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a b s t r a c t 

To achieve high measurement accuracy with less computational time in phase-shifting interferometry, a random 

phase retrieval approach based on difference map Gram–Schmidt othonormalization and Lissajous ellipse fitting 

method (DGS-LEF) is proposed, it easy to implement and only needs three phase shifted interferograms, it doesn’t 

need pre-filtering, moreover, the phase shift can be random except for too small relative phase shift between two 

adjacent interferograms, last but not least, this method is effective for the symmetrical and asymmetrical fringes. 

The simulations and experiments verify the correctness and feasibility of DGS-LEF. 
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. Introduction 

Phase-shifting interferometry (PSI) has been widely used in the high
recision phase measurement, such as optical surface testing and defor-
ation measurement [1–3] . In order to obtain accurate tested phase,

he outstanding phase-shifting algorithm (PSA) is essential. The accu-
acy of the standard PSA depends on the accuracy of the phase shift
4–6] , which should be a special value (e.g. 𝜋/2), the practical phase
hift is difficult to equal to the pre-set phase shift due to the phase shift
rror caused by the miscalibration of piezo-transducer, vibrational er-
or, air turbulence in the working environment, instability of the laser
requency, and so on [7–9] . 

To overcome the phase shift error, several PSAs with random phase
hift have been proposed [7–12] . In 1992, Farrell and Player [13] uti-
ized Lissajous figures and ellipse fitting to calculate the phase difference
etween two interferograms. In 2004, an advanced iterative algorithm
ased on a least-squares iterative procedure was introduced to extract
hase distribution from randomly phase shifted interferograms [14] . It
opes with the limitation of the existing iterative algorithms by sep-
rating a frame-to-frame iteration from a pixel-to-pixel iteration, and
rovides stable convergence and accurate phase extraction. In 2008, Xu
t al. [15] presented an advance iterative algorithm to extract phase
istribution from randomly and spatially non-uniform phase shifted in-
erferograms, this algorithm divides the interferograms into small blocks
nd retrieves local phase shifts accurately by iterations. In 2013, an it-
rative PSA based on the least-squares principle was developed to over-
ome the random piston and tilt wavefront errors generated from the
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hase shifter [16] . From 2011 to 2017, [17–23] proposed a series of
SAs based on principal component analysis which is an efficient tech-
ique for phase extraction by converting a set of possibly correlated
ariables into a set of values of uncorrelated variables, but it cannot
etermine the global sign of the measured phase, and it needs more
han three interferograms because it need to subtract relatively accu-
ate mean. In 2012, Vargas et al. [24] presented a two-step demodu-
ation based on the Gram–Schmidt orthonormalization method (GS2),
here the phase shift is random and can be any value inside the range

0, 2 𝜋] except 𝜋. The main drawback is that it requires subtracting the
C term by filtering. In 2016, Liu et al. [25] proposed a PSA which
an simultaneously extract the tested phase and phase shift from only
wo interferograms using Lissajous figure and ellipse fitting technology,
ut it needs pre-filtering and the non-uniform intensity distribution will
ffect the accuracy. 

For the PSAs with less than three phase shifted interferograms, it is
ifficult to obtain the high accuracy and cost less time simultaneously.
enerally the accuracy of the iterative algorithm is relatively high, but

he computational time is also relatively long, and the computational
ime of the non-iterative algorithm is shorter, however, its accuracy is
ower than that of the iterative algorithm. Moreover, for both the itera-
ive and non-iterative algorithm, the pre-filtering will spend more time
nd affect the accuracy. Hence, to obtain the high accuracy and save
ime simultaneously, the research of the non-iterative three-step PSA
ith no pre-filtering and high accuracy is essential. 

In this paper, we will discuss the accurate and timesaving phase
etrieval approach with random phase shift. Section 2 presents the
o.169, Jilin, Jilin 132012, China. 
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rinciple and process of the proposed PSA based on difference map
ram–Schmidt othonormalization and Lissajous ellipse fitting method

DGS-LEF). In Section 3 the simulation of DGS-LEF is discussed, and the
omparison with AIA is performed. Section 4 evaluates the novel PSA
ith the experimental data. The conclusion is finally drawn in Section 5 .

