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Abstract 

Grating lateral shearing interferometry is one of important technique to test the system wavefront aberration from lithographic 

lens. In order to achieve the calibration in ultra-high-precision, we must eliminate the system errors from the grating lateral 

shearing interferometer. Therefore, a three-step average algorithm and a weighed-three-step average algorithm are proposed to 

remove the rotationally asymmetric system errors from our shearing setup. The research results show that the RMS of the 

accuracy of three-step average algorithm centered on 45° can approach 0.71nm, and the RMS of the accuracy of its weighed 

algorithm can approach 0.54nm. 
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1. INTRODUCTION 

Lithographic lens is the core component of lithography machine, the wavefront aberration from the lens under test will 

directly influence the lithography function parameters from lithography machine, such as the characteristic line width and the 

overlay accuracy. Currently, the major methods for testing the wavefront aberration from lithographic lens are: Shark-Hartmann 

Interferometry [1], Grating Shearing Interferometry [2], Point Diffraction Interferometry [3], and Twyman—Green 

Interferometry [4], EUV Experimental Interferometry [5], etc. For the lithographic lens in 193nm work wavelength, we usually 

utilize grating lateral shearing interferometry to measure the wavefront aberration from lithographic lens, owing to the rigorous 

working condition and the costly expenses. 

For achieving the measurement precision in sub-nanometer, it is necessary to ensure and eliminate the system errors from 

grating lateral shearing interferometer. According to the principle of absolute calibration and the projects for measuring the 

wavefront aberration of lithographic lens, the shift method [6] and the cat’s eye method [7] doesn’t work, and we can use the 

rotation algorithm [8-12] to ensure the rotationally asymmetric system error from the interferometer. Aimed at Twyman—Green 

interferometry, Mack proposed an error separation technique [4] which is a three-step combination algorithm with φ=0° as base 

point. Apply this method to the grating lateral shearing interferometer, and we found measurement precision was largely 

influenced by non-uniform rotation. 

In this paper, a three-step average algorithm and a weighted-three-step average algorithm with φ=45° as base point are 

proposed to decrease the influence of non-uniform sampling to measurement result on grating lateral shearing interferometer. 

2. BASIC THEORY 

The error separation technique[4] is a three-step combination algorithm which need respectively measure the wavefront 

aberrations of the lens at original position (φ=0°) and another three rotation angle positions (φ=45°, 90°, and 180°) about the 

optical axis. The wavefront aberration of the lens contains the system error can be expressed as: 

( , ) ( , ) ( , )SW W T                                           (1) 

where Ws (ρ, θ) represents the constant system error from the interferometer; T (ρ, θ) represents the wavefront aberration of the 

lens; ρ represents a normalized radial coordinate and θ the azimuthal coordinate. Then the mathematical relationships can be 
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expressed as follows: 

( , 0 ) ( , 45 ) ( , ) ( , 45 ) 2 ( , )sW W T T W                 
    (2)

 

( , 0 ) ( , 90 ) ( , ) ( , 90 ) 2 ( , )sW W T T W                 
    (3) 

( , 0 ) ( , 180 ) ( , ) ( , 180 ) 2 ( , )sW W T T W                 
 (4)

  

For the 36 Zernike terms of Ws (ρ, θ), which can be written as 
10 5

, ,

0 0

( , ) ( )[ cos ( ) sin ( )]m n m n m

s n s s

n m

W R a m a m    

 

 
     

 (5) 

we can get the non-rotationally symmetric Zernike coefficients ,4n

sa (m=4) by Eq. (2), and similarly get the coefficients 

,2n

sa  (m=2) by Eq. (3), and then get the coefficients ,1n

sa , ,3n

sa  and ,5n

sa  (m=1, 3, 5) by Eq. (4). 

