
Scene classification of high-resolution
remote sensing images based on
IMFNet

Xin Zhang
Yongcheng Wang
Ning Zhang
Dongdong Xu
Bo Chen
Guangli Ben
Xue Wang

Xin Zhang, Yongcheng Wang, Ning Zhang, Dongdong Xu, Bo Chen, Guangli Ben, Xue Wang,
“Scene classification of high-resolution remote sensing images based on IMFNet,” J. Appl.
Remote Sens. 13(4), 048505 (2019), doi: 10.1117/1.JRS.13.048505.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 23 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Scene classification of high-resolution remote sensing
images based on IMFNet

Xin Zhang,a,b Yongcheng Wang,a,* Ning Zhang,a,b Dongdong Xu,a,b

Bo Chen,a Guangli Ben,a,b and Xue Wanga
aChinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics,

Changchun, China
bUniversity of Chinese Academy of Sciences, College of Materials Science and Opto-Electronic

Technology, Beijing, China

Abstract. Currently, due to the limited amount of data and the difficulty of designing a network,
there are few papers on constructing a new convolutional neural network for scene classification
using the publicly available datasets of high-resolution remote sensing images. Considering the
existing problems, the current scene classification methods of high-resolution remote sensing
images are summarized, and the IMFNet model is constructed to classify scenes of high-
resolution remote sensing images in this paper. The IMFNet is an end-to-end network, which
can learn features from data automatically. The main characteristic of the IMFNet network struc-
ture is that the Inception module is used to extract the details of remote sensing images and the
multifeature fusion strategy is proposed to ensure the integrity of information. In addition, opti-
mization methods are adopted to improve the classification accuracy. In order to verify the effec-
tiveness of the method proposed in this paper, the two benchmark datasets—the UC Merced
dataset and the SIRI-WHU dataset were adopted for experiments. The classification accuracy
of the two datasets reaches 92.14% and 90.43%, respectively. Experimental results show that the
method proposed has certain advantages over the classification methods based on low-level and
middle-level visual features and even some classification methods based on high-level visual
features. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.13
.048505]
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1 Introduction

With the improvement of remote sensing data acquisition ability and the diversification of
imaging methods, the amount and types of remote sensing data increase significantly. In the
field of computer vision, image processing technology is also developing, and it is an inevitable
trend to use intelligent and automatic technology to analyze remote sensing data.1 The purpose of
automatic scene classification of high-resolution remote sensing images is to classify images
containing multiple land-cover or land-use types into different semantic categories. Scene clas-
sification of high-resolution remote sensing images is not only a key part of intelligent remote
sensing processing but also has important research value.2 It has a wide range of applications,
such as vegetation types mapping,3 geological disaster monitoring,4 geospatial target detection,5

land-use or land-cover determination,6 geographic image retrieval,7 and so on.
The classification methods of remote sensing images have developed greatly in the past

decade. According to the characteristics of the different scene classification methods, it can
be divided into three categories: methods based on low-level visual features, methods based on
middle-level visual features, and methods based on high-level visual features.

The scene classification methods of high-resolution remote sensing images are generally
based on low-level visual features at an early stage. The low-level visual features are mainly
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the color,8 shape,9 texture,10 and other information of remote sensing images that can completely
and objectively reflect the scene content extracted by technicians with a large amount of pro-
fessional knowledge and engineering experience. The low-level visual features are extracted
manually, and the selection of features by human participation is subjective to a certain extent.
Moreover, there is a semantic gap between the semantic categories of scenes and the low-level
visual features. Therefore, when the scenes of remote sensing images become complex, the scene
classification methods based on low-level visual features are often not very effective.

The middle-level visual features are abstractions of the low-level visual features through
quantization, coding, and other methods. Methods based on middle-level visual features can
be roughly divided into three categories: methods based on semantic objects,11 methods based
on semantic attributes,12 and methods based on local semantic concept.13 The study of remote
sensing scene classification methods based on middle-level visual features has been a hotspot in
the past 10 years and achieved good results. However, with the rise of deep learning, the research
based on middle-level visual features has gradually decreased.

The scene classification methods based on high-level visual features refer to the using of deep
learning methods, which can extract semantic information of images. These methods based on
deep learning can automatically extract the complex structure of high-dimensional data, which
have higher classification performance than the methods based on low-level and middle-level
visual features. According to whether labels are used or not, the scene classification methods of
high-resolution remote sensing images based on deep learning can be roughly divided into two
categories: unsupervised classification methods and supervised classification methods. The
unsupervised classification methods adopt unlabeled data for classification, such as deep belief
network,14 deep Boltzmann machine,15 stacked autoencoder,16 and so on. The supervised clas-
sification methods adopt labeled data for classification, such as multilayer perceptron17 and con-
volutional neural network (CNN).18 Among them, the classification method based on CNN has
many advantages in image processing. It can solve the invariance of translation, rotation, and
scaling of feature images in a certain space. Moreover, the features of CNN are learned from data
through training, which avoids the process of artificial feature extraction. In addition, the weights
of neurons on the same feature map are the same, which not only plays a parallel role in the self-
learning of the network but also reduces the computational complexity of the whole neural net-
work. So, the method based on CNN is adopted for the scene classification of high-resolution
remote sensing images in this paper.