. Principles 

In PSI, the intensity distribution of the phase shifted interferograms
an be expressed as: 

 𝑚 ( 𝑥, 𝑦 ) = 𝑎 𝑚 ( 𝑥, 𝑦 ) + 𝑏 𝑚 ( 𝑥, 𝑦 ) cos 
(
𝜑 ( 𝑥, 𝑦 ) + 𝛿𝑚 

)
(1)

here m = 1,2,…, M represents the image index with M the total num-
er of phase shifted interferograms. M is set to 3. a m 

( x, y ), b m 

( x, y ) and
 ( x, y ) respectively represent the background intensity, modulation am-
litude and tested phase. 𝛿m 

represents the phase shift. Because there is
nly an invariable difference 𝛿1 between 𝜑 ( x, y ) and 𝜑 ( 𝑥, 𝑦 ) + 𝛿1 , which
oesn’t affect the phase distribution, for simplicity, we define 𝛿1 = 0 ,
nd omit the subscript ( x, y ) in the following discussion. 

Firstly, we implement the subtraction between the three phase
hifted interferograms to filter the background intensity since the sub-
raction can cost less time than the filtering algorithm. Generally for the
ackground intensity and modulation amplitude distributions, both the
uctuation between different interferograms and the non-uniformity be-
ween different pixels exist, however, the subtraction can still filter most
f the background intensity, hence, for simplicity, we assume that a m 

nd b m 

are irrelevant to the pixel position, only relevant to the image
ndex in the filtering process. 

Here, two difference maps between the 1st, 2nd, and 3rd interfero-
rams can be defined as: 

 1 = 𝐼 1 − 𝐼 2 = 

(
𝑏 1 + 𝑏 2 

)
sin 

( 

𝛿2 
2 

) 

sin 
( 

𝜑 + 

𝛿2 
2 

) 

+ 

(
𝑏 1 − 𝑏 2 

)
cos 

( 

𝛿2 
2 

) 

cos 
( 

𝜑 + 

𝛿2 
2 

) 

+ 𝑎 1 − 𝑎 2 

 2 = 𝐼 1 − 𝐼 3 = 

(
𝑏 1 + 𝑏 3 

)
sin 

( 

𝛿3 
2 

) 

sin 
( 

𝜑 + 

𝛿3 
2 

) 

+ 

(
𝑏 1 − 𝑏 3 

)
cos 

( 

𝛿3 
2 

) 

cos 
( 

𝜑 + 

𝛿3 
2 

) 

+ 𝑎 1 − 𝑎 3 (2)

Assuming that ( 𝑏 1 − 𝑏 2 ) and ( 𝑏 1 − 𝑏 3 ) approximate to zero, therefore
 𝑏 1 − 𝑏 2 ) cos ( 

𝛿2 
2 ) cos ( 𝜑 + 

𝛿2 
2 ) and ( 𝑏 1 − 𝑏 3 ) cos ( 

𝛿3 
2 ) cos ( 𝜑 + 

𝛿3 
2 ) both close to

ero. Finally we can simply the Eq. (2) as 

 1 = 𝛼 sin 
(
𝜑 + 

𝛿2 
2 

)
+ 𝑎 0 = 𝛼 cos 

(
Φ − 

𝜋

2 

)
+ 𝑎 0 = 𝛼 cos ( Ψ) + 𝑎 0 

 2 = 𝛽 sin 
(
𝜑 + 

𝛿3 
2 

)
+ 𝑏 0 = 𝛽 cos 

(
Φ + Δ − 

𝜋

2 

)
+ 𝑏 0 = 𝛽 cos ( Ψ + Δ) + 𝑏 0 

(3)

here 𝛼 = ( 𝑏 1 + 𝑏 2 ) sin ( 
𝛿2 
2 ) , 𝛽 = ( 𝑏 1 + 𝑏 3 ) sin ( 

𝛿3 
2 ) , 𝑎 0 = 𝑎 1 − 𝑎 2 , 𝑏 0 = 𝑎 1 −

 3 , Φ = 𝜑 + 

𝛿2 
2 , Ψ = Φ − 

𝜋

2 , Δ = 

𝛿3 − 𝛿2 
2 . 