However, we cannot precisely ensure the constant system error when this algorithm is applied on grating lateral shearing 

interferometer. For the schematic of our shearing setup, which is shown in Fig. 1, the beam contains the system wavefront 

aberration pass through the grating, and we get the shearing interferogram by the ±1 order diffraction lights which are acquired 

by spatial filter. Due to the working conditions of the shearing interferometer, we always need the large rotating platform to test 

the system wavefront aberrations of the lens at different angular positions, then it may bring about a large decentration, and 

may change the whole optical path because of grating shearing. Then the constant system error from the interferometer may also 

be varied at different rotation angle positions. We can find the size of the decentration by digital image processing (as shown in 

Fig. 2), but this decentration cannot be simply removed by digital image processing. In addition, and we cannot get the size of 

variety of system wavefront aberrations by decentration. In this paper, we proposed a three-step average algorithm and a 

weighted-three-step average algorithm with φ=45° as base point based on single-rotation algorithm [8] to calculate the system 

error more accurately. 

A. Three-step average algorithm with φ=45° as base point 

For the combination of 0°-45°, it can be written as: 

1( , 45 ) ( , 0 ) ( , 45 ) ( , )W W T T                                (6) 

Then the Zernike coefficients of Eq. (6) is: 

45

45 0

1

1

( , ) ( , )

cos[ ( 45 )]+ sin[ ( 45 )]

cos[m( +45 -45 )] sin[m( +45 -45 )]

= ( , ) ( , )

m m

n n

m m

n n

T

a n m a n m

a m a m

a a

A m a n m

 

 







  

    

     


               (7) 

Similarly, for the combinations of 45°-90° and 45°-180°, we can get  

2( , 45 ) ( , 90 ) ( , 45 ) ( , 90 )W W T T               
         

(8) 

    3( , 45 ) ( , 180 ) ( , 45 ) ( , 180 )W W T T               
         

(9) 

Then the Zernike coefficients of Eq. (8) and Eq. (9) are: 

45

2

45 90 2( , ) ( , )= ( , ) ( , )Ta n m a n m A m a n m                      (10)  

45

3

45 180 3( , ) ( , )= ( , ) ( , )Ta n m a n m A m a n m                      (11)  

where φ1=45°，φ2=45°，φ3=135°， 
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1 1
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,                                                                                        

and ( , ) [ ( , ); ( , )]a n m a n m a n m      (φ=0°, 45°, 90°, and 180°), 1

45 ( , )Ta n m , 2

45 ( , )Ta n m , 3

45 ( , )Ta n m  are couples of the Zernike 

coefficients of W (ρ, θ| φ), T1 (ρ, θ+45°), T3 (ρ, θ+45°), and T3 (ρ, θ+45°). 

Due to the real system wavefront aberrations of lens are varied by decentration, there are 

  
1( , 45 ) ( , 45 ) '( , )sT T W           ,                (12) 

2( , 45 ) ( , 45 ) ''( , )sT T W           ,                    (13) 
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3( , 45 ) ( , 45 ) '''( , )sT T W           .                   (14) 

and '( , )sW   , ''( , )sW   , '''( , )sW    are the difference of variable system wavefront aberrations at each angular position. 

By Eq. (6)-Eq. (14), we can respectively get three groups of the wavefront aberrations T1 (ρ, θ+45°), T3 (ρ, θ+45°), and T3 

(ρ, θ+45°) from the lens under test rotated φ=45°. Then we can get these three groups of system errors by Eq. (15)-Eq. (17) 

1 1( , ) ( , 45 ) ( , 45 )SW W T         
                         

 (15) 

2 2( , ) ( , 45 ) ( , 45 )SW W T         
                         

(16) 

3 3( , ) ( , 45 ) ( , 45 )SW W T                                   (17) 

After that, we process these three groups of system errors by averaging as the final system errors, and the result is  

    

1 2 3( , ) ( , ) ( , )
( , )

3

S S S

S

W W W
W

     
 

 
                (18) B. Weighted-three-step average algorithm with φ=45° as base 

point 

In the three-step average algorithm, the measurement positions of wavefront aberrations are asymmetric distribution (0°, 

45°, 90°, and 180°). And for the wavefront aberrations acquired from these three combinations (45°-0°, 45°-90°, and 45°-180°), 

there are positive correlation relationship between the size of variable wavefront aberrations and the rotation angles.  