Remote sensing images contain more complex information about the arrangement of ground
objects than natural images, so it is challenging to classify scenes of high-resolution remote
sensing images. In addition, the number of high-resolution remote sensing images available
is limited, so most methods based on CNN adopt the pretrained models for transfer learning.
However, there are relatively few papers on constructing a new CNN model based on the pub-
licly available datasets of high-resolution optical remote sensing images, and there is a lack of
relevant summary of the current research status in this filed, which limits the further development
of deep learning in remote sensing image processing.

Based on the existing problems in scene classification of high-resolution remote sensing
images, the main contributions of this paper are as follows:

1. This paper summarizes and classifies the current scene classification methods of high-
resolution remote sensing images based on CNN, which can promote the development
of automatic scene classification on remote sensing images by presenting the current
development status of this field.

2. A scene classification method of high-resolution remote sensing images based on
IMFNet is proposed. The IMFNet is an end-to-end network based on high-level visual
features, which can automatically extract features from data.

3. The Inception module is used and the multifeature fusion strategy is proposed in the
IMFNet. In addition, in order to further improve the generalization ability of the IMFNet,
the optimization methods of data augmentation, dropout, parameter norm penalty,
moving average model, and Adam optimization algorithm are used.

4. The IMFNet was trained and tested on the publicly available datasets of high-resolution
remote sensing images—the UC Merced dataset and the SIRI-WHU dataset and
obtained satisfactory classification results.
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The remainder of this paper is organized as follows: the related work is presented in Sec. 2;
the scene classification method of high-resolution remote sensing images based on IMFNet is
presented in Sec. 3; Sec. 4 presents the experiments and results; Sec. 5 presents the parameter
analysis; and Sec. 6 presents the conclusions.

2 Related Work

The CNN was put forward by Fukushima19 and revised by LeCun et al.20 It is a special artificial
neural network, whose training process is divided into forward propagation and backpropaga-
tion. In the process of forward propagation, information is generally transmitted from the input
layer to the output layer through layer-by-layer transformation of the convolutional layer, the
pooling layer, and the fully connected layer. Finally, the output layer of CNN formalizes its target
task as a loss function. In the process of backpropagation, the loss between the real value and the
predicted value is calculated, and it is fed back by the backpropagation algorithm layer-by-layer,
so as to update the parameters of each layer. Since other articles have introduced the specific
structure of CNN in detail,21 it is not covered in this article. In recent years, with the improvement
of computer performance and the increasing amount of data available, many classic CNNmodels
based on natural images have been put forward one after another, such as LeNet,22 AlexNet,23

VGGNet,24 GoogleNet,25 ResNet,26 DenseNet,27 etc. And it provides new development pros-
pects for the field of computer vision, such as image classification,28 data reconstruction,29 image
semantic segmentation,30 image retrieval,31 object detection,32 image style transfer,33 and so on.

As shown in Fig. 1, the scene classification method of high-resolution remote sensing images
based on CNN can be roughly divided into two categories: (1) the classification method based on
the full-trained CNN and (2) the classification method based on transfer learning. Details are
covered in the following sections.

2.1 Classification Method Based on the Full-Trained CNN

The core idea of the classification method based on the full-trained CNN is using the publicly
available datasets of high-resolution remote sensing images to fully train a CNN model, as
shown in Fig. 2. This method can be subdivided into two strategies: (a) the classification method

The scene classification method of high-resolution remote sensing images based on CNN

The classification method based on the full-trained CNN The classification method based on transfer learning

The classification method 
based on a new CNN 

model

The classification method 
based on the classical 

CNN model

The classification method 
based on fine-tuning

The classification method 
based on using the 

pretrained CNN model as 
a feature extractor

(according to the difference of the CNN model used) (according to the difference of the content for transfer learning)

Fig. 1 The schematic of the scene classification method of high-resolution remote sensing images
based on CNN.
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Fig. 2 The schematic of the classification method based on full-trained CNN.
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based on a new CNNmodel and (b) the classification method based on the classical CNN model.
The two strategies adopt the target dataset for training, and the difference between them lies in
the difference of the CNN model used.

2.1.1 Classification method based on a new CNN model

Training a new CNN model requires strong computing equipment, long training time, and rich
experience in network architecture design. Due to the limited amount of data in the publicly
available datasets of high-resolution remote sensing images, the new CNN model based on the
existing datasets is generally designed in a shallow way, which cannot give full play to the per-
formance of the deep CNN model. However, in order to further develop the method of deep
learning in remote sensing scene classification, it is necessary to design a new structure of
CNN using the publicly available datasets of remote sensing images. Because of the difficulty
of training a new CNN model, there are few articles about this method at present.34–37