From Eqs. (2) and (3) , we can see that the background intensity has
een eliminated mostly by the simple subtraction, then we use Gram–
chmidt othonormalization process to orthonormalize the differential
ectors D 1 and D 2 [24] . 

For orthonormalizing two vectors { u 1 , u 2 }, there are three simple
teps. First, we take one of the vectors and normalize it: 

̃ 1 = 𝑢 1 ∕ ‖‖𝑢 1 ‖‖ (4)

Then, we orthogonalize the u 2 with respect to the ̃𝑢 1 vector, subtract-
ng its projection as 

̂ 2 = 𝑢 2 − ⟨𝑢 2 , ̃𝑢 1 ⟩ ⋅ 𝑢̃ 1 (5)

At last, we obtain 𝑢̃ 2 by normalizing 𝑢̂ 2 

̃ 2 = 𝑢̂ 2 ∕ ‖‖𝑢̂ 2 ‖‖ (6)
 fi  

12 
Note that, in the above equations, ‖ · ‖ and ⟨ · , · ⟩ respectively repre-
ent the 2-norm and the inner product. 

According to the GS method outlined above, we orthonormalizing
 1 and D 2 as: 

̃
 1 = 

𝐷 1 ‖‖𝐷 1 ‖‖ ≈
𝛼 cos ( Ψ) + 𝑎 0 

𝜅1 
= 

𝛼 cos ( Ψ) 
𝜅1 

+ X 1 (7)

here 𝜅1 = 

√ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝛼 cos (Ψ) ) 2 , X 1 = 

𝑎 0 
𝜅1 

, N x and N y respectively corre-

pond to the size of image columns and rows. 
Then, we can obtain 𝐷̂ 2 as: 

̂
 2 ≈ 𝛽( cos ( Ψ) cos ( Δ) − sin ( Ψ) sin ( Δ) ) + 𝑏 0 

− 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

(
𝛼𝛽

(
cos 2 ( Ψ) cos ( Δ) − sin ( Ψ) cos ( Ψ) sin ( Δ) 

))
𝜅1 

+ 𝑁 𝑥 𝑁 𝑦 X 1 𝑏 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
⋅
( 

𝛼 cos ( Ψ) 
𝜅1 

+ X 1 

) 

(8) 

If we have more than one fringe in the interferograms, we can use
he approximation 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 ( Ψ) cos ( Δ) 
|||||| ≫

||||||
𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin ( Ψ) cos ( Ψ) sin ( Δ) 
|||||| (9) 

Therefore, we can rewrite Eq. (9) as 

̂
 2 ≈ 𝛽( cos ( Ψ) cos ( Δ) − sin ( Ψ) sin ( Δ) ) + 𝑏 0 

− 

( 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

(
𝛼2 𝛽cos 2 ( Ψ) cos ( Δ) 

)) 

cos ( Ψ) 

𝜅1 
2 − 𝑁 𝑥 𝑁 𝑦 X 1 

2 𝑏 0 

= − 𝛽 sin ( Ψ) sin ( Δ) + 𝑏 0 − 𝑁 𝑥 𝑁 𝑦 X 1 
2 𝑏 0 (10) 

Finally, we obtain 𝐷̃ 2 

̃
 2 ≈ ( − 𝛽 sin ( Ψ) ) ∕ 𝜅2 − X 2 (11)

here 𝜅2 = 

√ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝛽 sin (Ψ) ) 2 , X 2 = 

𝑁 𝑥 𝑁 𝑦 X 1 2 𝑏 0 − 𝑏 0 
𝜅2 . 

