiment was moved along the
optical axis until the interferogram with sparse fringes was obtained, as
illustrated in Fig. 13(a). Meanwhile, a similar interferogram at the same
location in the model was obtained, as shown in Fig. 13(b). It can be
seen that the interferogram in the model was different with the actual
one in the experiment, which was largely caused by the figure error
and the non-axial attitude error. A circular VCA was selected from the
resolvable aperture, to calculate the non-axial attitude error coefficients

of the full aperture, shown as the red area. The non-axial attitude error
coefficients of VCA both in the model and the experiment are listed in
Table 3.

Fig. 14(a) illustrates the non-axial attitude error coefficients dis-
played in Table 3. According to the conversion between the VCA and
the full aperture, the non-axial attitude error coefficients of full aperture
were calculated from the corresponding ones in VCA, and the position
of the test surface was further revised in the model according to the
results. Fig. 14(b) indicates the non-axial attitude error coefficients of
VCA in the model after correction, which was basically consistent with
the corresponding ones in the experiment. Since the modeled position
was consistent with the experimental one, it can be considered that all
the misalignments of the biconic surface have been corrected.

Finally, we obtained the figure error of the full aperture by the
ROR algorithm, and the two-dimensional (2D) surface map is shown
in Fig. 15(b). The PV value of the figure error is 0.8981𝜆 and the
RMS value is 0.1841𝜆. In comparison, the biconic surface is tested
with traditional alignment method [20], which provided merely retrace
error correction and calibration for misalignment by removing the first
four terms from Zernike coefficients of the test wavefront. The 2D
surface map of the figure error is presented in Fig. 15(a). The PV
value is 0.7672𝜆 and the RMS value is 0.1380𝜆. In order to verify the
accuracy of the measurement results by the proposed method, a 1D
profile line was tested with Taylor Hobson profilometer (Form Talysurf
i120, 16 nm vertical resolution) [21]. The blue line in Fig. 15(c) shows
the profile deviation obtained from the Taylor Hobson, which means
the testing results of profilometer subtract the nominal ones. Since the
Taylor Hobson measures the roughness, the result is preprocessed by a
smooth filter. Meanwhile, the profile deviations at the same position are
extracted from Figs. 15(a) and 15(b), as the green line and the red line
shown in Fig. 15(c).

Table 4 provides specific PV and RMS value of the profile deviations
in Fig. 15(c). The PV and RMS value of the proposed method are 0.5808𝜆
and 0.1718𝜆, respectively. Compared with the results from profilometer,
the PV value error is better than 1/30𝜆, while the RMS value error is
better than 1/36𝜆. It can be seen in Fig. 15(c) that the profile deviation
of the test surface with the proposed method has a better agreement
with the one obtained by the profilometer, and the PV difference of
the profile between the two method is 1/5𝜆, while the RMS deviation
is 1/20𝜆. However, the surface map obtained by traditional alignment

Fig. 12. Correction of the rotation error, (a) experimental interferogram, (b) reconstructed interferogram, (c) original interferogram in the model, (d) Moire fringes by superimposing
(b) and (c), (e) revised interferogram, (f) Moire fringes by superimposing (b) and (e).
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Fig. 13. The choice of VCA, (a) interferogram in the experiment, (b) interferogram in the model. . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. Comparison of the non-axial attitude error coefficients of VCA, (a) before correction, (b) after correction.

Fig. 15. The experimental results, (a) the figure error with traditional alignment method, (b) the figure error with proposed alignment method, (b) comparison between these two
methods and the results from profilometer. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
The non-axial attitude error coefficients of VCA in the experiment and the model.

Z2 (𝜆) Z3 (𝜆) Z4 (𝜆) Z7 (𝜆) Z8 (𝜆)

Experiment −1.761 −1.282e−1 −1.070e−1 −6.635e−3 −2.671e−2
Model −2.194 −6.780e−1 −2.473e−1 2.016e−15 3.567e−4

Table 4
PV and RMS values of the profile deviation corresponding to Fig. 15(c).

PV (𝜆) RMS (𝜆)

Profilometer 0.5487 0.1718
Traditional method 0.2677 0.0975
Proposed method 0.5808 0.1995

method, shown in Fig. 15(a), contain residual high-order misalignment
aberrations obscuring the true figure error. Consequently, the profile is
completely incapable of matching the profilometer result.

It should be note that, the Taylor Hobson profilometer measures the
1D profile of the biconic surface with limited coverage at one time,
while the non-null interferometer equipped with the proposed method
has more advantages in directly obtaining the 2D maps of figure error.

Although we tried to mark the position of tested profile line on the test
surface, it is still difficult to get the profile at the same position for the
comparison. Furthermore, the high frequency part of figure error is also
difficult to be obtain by interferometer. In this case, the test results may
subject to the slight inconsistency of the tested profile position.

6. Conclusion

A practical and accurate misalignment correction method is pro-
posed for the free-form surface in a non-null interferometric testing
system. Based on computer modeling, the misalignment aberrations,
introduced by the axial location error, rotation error and non-axial
position error are modeled and corrected in a ray tracing program.
With the proposed method, the axial and non-axial position in the
model is adjusted to match that of the actual surface in the experiment.
Because only one valid calculation area with resolvable fringes is
required, this method can be easily applied to the free-form surface
with great departure. Considering the modeled position is consistent
with the experimental one, the test wavefronts in the model are also
consistent with that in the experiment. All the misalignment aberrations
are removed from the test wavefronts and the accurate figure error
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of the free-form surface is obtained by the ROR algorithm. Note that,
since free-from surface is asymmetric, the surface with great departure
could be calculated using irregular subaperture stitching, which is also
our future works. This correction method depends on the accuracy of
system modeling, which avoids the mechanical adjustment or artificial
operation in the actual setup.
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