2.1.2 Classification method based on the classical CNN model

The target dataset is used to train the weights of the existing classical CNNmodel without chang-
ing the structure and parameters in this method. Due to the limited amount of data in the publicly
available datasets of high-resolution remote sensing images, it is impossible to compare with the
ImageNet dataset containing tens of thousands of natural images. What is more, the depth of the
classical CNN model is usually deep. Therefore, there will be a problem of mismatch been the
amount of data and the depth of the model in the full-trained method based on the classical CNN
model. The classification method based on the classical CNN model is generally used to com-
pare with other scene classification methods of high-resolution remote sensing images in the
existing articles.38,39

2.2 Classification Method Based on Transfer Learning

Transfer learning is a method of machine learning that applies the existing knowledge to different
but related fields, so as to facilitate the learning of knowledge in new fields, as shown in Fig. 3. In
deep learning, transfer learning can solve the problem of limited labeled data in the target field.
It is worth noting that there must be some similarity between the target dataset and the original
dataset when transfer learning is used. This method can also be subdivided into two strategies:
(a) the classification method based on fine-tuning and (b) the classification method based on
using the pretrained CNN model as a feature extractor. The two strategies use the target data
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Fig. 3 The schematic of the classification method based on transfer learning.
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to adjust the parameters of the classical pretrained CNN model obtained by original large-scale
datasets. And the two strategies differ in two respects: (1) The classification method based on
fine-tuning needs to finely tune the trained weights of the pretrained model while the classifi-
cation method based on using the pretrained model as the feature extractor does not need the
fine-tuning operation. (2) The classification method based on fine-tuning does not change the
category of the classifier but the number of categories, while the type of classifier used in
the other strategy changes.

2.2.1 Classification method based on fine-tuning

Fine-tuning is proposed according to the theory that the generalized features extracted from the
shallow convolutional layers are universal for various tasks, while the deep convolutional layers
extract more abstract features than the shallow ones. The classification method based on fine-
tuning adjusts the weights of the pretrained model in order to improve the classification accuracy.
And it can be roughly divided into two categories: (1) all the layers of the classical pretrained
CNN model are fine-tuned and (2) only the top layers of the classical pretrained CNN model are
fine-tuned. Currently, the transfer learning method based on fine-tuning has been widely used
in the field of remote sensing image scene classification.40–43

2.2.2 Classification method based on using the pretrained CNN model
as a feature extractor

The classification method using the pretrained model as a feature extractor does not need to
redesign a new CNN or adjust the structure of the network, but only needs to choose which
pretrained model to use, which layer of the network to extract features and which machine learn-
ing classification algorithm to select for classification.42–45 In order to obtain more accurate fea-
ture information and higher classification accuracy, many works of literature use this method
to extract high-level visual features and conduct feature fusion with low-level, middle-level, or
other high-level visual features.46–50 These fusion methods generally have high classification
results due to the integration of multiple feature types rather than just the use of high-level visual
features.

3 Scene Classification Method of High-Resolution Remote Sensing
Images Based on IMFNet

IMFNet model for scene classification of high-resolution remote sensing images is proposed in
this paper. This chapter is divided into two parts. The structure of IMFNet is introduced in
Sec. 3.1. The optimization methods to improve the classification accuracy of IMFNet model
are described in Sec. 3.2.

3.1 Structure of IMFNet

IMFNet is a CNN based on the Inception module and multifeature fusion strategy, and its struc-
ture is shown in Fig. 4. The IMFNet consists of four convolutional layers, six maximum pooling
layers, two Inception modules, three fully connection layers, and one output layer. The input of
the IMFNet model is 256 × 256 × 3 pixels. And in the lower layers of the IMFNet, the convolu-
tional layers and the maximum pooling layers are used alternately to extract the shallow features.
The first three convolutional layers of IMFNet model adopt the convolutional kernel of 5 × 5 to
extract the larger features, and the fourth convolutional layer adopts the convolutional kernel of
3 × 3 to extract more refined features. The filter size of each maximum pooling layer is 2 × 2 and
the stride is 2. After that, two inception modules are used to extract high-level visual features.
In addition, the multifeature fusion strategy is adopted to ensure the integrity of information to a
certain extent. Finally, a softmax classifier is used in the output layer of the IMFNet. The output
size depends on the number of remote sensing scene categories to be classified. Next, the
Inception module and multifeature fusion strategy are introduced in detail, respectively.
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3.1.1 Inception module

The Inception module is a combination of different perception fields, which can learn both
microfeatures and macrofeatures simultaneously.25,51–53 The first Inception module used in this
article is an improved module of the Inception V1.25 The second Inception module is an
improved module of the Inception V3.52

The first Inception module used in the article is shown in Fig. 5. It has four batches, the first
branch includes a convolutional layer with a convolution kernel size of 1 × 1; the second branch
is composed of two convolutional layers with convolution kernel sizes of 1 × 1 and 5 × 5; the
third branch is composed of two convolutional layers with convolution kernel sizes of 1 × 1 and
3 × 3; the fourth branch is composed of a pooling layer with a kernel size of 3 × 3 and a
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Fig. 4 Structure diagram of IMFNet.
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convolutional layer with a convolution kernel size of 1 × 1. The concatenation of convolution
kernels of different sizes is equivalent to the fusion of features with different scales so that the
learning ability of the model is improved. The convolution kernel of 1 × 1 is used for dimen-
sionality reduction, so as to reduce the calculation cost.