After the GS process, we set 

 = 𝐷̃ 1 , 𝑁 = − ̃𝐷 2 (12)

hen we can obtain the expressions with the sine and cosine signals of
he tested phase. 

From Eqs. (7) , (11) and (12) , an ellipse function can be obtained (
𝑁 − 𝑥 0 

)2 (
𝑎 𝑥 
)2 + 

(
𝐷 − 𝑦 0 

)2 (
𝑎 𝑦 
)2 = 1 (13)

here 𝑥 0 = X 2 , 𝑦 0 = 𝑋 1 , 𝑎 𝑥 = 𝛽∕ 𝜅2 , 𝑎 𝑦 = 𝛼∕ 𝜅1 
According to Eq. (12) , a general conic function can be obtained 

𝑁 

2 

𝑎 𝑥 
2 + 

𝐷 

2 

𝑎 𝑦 
2 − 2 

𝑥 0 𝑁 

𝑎 𝑥 
2 − 2 

𝑦 0 𝐷 

𝑎 𝑦 
2 + 

𝑥 0 
2 

𝑎 𝑥 
2 + 

𝑦 0 
2 

𝑎 𝑦 
2 − 1 = 0 (14)

A general conic function can be also expressed by the following sec-
nd order polynomial: 

 = 𝑎 𝑥 2 + 𝑏𝑥𝑦 + 𝑐 𝑦 2 + 𝑑𝑥 + 𝑓𝑦 + 𝑔 (15)

For an ellipse, Eq. (15) needs to meet the conditions of 𝐹 = 0 and
 

2 − 4 𝑎𝑐 < 0 . In the following, we will use the Lissajous ellipse fitting
LEF) method to extract the real phase. Firstly we plot an approximate
llipse with N as the x coordinate and D as the y coordinate, then the
oefficients of the ellipse function can be obtained by the least squares
tting, lastly according to Eqs. (14) and (15) , the semi-major amplitude
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Table 1 

RMS phase errors with different levels of noises using different methods (rad). 

SNR(dB) DGS-LEF Advanced iterative algorithm 

20 0.1178 0.1225 

30 0.0345 0.0659 

40 0.0112 0.0574 

50 0.0042 0.0565 

60 0.0027 0.0563 

70 0.0027 0.0563 

No noise 0.0027 0.0563 
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 x , semi-minor amplitude a y , the center offset x 0 and y 0 can be calcu-
ated as 

 𝑥 = 

√ 

1 
𝑎 
, 𝑎 𝑦 = 

√ 

1 
𝑐 
, 𝑥 0 = − 

𝑑 

2 𝑎 
, 𝑦 0 = − 

𝑓 

2 𝑐 
(16)

After the LEF, according to Eqs. (7) , (11) and (12) , sin ( Ψ) and cos ( Ψ)
an be obtained by 

in ( Ψ) = 

𝑁 − 𝑥 0 
𝑎 𝑥 

, cos ( Ψ) = 

𝐷 − 𝑦 0 
𝑎 𝑦 

(17)

Then the tested phase can be finally determined by 

= arctan 

( 

𝑎 𝑦 

𝑎 𝑥 
⋅

(
𝑁 − 𝑥 0 

)(
𝐷 − 𝑦 0 

) ) 

(18) 

Provided that there are no fluctuation between different phase
hifted interferograms, Eq. (7) will be rewritten as 

̃
 1 == 

𝑏 cos ( Ψ) √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 cos ( Ψ) ) 2 

(19) 

Eq. (11) will be rewritten as 

̃
 2 ≈ − 

𝑏 sin ( Ψ) √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 sin ( Ψ) ) 2 

(20) 

Then for Eq. (13) , 𝑥 0 = 0 , 𝑦 0 = 0 , 𝑎 𝑥 = 

√ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 sin (Ψ) ) 2 , 𝑎 𝑦 =
 

 

 

 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 cos (Ψ) ) 2 . 