 

 
Fig. 1. Schematic of grating lateral shearing interferometer 

 

 
Fig. 2 The interferograms acquired in the experiment when the lens under test are rotated by: (a) 0° (452,489); (b) 
45° (443,481); (c) 90° (443,472); (d) 180° (463,460). 

 

Considering this, we proposed a novel weighted algorithm to eliminate the influence of non-uniform measurement, and it 

means that the measurement results should be weighted by the decentration on these angular combinations.  

According to Eq. (12)-Eq. (17), the weighted scheme can be written as: 
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          (19)

where a, b, and c represent the weighted coefficient of this method. And we can change the coefficients by the positive 

correlation relationship between variable wavefront aberrations and the rotation angles to get the △Ws (ρ, θ) to a minimum. It is 

 

, ,

'( , ) ''( , ) '''( , )
{ , , } arg min s s s

a b c

a W b W c W
a b c

a b c 

         


 


                                                           

(20) 

 

Then the constant system errors will be confirmed by this weighted algorithm. 

 

3. EXPERIMENTS 

To check the accuracy of three-step average algorithm and weighted-three-step average algorithm, our experiments is 

implemented on the grating lateral shearing interferometer we researched and developed. The wavelength of optical source is 

632.8 nm (λ=632.8 nm). We reconstruct the measured wavefront by the 9-step-phase-shift algorithm [13] and the least-squares 

technique to process nine couple of lateral shearing interferograms (shown in Fig. 3) in two orthogonal directions. The RMS of 

the repeatability of experimental data can reach about 0.22mλ.  

According to these three methods in this paper, we respectively acquire the lateral shearing interferograms of the lens 

under test at original position and the positions by rotating 45°, 90°, 180°, and φi (a random angle about 300°).

 

                       
Fig. 3 The lateral shearing interferograms in orthogonal directions 

 

φ（°） 
The total wavefront 

aberrations 

Three-step 

combination 

algorithm 

Three-step average 

algorithm 

Weighted-three-step 

average algorithm 

0 
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45 

    

90 

    

180 

    

i （ ～

300°） 

    

Fig. 4 The results before system errors elimination and after system errors elimination (The total wavefront 

aberrations and the results under these three algorithms) 

 

After wavefront reconstruction, we get five wavefront aberrations W (ρ, θ| φ) with system errors. Then we separately 

utilize the three-step combination algorithm [4], three-step average algorithm, and weighted-three-step average algorithm to 

separate the rotationally asymmetric system errors, and validate the accuracy of these three algorithms by a random angle 

about 300°. The total wavefront aberrations and the results under these three algorithms are shown in Fig. 4, and the RMS 

values of the wavefront aberrations of the lens under test are shown in Tab. 1. 

As we can see the contrast from Fig. 4 and Tab. 1, the RMS of the measurement precision of the three-step average 

algorithm with φ=45° as base point we developed in this paper can reach about 0.71nm, and it will reach about 0.54nm by 

weighted-three-step average algorithm. 

 
Tab. 1 The RMS values of the wavefront aberrations from the lens under test 

φ（°）
 

Before system 

errors elimination 

（λ） 

After system errors elimination 

（λ） 

Three-step 

combination 

algorithm

 

Three-step average 

algorithm

 

Weighted-three-step 

average algorithm

 

0 0.041775 0.011993 0.013276 0.012371 

45 0.036954 0.008873 0.010158 0.010041 

90 0.036907 0.011463 0.011656 0.012170 

180 0.046559 0.010670 0.010506 0.010908 

i （～300°） 0.047385 0.013221 0.012112 0.011447 

Precision 

measurement（

RMS） 

0.004500 0.001440 0.001120 0.000850 
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4. CONCLUSION 

We have presented two simple and effective methods for rotationally asymmetric system errors correction. These different 

methods are based on the non-uniform sampling of three-step combination algorithm [4]. In this paper, we have revealed the 

different results from these three methods. By contrast, three-step average algorithm with φ=45° as base point is a high-

efficiency and high-accuracy method to eliminate the system errors, and weighted-three-step average algorithm is a new 

method can solve the problem of non-uniform sampling. Furthermore, these two methods we proposed can be applied to most 

of absolute measurement technology. 
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