The second Inception module used in the article is shown in Fig. 6. Its main characteristic is
to decompose a large two-dimensional convolution into two small one-dimensional convolu-
tions, so as to save a large number of parameters, speed up the operation, and alleviate the prob-
lem of overfitting. The second Inception module also contains four branches. The first branch
includes a convolutional layer with a convolution kernel size of 1 × 1; the second branch
includes a convolutional layer with a convolution kernel size of 1 × 1 and two parallel convolu-
tional layers with convolution kernel sizes of 1 × 5 and 5 × 1. The third branch is composed of a
convolutional layer with a convolution kernel size of 1 × 1, another convolutional layer with a
convolution kernel size of 3 × 3, and two parallel convolutional layers with convolution kernel
sizes of 1 × 3 and 3 × 1. The fourth branch is composed of an average pooling layer with a kernel
size of 3 × 3 and a convolutional layer with a convolution kernel size of 1 × 1.

3.1.2 Multifeature fusion strategy

CNN has the characteristics of hierarchy, and the features obtained from each layer have gradual
transition from the generalization features, such as edge and texture to the high-level semantic
representation. Based on this characteristic, the multifeature fusion strategy based on the fully
connected layers was proposed in the article, as shown in Fig. 7. The output features of the fully
connected layers containing high-level semantic information are cascaded, and then the cascaded
features are classified through the output layer, so that the semantic information contained in
the features of different layers can complement each other, thus improving the classification
accuracy.
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1×1
(Conv)

Pool
(3×3)
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5×5
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Fig. 5 The first Inception module.
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Fig. 6 The second Inception module.
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3.2 Optimization Methods

In the training process of CNN, the problem of overfitting occurs easily when the amount of data
is too little and the parameters of the model are too vast. The so-called overfitting refers to the
phenomenon that the model overlearns the training data during the training process so that it
performs well in the training set but poorly in the test set. Therefore, the optimization methods of
data augmentation, dropout, parameter norm penalty, moving average model, and Adam opti-
mization algorithm are adopted to prevent the problem of overfitting and make the IMFNet con-
structed in the paper more robust.

3.2.1 Data augmentation

Data augmentation is a method that increases the amount of data in a dataset while keeping the
data label unchanged. In this paper, random cropping, scale stretching, rotation, and image stand-
ardization are adopted to enlarge the dataset, so as to obtain sufficient training data of high-
resolution remote sensing images, improve the generalization ability and robustness of the
IMFNet model constructed, and effectively alleviate the problem of overfitting.

3.2.2 Dropout

Dropout can significantly reduce overfitting phenomenon and improve network generalization
performance.54 The basic idea of dropout is to randomly make some neurons in the hidden layer
temporarily stop working in a certain proportion during network training. In other words, the
weights of some neurons in the hidden layer are not updated but retained according to a certain
probability, which is equivalent to training on different networks and reducing the complex coad-
aptive relationship between neurons. Figure 8 shows the comparison chart of the standard neural
network and the neural network using dropout.

3.2.3 Parameter norm penalty

The main idea of parameter norm penalty regularization is to add a parameter norm penaltyΩðθÞ
to the target function J to obtain the regularized target function J̃, as shown in Eq. (1):

Category 1

Category 2

Category n

....

Softmax

Conv+Pooling Conv+Pooling Conv+Pooling

...

Conv+Pooling

FC1 FC2 FC3Several convolutional layers and pooling layers Output layer 

Fig. 7 Schematic diagram of the multifeature fusion strategy.

(a) (b)

Fig. 8 Schematic diagram of dropout: (a) the standard neural network and (b) the neural network
using dropout.
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EQ-TARGET;temp:intralink-;e001;116;723J̃ðθ;X; yÞ ¼ Jðθ;X; yÞ þ αΩðθÞ; (1)

where X is the input data; y is the label; θ is the parameter; α ∈ ½0;∞Þ is the hyperparameter used
to weigh the relative contribution of the parameter norm penalty ΩðθÞ, the larger the value is, the
greater the intensity of the regularization is. This method controls the complexity of the model by
adding parameter norm penalties to the target function, thus avoiding the overfitting problem of
the neural network. The common regularization methods of parameter norm penalties include
L1-norm regularization and L2-norm regularization.

The L1-norm represents the sum of the absolute values of all the elements in the vector,
as shown in Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;617ΩðθÞ ¼ kWk1 ¼
X

i

jWij; (2)

L2-norm represents the sum of squares of each parameter in the vector, as shown in Eq. (3):

EQ-TARGET;temp:intralink-;e003;116;562ΩðθÞ ¼ 1

2
kWk22 ¼

X

i

W2
i : (3)

In this paper, the L2-norm regularization is used.

3.2.4 Moving average model

The main principle of the moving average model is to control the gap before and after the param-
eter update by controlling the decay rate, so as to reduce the variation of parameters. When
training the model, it is very beneficial to keep the moving average of the training parameters.
The use of averaged parameters in testing sometimes produces much better results than the use
of the final trained parameter values, which can make the model more robust in test data.