If we have more than one fringe in the interferograms, we have
 x ≅a y , then the phase retrieval function can be simplified as 

= arctan 
(
𝑁 

𝐷 

)
= arctan 

( 

− ̃𝐷 2 

𝐷̃ 1 

) 

(21)

The phase retrieval function doesn’t include the phase shift informa-
ion since the phase shift information is eliminated in the othonormal-
zation process as shown in Eq. (6) . 

We know that there is only an invariable difference 
𝛿2 
2 − 

𝜋

2 between
 and Ψ, which will not affect the phase distribution, hence we can use
to express the tested phase distribution. Note that, because the pro-

osed method can’t calculate the practical phase 𝜑 and phase shift 𝛿m 

,
he proposed method is only suitable for the whole phase distribution
alculation, not suitable to obtain the displacement by subtracting the
hase before deformation from that after deformation, the advanced it-
rative algorithm can be used to calculate the displacement [14] . 

. Simulation 

To show the performance of the proposed method, we perform sev-
ral simulations, moreover, we compare DGS-LEF with well-evaluated
ig. 1. Simulated phase distribution and three phase shifted interferograms with th

MS = 6.656 rad), (b), (c) and (d) three phase shifted interferograms. 

13 
dvanced iterative algorithm [14] , we choose the advanced iterative
lgorithm because it is also a random three-step PSA, and it takes the
uctuation between different interferograms and the non-uniformity be-
ween different pixels into consideration as the proposed method. 

In the following simulations, we firstly simulate the tested phase
istribution which is expressed as 𝜑 = 𝑁 𝑓 𝜋( 𝑥 2 + 𝑦 2 ) ( −1 ≤ 𝑥 ≤ 1 , −1 ≤
 ≤ 1 ), in which 𝑁 𝑓 = 5 is the fringe number in the interferogram,
ig. 1 (a) shows the reference phase distribution. In general, the back-
round intensity and modulation amplitude have frame-to-frame fluctu-
tion and pixel-to-pixel variation, hence the background intensity and
odulation amplitude are set as 𝑎 𝑖 ( 𝑥, 𝑦 ) = 𝑁 𝑎 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] and
 𝑖 ( 𝑥, 𝑦 ) = 𝑁 𝑏 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] respectively, and N a of the 1st, 2nd and
rd interferograms are set as 1, 0.95 and 0.9, N b of the 1st, 2nd and 3rd
nterferograms are set as 0.9, 0.85 and 0.8. The phase shifts of the three
hase shifted interferograms are preset as 0 rad, 1.5 rad and 3.5 rad re-
pectively. Since there are noises in the practical interferograms, the
aussian noise generated by the function awgn in Matlab is added to

he interferograms. 
In the first simulation, the effects of different levels of noises were

tudied. Three simulated phase shifted interferograms with a signal-to-
oise ratio (SNR) of 20 dB and the size of 401 ×401 are generated, as
hown in Fig. 1 (b) − (d), it can be seen that the fringes are symmetrical,
nd the phase distributions extracted by DGS-LEF and advanced itera-
ive algorithm are shown in Fig. 2 (a) and (b), then, the phase error dis-
ributions were calculated as shown in Fig. 2 (c) and (d). Table 1 shows
he RMS phase errors with different levels of noises using different meth-
ds. As can be seen from Table 1 , for all levels of noises, the proposed
ethod is more accurate than the advanced iterative algorithm. Also,
hen there is no noise in the interferograms, only the phase error of
GS-LEF closes to 0 since the LEF process can correct the inherent error
ue to the fluctuating background intensity and modulation amplitude,
nd the slight phase error of DGS-LEF is generated by the non-uniform
ackground intensity, modulation amplitude and approximation error.
or well-evaluated advanced iterative algorithm, when there are large
umbers of the interferograms, it has high accuracy, however, when the
umbers of the interferograms are relatively few, its accuracy will be
ffected by the background intensity, modulation amplitude and noise,
ecause we simulate the most complex circumstance and there are only
hree interferograms, the accuracy of the advanced iterative algorithm is
ower than that of DGS-LEF. Moreover, the processing time of DGS-LEF
1.30 s) is less than that of the advanced iterative algorithm (18.59 s),
e symmetrical fringes. (a) The reference phase distribution (PV = 31.416 rad, 
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Fig. 2. Simulated results of the symmetrical fringes. (a) and (b) the phase distributions extracted by DGS-LEF (PV = 31.851 rad, RMS = 6.662 rad) and advanced 