3.2.5 Adam optimization algorithm

Adam optimization algorithm is a first-order gradient-based optimization algorithm proposed by
Kingma and Ba,55 which is based on adaptive moment estimation and can replace the traditional
stochastic gradient descent (SGD). SGD maintains a single learning rate to update all weights,
and the learning rate does not change during the training process, whereas Adam designs an
independent adaptive learning rate for different parameters by calculating the first-moment
estimation and second-moment estimation of gradient.

4 Experiments and Results

This chapter mainly introduces the experimental process and result analysis. In Sec. 4.1, the data
selection is introduced; in Sec. 4.2, the experimental setup is described; and in Sec. 4.3, the
results and analysis are presented.

4.1 Dataset Selection

In recent years, many scholars have made great efforts to construct the datasets of high-resolution
remote sensing images. The publicly available datasets of high-resolution remote sensing images
are presented in Table 1.

In order to prove the effectiveness of the proposed method, the UC Merced dataset and the
SIRI-WHU dataset were used for training and testing in the paper. The two datasets are described
in detail below.
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4.1.1 UC Merced dataset

The UC Merced dataset56 contains 21 types of land-use categories, and each category contains
100 images. Each image is 256 × 256 pixels with a pixel resolution of 1 foot. The dataset was
manually extracted from the United States Geological Survey (USGS) National Map of US
urban areas. The typical images of the UC Merced dataset are shown in Fig. 9.

4.1.2 SIRI-WHU dataset

The SIRI-WHU dataset60 contains 12 scene categories, each category contains 200 images. Each
image is 200 × 200 pixels with a spatial resolution of 2 m. The SIRI-WHU dataset is derived
from Google Earth and mainly includes urban areas in China. The typical images of the SIRI-
WHU dataset are shown in Fig. 10.

Table 1 The publicly available datasets of high-resolution remote sensing images.

Dataset name
Total
class

Number
per class

Total
images

Image
size Bands

Spatial
resolution (m) Sources

Brazilian
Coffee Scene49

3 1438–36,577 50,000 64 × 64 R; G;
near-infrared

— SPOT sensor

UC Merced56 21 100 2100 256 × 256 RGB 0.3 United States
Geological Survey

WHU-RS1957 19 50–61 1005 600 × 600 RGB ∼0.5 Google Earth

Banja-Luka58 6 28–178 606 128 × 128 RGB — Aerial images

RSSCN714 7 400 2800 400 × 400 RGB — Google Earth

SAT-459 4 125,000 500,000 28 × 28 R; G; B;
near-infrared

1 National Agricultural
Imagery Program

SAT-659 6 67,500 405,000 28 × 28 R; G; B;
near-infrared

1 National Agricultural
Imagery Program

SIRI-WHU60 12 200 2400 200 × 200 RGB 2 Google Earth

RSC116 11 ∼100 1232 512 × 512 RGB 0.2 Google Earth

AID61 30 220–420 10,000 600 × 600 RGB 0.22–3 Google Earth

NWPU-
RESISC4543

45 700 31,500 256 × 256 RGB 0.2–30 Google Earth

PatternNet62 38 800 30,400 256 × 256 RGB 0.062–4.693 Google Earth

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u)

Fig. 9 Category representatives of the UC Merced dataset: (a) agricultural, (b) airplane, (c) base-
ball diamond, (d) beach, (e) buildings, (f) chaparral, (g) dense residential, (h) forest, (i) freeway,
(j) golf course, (k) harbor, (l) intersection, (m) medium residential, (n) mobile home park, (o) over-
pass, (p) parking lot, (q) river, (r) runway, (s) sparse residential, (t) storage tanks, and (u) tennis
court.
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The reasons for choosing the UC Merced dataset and the SIRI-WHU dataset are as follows:

1. These two datasets are universal datasets, on which many scholars have conducted a
large number of experiments, so as to facilitate the comparison between the methods
proposed in this paper and proposed by others.

2. There is a relatively small number of images in both datasets. If the method proposed in
this paper can achieve good results, it can be proved that the method is effective for the
case of limited data.

3. Among the datasets with a limited amount of data, the two datasets have a relatively large
number of scene categories, and each category has a high degree of overlap. In order to
verify the effectiveness of the proposed method, it is persuasive to select datasets with
high intraclass diversity and low interclass distance.

4. The two datasets have different data sources and cover different regions. The UCMerced
dataset, obtained by the USGS, covers images of different cities in the United States; the
SIRI-WHU dataset is obtained through Google Earth, covering urban areas in China.

5. The image resolutions of the two datasets are different. The image resolution of the UC
Merced dataset is 0.3 m and that of the SIRI-WHU dataset is 2 m. If the proposed method
can achieve satisfactory results under the datasets with different resolutions, the validity
of the proposed method can be further demonstrated.

4.2 Experimental Setup

In the experiment, 80% of high-resolution remote sensing images in the dataset were randomly
selected as the training set and the remaining 20% as the test set. What’s more, the hyperpara-
meter used to weigh the relative contribution of the parameter norm penalty of L2-norm regu-
larization was set to 0.0001, the decay rate of moving average model was set to 0.9999, the batch
size was set to 64, and the number of iterations was set to 100,000. The experimental hardware
platform was based on Intel E5 2665 dual-core processor, four-channel GTX1080Ti GPU, and
32 Gb memory. The experimental software platform was based on Ubantu16.04 version, using
CUDA 8.0.61, CUDNN v6, and TensorFlow1.4.0 environment.

4.3 Results and Analysis

In order to verify the advantages of the proposed method, nine network structures were con-
structed for the corresponding comparison in this paper. The characteristics of different
CNN models constructed are presented in Table 2, where “

p
” indicates that the strategy is

adopted. For example, FNet represents the CNN that adopts multifeature fusion strategy and
all optimization methods mentioned, but only uses one branch of the Inception module—
convolutional layer with a convolution kernel size of 1 × 1 to replace the Inception module.
It is worth noting that in the construction of A-IMFNet, the paper uses the traditional SGD
to replace the Adam optimization algorithm.

4.3.1 Analysis of the confusion matrix on the two datasets

Figure 11 shows the confusion matrix of two datasets. It can be seen from Fig. 11(a) that the
classification accuracy of a single category, such as runway, parking lot, mobile home park,
chaparral, beach, harbor, golf course and freeway on the UC Merced dataset, has reached
100%. In addition, as shown in Fig. 11(b), the highest classification accuracy for a single cat-
egory on the SIRI-WHU dataset is already 97%. The above has proved the high performance of
the proposed method.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 10 Category representatives of the SIRI-WHU dataset: (a) meadow, (b) pond, (c) harbor,
(d) industrial, (e) park, (f) river, (g) residential, (h) overpass, (i) agriculture, (j) commercial, (k) river,
and (l) idle land.

Zhang et al.: Scene classification of high-resolution remote sensing images based on IMFNet

Journal of Applied Remote Sensing 048505-11 Oct–Dec 2019 • Vol. 13(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 23 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



However, there are still categories with lower accuracy, such as dense residential and medium
residential on the UC Merced dataset, meadow and pond on the SIRI-WHU dataset, all with an
accuracy of 75%. As shown in Fig. 12, categories that are easily misclassified are shown. These
categories have high similarity, which increases the difficulty of classification.

4.3.2 Analysis of the classification accuracy on the two datasets

In order to verify the advantages of the proposed method, it is compared with other classification
methods based on low-level, middle-level, and high-level visual features. Table 3 presents the
comparison accuracy of different methods on the UCMerced dataset and the SIRI-WHU dataset.
It can be seen from Table 3 that the classification accuracy of the method based on IMFNet on the
two datasets is the highest compared with the other methods mentioned. For classification meth-
ods based on low-level or middle-level visual features, such as bag of visual words (BoVW),56

spatial pyramid co-occurrence kernel (SPCK),63 spatial pyramid match (SPM),64 randomized
spatial partition-based classifier via boosting (BRSP),65 saliency-guided unsupervised feature
learning (SG + UFL),66 bag of scale-invariant feature transform (Bag of SIFT),67 Partlets68

on the UC Merced dataset and latent dirichlet allocation (LDA),69 SPM,64 scale-invariant feature
transform and bag of visual words (SIFT + BoVW),70 Integration,71 probabilistic latent semantic
analysis (PLSA),72 random forests (RF),73 fisher kernel with the incorporation of the spatial

Fig. 11 Confusion matrix of the two datasets: (a) confusion matrix of the UC Merced dataset
and (b) confusion matrix of the SIRI-WHU dataset.

Table 2 The characteristics of different CNN models constructed.

Name
Inception
module

Multifeature
fusion strategy

Data
augmentation Dropout

Parameter
norm penalty

Moving
average
model Adam

FNet
p p p p p p

IMNet
p p p p p p

DA-IMFNet
p p p p p p

D-IMFNet
p p p p p p

P-IMFNet
p p p p p p

M-IMFNet
p p p p p p

A-IMFNet
p p p p p p

IMFNet
p p p p p p p
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sparse residential

medium residential

dense residential

mobile home park

park

river

meadow

pond

(a) (b)

Fig. 12 Categories that can be easily misclassified: (a) categories that can be easily misclassified
in the UC Merced dataset and (b) categories that can be easily misclassified in the SIRI-WHU
dataset.

Table 3 Comparison accuracy of different methods on the two datasets.