iterative algorithm (PV = 31.845 rad, RMS = 6.663 rad), (c) and (d) the phase error distributions after using DGS-LEF and advanced iterative algorithm. 

Table 2 

RMS phase and RMS phase errors with different fringe numbers using DGS-LEF. 

Fringes numbers 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

RMS phase (rad) 0.6656 0.7987 0.9319 1.0650 1.1981 1.3312 1.4643 1.5975 

RMS phase error (rad) 0.1964 0.1502 0.1266 0.1193 0.1195 0.1215 0.1249 0.1272 

Fringes numbers 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

RMS phase (rad) 1.7306 1.8637 1.9968 2.1300 2.2631 2.3962 2.5293 2.6625 

RMS phase error (rad) 0.1285 0.1275 0.1249 0.1222 0.1201 0.1189 0.1187 0.1187 

Fringes numbers 3.0 4.0 5.0 15 25 35 45 

RMS phase (rad) 3.9937 5.3249 6.6561 19.9684 33.2807 46.5929 59.9052 

RMS phase error (rad) 0.1181 0.1177 0.1177 0.1177 0.1178 0.1174 0.1178 

Table 3 |𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) |, |𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | and their ratios with different fringe numbers using DGS-LEF. 

Fringes numbers 0.5 0.6 0.7 0.8 0.9 1.0 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) | 2.216 ×10 7 1.774 ×10 7 1.415 ×10 7 1.160 ×10 7 9.752 ×10 6 8.173 ×10 6 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | 6.061 ×10 3 7.082 ×10 3 4.586 ×10 3 1.632 ×10 3 7.349 ×10 2 2.507 ×10 3 

Ratio 3.655 ×10 3 2.505 ×10 3 3.085 ×10 3 7.106 ×10 3 1.327 ×10 4 3.260 ×10 3 

Fringes numbers 1.1 1.2 1.3 1.4 1.5 1.6 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) | 6.644 ×10 6 5.190 ×10 6 3.938 ×10 6 2.977 ×10 6 2.3143 ×10 6 1.909 ×10 6 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | 3.520 ×10 3 3.357 ×10 3 2.015 ×10 3 2.069 ×10 2 1.122 ×10 3 1.499 ×10 3 

Ratio 1.887 ×10 3 1.546 ×10 3 1.955 ×10 3 1.439 ×10 4 2.062 ×10 3 1.273 ×10 3 

Fringes numbers 1.7 1.8 1.9 2.0 3.0 4.0 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) | 1.705 ×10 6 1.659 ×10 6 1.736 ×10 6 1.907 ×10 6 2.101 ×10 6 1.008 ×10 6 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | 1.094 ×10 3 3.467 ×10 2 4.319 ×10 2 1.089 ×10 3 6.642 ×10 2 4.686 ×10 2 

Ratio 1.558 ×10 3 4.784 ×10 3 4.020 ×10 3 1.751 ×10 3 3.163 ×10 3 2.151 ×10 3 

Fringes numbers 5.0 15 25 35 45 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) | 1.156 ×10 6 3.362 ×10 5 1.920 ×10 5 1.330 ×10 5 1.011 ×10 5 

|𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | 3.585 ×10 2 1.008 ×10 2 57.25 39.17 28.86 

Ratio 3.224 ×10 3 3.334 ×10 3 3.354 ×10 3 3.396 ×10 3 3.503 ×10 3 
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he advanced iterative algorithm needs more processing time because it
eeds several iterations. 