Attribute

UC Merced dataset SIRI-WHU dataset

Classification
methods

Classification
accuracy (%)

Classification
methods

Classification
accuracy (%)

Classification methods
based on low-level and
middle-level visual features

BoVW56 76.81 LDA69 60.32� 1.20

SPCK63 73.14 SPM64 77.69� 1.01

SPM64 75.29 SIFT + BoVW70 75.63

BRSP65 77.8 Integration 71 88.64

SG + UFL66 82.72� 1.18 PLSA72 89.60� 0.89

Bag-of-SIFT67 85.37� 1.56 RF73 89.29

Partlets68 88.76 FK-S74 90.40

Classification methods
based on high-level visual
features

LPCNN34 89.9 LPCNN34 89.88

FNet 88.33 FNet 87.3

IMNet 89.52 IMNet 88.67

DA-IMFNet 75 DA-IMFNet 73.24

D-IMFNet 88.33 D-IMFNet 86.33

P-IMFNet 90.95 P-IMFNet 89.65

M-IMFNet 87.13 M-IMFNet 88.67

A-IMFNet 40.24 A-IMFNet 53.75

IMFNet 92.14 IMFNet 90.43
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information (FK-S)74 on the SIRI-WHU dataset, the classification method based on IMFNet has
the highest accuracy. This is because the classification method based on high-level visual fea-
tures can simulate the human brain mechanism to learn features from the data automatically, thus
avoiding the incomplete extraction of artificial features, so the accuracy is generally relatively
high. Due to the limited amount of data in the publicly available datasets of high-resolution
remote sensing images, the classification accuracy of CNN methods based on full training is
generally lower than that of transfer learning using the pretrained models, which are trained
by the large-scale datasets. Therefore, this paper only compares the classification methods using
high-level visual features based on the full-trained CNN, such as large patch convolutional neu-
ral networks (LPCNN),34 FNet, IMNet, DA-IMFNet, D-IMFNet, P-IMFNet, M-IMFNet,
A-IMFNet, and IMFNet. And the classification accuracy of the method based on IMFNet is
92.14% and 90.43%, respectively, on the UC Merced dataset and the SIRI-WHU dataset, which
is the highest among them. The reasons for the good results achieved by the scene classification
of high-resolution remote sensing images based on IMFNet are as follows:

1. The Inception module is used in the classification method based on IMFNet, which ena-
bles the network to select appropriate learning parameters by itself using convolution
kernel of different sizes for feature extraction. As can be seen from Table 3, the accuracy
of the classification method based on IMFNet on the UCMerced dataset and on the SIRI-
WHU dataset is 3.81% and 3.13% higher than that based on FNet, which replace
Inception module with one of its branches, respectively. Through the above data analysis,
the validity of the Inception module for scene classification of high-resolution remote
sensing images can be proved.

2. Multifeature fusion strategy is adopted in the classification method based on IMFNet to
ensure the integrity of information by cascading the fully connected layer features. As
can be seen from Table 3, the accuracy of the classification method based on IMFNet on
the UC Merced dataset and on the SIRI-WHU dataset is 2.62% and 1.76% higher than
that based on IMNet, respectively. The above analysis can prove the effectiveness of
multifeature fusion strategy.

3. The optimization method of data augmentation is adopted in the classification method
based on IMFNet. By means of data augmentation, not only the dataset is amplified but
also the interpolation operation in data augmentation process is equivalent to adding
noise to the input image, thus improving the antinoise ability of the model. It can be
seen from Table 3 that the accuracy of the classification method based on IMFNet
on the UC Merced dataset and on the SIRI-WHU dataset is 17.14% and 17.19% higher
than that based on DA-IMFNet, respectively. The analysis above can prove that the
optimization method of data augmentation is effective for scene classification of high-
resolution remote sensing images.

4. Dropout optimization method is adopted in the classification method based on IMFNet
to reduce the overfitting problem of the model by making some units of the hidden layer
not to work at a certain probability. As can be seen from Table 3, the accuracy of the
classification method based on IMFNet on the UCMerced dataset and on the SIRI-WHU
dataset is 3.81% and 4.1% higher than that based on D-IMFNet, respectively. The above
analysis can prove the effectiveness of using dropout strategy.

5. The optimizationmethod of parameter norm penalty is adopted in the classificationmethod
based on IMFNet to solve the problem of overfitting by adding penalty terms to the
target function to control the complexity of the model. It can be seen from Table 3 that
the accuracy of the method based on IMFNet on the UC Merced dataset and on
the SIRI-WHU dataset is 1.19% and 0.78% higher than that based on P-IMFNet, respec-
tively. The above result analysis proves the effectiveness of using the parameter norm
penalty.

6. The optimization method of the moving average model is adopted in the classification
method based on IMFNet to make the model more robust in test data. As can be seen
from Table 3, the accuracy of the classification method based on IMFNet on the UC
Merced dataset and on the SIRI-WHU dataset is 5.01% and 1.67% higher than that based
on M-IMFNet, respectively. The above result analysis can prove the effectiveness of
using moving average model.
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7. Adam optimization algorithm is adopted in the classification method based on IMFNet
to adjust the learning rate adaptively. Adam optimization algorithm can update the
weights of neural network iteratively based on the training data, which can not only
accelerate the training speed of the model but also avoid falling into the local optima.
It can be seen from Table 3 that the accuracy of the classification method based on
IMFNet using Adam optimization algorithm on the UC Merced dataset and on the
SIRI-WHU is 51.9% and 36.68% higher than that based on A-IMFNet using traditional
SGD with a single learning rate, respectively. The above result analysis can prove the
effectiveness of using Adam optimization algorithm.

5 Parameter Analysis

The dropout rate, learning rate, data augmentation factor, and training iterations have a great
impact on the scene classification accuracy of high-resolution remote sensing images. Next, the
influence of these four parameters on the results will be analyzed in detail.

5.1 Dropout Rate

Dropout rate p is a hyperparameter, which means the probability of neurons being discarded, and
the optimal values of dropout rate are different for different networks and different application
fields. The IMFNet model using dropout rates from 0.1 to 0.7 was trained on the UC Merced
dataset and the SIRI-WHU dataset under the condition of keeping other parameters unchanged.
The test results are shown in Fig. 13. It can be seen from the figure that the overall trend of
classification accuracy corresponding to different dropout rates on the UC Merced dataset and
the SIRI-WHU dataset is roughly the same. The classification accuracy of dropout from 0.1 to
0.6 on the UC Merced dataset and the SIRI-WHU dataset is generally on the rise. When the
dropout probability is 0.6, the classification accuracy of the UC Merced dataset and the SIRI-
WHU dataset is the highest. When the dropout probability is 0.7, the classification accuracy of
the UC Merced dataset and the SIRI-WHU dataset slowly declines, which is due to the fact that
too many neurons are discarded to make the network unable to learn the characteristics well.

5.2 Learning Rate

In order to analyze the influence of learning rates on classification accuracy, the IMFNet model
with learning rates of 0.01, 0.001, 0.0001, 0.00001, and 0.000001 was trained and tested on the
UC Merced dataset and the SIRI-WHU dataset. The classification accuracy of IMFNet under
different learning rates is shown in Fig. 14. It can be seen from the figure that the accuracy trend
of IMFNet model with different learning rates is basically the same on the UC Merced dataset
and the SIRI-WHU dataset. When the learning rate is set to 0.01, the classification accuracy of
the two datasets is <10%. This is because the learning rate is too large, which makes the gradient
oscillate back and forth near the optimal value, unable to converge. When the learning rate

Fig. 13 Schematic diagram of the classification accuracy corresponding to different dropout rates.
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decreases to 0.001, the classification accuracy of the two datasets is improved. When the learning
rate is 0.0001, the classification accuracy of the two datasets is the highest. However, when the
learning rate is 0.00001 and 0.000001, the classification accuracy of the two datasets shows a
decreasing trend. This is because when the learning rate is too small, the convergence process
will become very slow, and the optimal classification accuracy cannot be achieved under the
same number of iterations.

5.3 Data Augmentation Factor

The data augmentation factor represents the multiple of the original dataset after amplification.
Theoretically, the more images in the dataset, the stronger the generalization ability of the network
model. However, the classification accuracy depends partly on the quality of the picture. As shown
in Fig. 15, for the UC Merced dataset, the accuracy is the highest when the data augmentation
factor is 40. For the SIRI-WHU dataset, when the amplification factor is 80, the classification
accuracy is the highest. Different from the object-centered natural image classification task, objects
in high-resolution remote sensing images are often randomly distributed in the images. In the
process of data augmentation, some useful information may be removed, which may lead to the
fact that the classification accuracy decreases with the increase of amplification factor.

5.4 Training Iterations

The influence of different training iterations on the two datasets is shown in Fig. 16. The accu-
racy of the UC Merced dataset and the SIRI-WHU dataset shows a significant upward trend

Fig. 14 Schematic diagram of the classification accuracy corresponding to different learning rates.

Fig. 15 Schematic diagram of the classification accuracy corresponding to different data augmen-
tation factors.
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before 35,000 iterations and a slight upward trend overall after 35,000 iterations. This is because
as the number of training iterations increases, the network can learn more features from images.
At the same time, the test accuracy of the UC Merced dataset is higher than that on the SIRI-
WHU dataset due to the difference of data characteristics in the datasets.

6 Conclusions

This paper not only summarizes the current scene classification methods of high-resolution
remote sensing images but also presents a scene classification method of high-resolution remote
sensing images based on IMFNet. IMFNet is an end-to-end CNN, which can learn high-level
visual features from data automatically. The main characteristic of IMFNet is that Inception
module is adopted to extract detail features of remote sensing images, and the multifeature fusion
strategy is proposed to ensure the integrity of information. In order to further improve the clas-
sification accuracy of the IMFNet, the optimization methods of data augmentation, dropout,
parameter norm penalty, moving average model, and Adam optimization algorithm are adopted
to optimize the IMFNet.

In order to verify the effectiveness of the proposed method, the paper tested on the UC
Merced dataset and the SIRI-WHU dataset, and the classification accuracy of the two publicly
available datasets reaches 92.14% and 90.43%, respectively. Compared with the classification
methods based on low-level, middle-level, and high-level visual features, the proposed method
has certain advantages.

The method proposed in this paper still has some shortcomings. Since the method of super-
vised learning is adopted in this paper, the classification accuracy also depends on the accuracy of
labeled data. When data augmentation is carried out, the operation of random clipping will lead to
incomplete or even wrong information. In addition, most remote sensing data in practical engi-
neering applications are unlabeled data. Therefore, an unsupervised scene classification method
of high-resolution remote sensing images is planned to adopt in the follow-up research work.
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