Since we use many approximations in the proposed method, and we
ssume that there is more than one fringe pattern in the interferogram,
n the following simulation, we vary the fringe number while fixing the
NR of noise to 20 dB to obtain the best range of fringe numbers using
GS-LEF. As can be seen from Table 2 , when the fringe number is less

han 0.8, the ratio of the RMS phase to the RMS phase error is less
han 10 (Generally, the ratio is more than 10 in the highly accurate
easurement). When the range of fringe numbers is between 0.9 and
 n  

14 
.2, the RMS phase error is unstable. For the range between 1.3 and 2.0,
he ratio is increasing with the increase of the fringe number, and the
MS phase error is decreasing simultaneously. When the fringe numbers
re more than 3, the RMS phase errors are similar. Moreover, to verify
he validity of the approximation from Eq. (9) , we respectively calculate
𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

cos 2 (Ψ) cos (Δ) |, |𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

sin (Ψ) cos (Ψ) sin (Δ) | and their ratios with

he different fringe numbers as shown in Table 3 , we can see that, the
pproximation can be recognized effective for all the range of fringe
umbers, and when the fringe numbers are more than 3, the ratios are
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Fig. 3. The RMS phase errors of DGS-LEF using different phase shifts. (a) and (b) the relationships between the RMS phase errors and different phase shifts of the 

3rd and 2nd interferograms. 

Fig. 4. Simulated phase distribution and three phase shifted interferograms with the asymmetrical fringes. (a) The reference phase distribution (PV = 28.162 rad, 

RMS = 7.005 rad), (b), (c) and (d) three phase shifted interferograms. 
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imilar, in this case, the approximation error is nearly stable. Hence, we
an get the same conclusion from Tables 2 and 3 , the fringe numbers
re best to be more than 3 if the high accuracy is requested. 

We all know that the phase shift is important to the PSAs, it is nec-
ssary to discuss the RMS phase errors of DGS-LEF with different phase
hifts. Firstly, the phase shifts of the 1st and 2nd frames are respec-
ively set as 0 rad and 1.5 rad while the phase shift of the 3rd frame is
niformly changed from 2.1 rad to 4.64 rad, that is to say, the range of
elative phase shift between the 2nd and 3rd frames are between 0.6 rad
nd 𝜋 rad. Secondly, the phase shifts of the 1st and 3rd frames are
espectively set as 0 rad and 3.5 rad while the phase shift of the 2nd
rame is uniformly changed from 0.5 rad to 3.0 rad, that is to say, the
ange of relative phase shift between the 2nd and 3rd frames are be-
ween 0.5 rad and 3 rad. We can’t choose too small relative phase shift
etween two adjacent frames because the phase error is too large for
ost PSAs in this situation. Other simulated conditions are same as

he first simulation with 20 dB noise. As shown in Fig. 3 , the relation-
hips between the RMS phase errors and different phase shifts of the 3rd
nd 2nd interferograms are presented, from Fig. 3 , we can see that the
MS phase errors are relatively stable and less than 0.14 rad when the
hase shift of the 3rd interferogram is between 2.86 rad and 4.64 rad
nd when the phase shift of the 2nd interferogram is between 1.25 rad
nd 2.25 rad, moreover, the phase error will be relatively large when
he relative phase shift between two adjacent frames is relatively small,
ence, if high accuracy is required, the relative phase shift is best not to
e too small. 

To verify the robustness of DGS-LEF, we simulated the asymmetrical
ringes and compare the proposed method with AIA. The tested phase
istribution is set as 

 = 2 . 5 𝜋𝑥 − 3 𝜋𝑦 + 𝜋
(
𝑥 2 − 𝑦 2 

)
+ 0 . 8 𝜋

(
𝑥 3 − 3 𝑥 𝑦 2 

)
( −1 ≤ 𝑥 ≤ 1 , −1 ≤ 𝑦 ≤ 1 ) 

(22) 

Other conditions are same as the first simulation with 20 dB
oise. The reference phase distribution is shown in Fig. 4 (a), and
ig. 4 (b) − 4(d) show the three phase shifted interferograms, it can be
een that the fringes are asymmetrical. The extracted phase distributions
sing DGS-LEF ( Fig. 5 (a)) and advanced iterative algorithm ( Fig. 5 (b))
15 
re similar to the reference phase distribution, that is to say, these two
ethods are both effective for the asymmetrical fringes, and the phase

rror distributions of DGS-LEF and advanced iterative algorithm are
hown in Fig. 5 (c) and 5(d), the RMS values are respectively 0.1176 rad
nd 0.1228 rad, we can see that the accuracy of DGS-LEF is also higher
han that of AIA for the asymmetrical fringes. In addition, the computa-
ional time of DGS-LEF (1.29 s) is also less than that of advanced iterative
lgorithm (18.39 s). 

Based on the above different simulations, the conclusions of the pro-
osed DGS-LEF can be summarized as: 1) It can obtain the high accuracy
ith less computational time and no pre-filtering by only three phase

hifted interferograms; 2) the fringe numbers are best to be more than
 if the high accuracy is requested; 3) the phase shift can be random
xcept for too small relative phase shift between two adjacent inter-
erograms; 4) whether the symmetrical and asymmetrical fringes, the
roposed method is valid. 

. Demonstration with experimental data 

Optical experiments have been carried out to investigate the effec-
iveness and outstanding performance of the proposed method. Firstly,
our phase shifted interferograms with the symmetrical fringes are
ollected to perform the phase retrieval by DGS-LEF, advanced itera-
ive algorithm and standard 4-step PSA, the size of the interferograms is
01 ×401, and the phase shifts are 0, 𝜋/2, 𝜋 and 3 𝜋/2 respectively. The
hase extracted by standard 4-step PSA is set as the reference phase due
o its high accuracy. One of the interferograms is shown in Fig. 6 (a),
nd (b) shows the reference phase distribution, the phase distributions
xtracted by DGS-LEF and AIA are plotted in Fig. 6 (c) and (d). The differ-
nces between the reference phase and the phase obtained by DGS-LEF
nd AIA are shown in Fig. 6 (e) and 6(f), and the RMS values are respec-
ively 0.0374 rad and 0.0380 rad, further indicating that the accuracy of
GS-LEF is higher than that of the advanced iterative algorithm. More-
ver, the computational time of DGS-LEF (1.30 s) is less than that of the
dvanced iterative algorithm (18.63 s). 

Then, the phase shifted interferograms with the asymmetrical fringes
re also collected, and the comparison for DGS-LEF and advanced itera-



Y. Zhang, X. Tian and R. Liang Optics and Lasers in Engineering 121 (2019) 11–17 

Fig. 5. Simulated results of the asymmetrical fringes. (a) and (b) the phase distributions extracted by DGS-LEF (PV = 28.575 rad, RMS = 7.011 rad) and advanced 

iterative algorithm (PV = 28.571 rad, RMS = 7.014 rad), (c) and (d) the phase error distributions after using DGS-LEF and advanced iterative algorithm. 

Fig. 6. Experimental results of the symmetrical fringes. (a) One of the phase shifted interferograms, (b) the reference phase distribution obtained by 4-step PSA 

(PV = 43.471 rad, RMS = 8.933 rad), (c) and (d) the extracted phase distributions obtained by DGS-LEF (PV = 43.669 rad, RMS = 8.923 rad) and advanced iterative 

algorithm (PV = 43.660 rad, RMS = 8.923 rad), (e) and (f) the differences between the reference and extracted phase distributions by DGS-LEF and advanced iterative 

algorithm. 

Fig. 7. Experimental results of the asymmetrical fringes. (a) One of the phase shifted interferograms, (b) the reference phase distribution obtained by 4-step PSA 

(PV = 33.956 rad, RMS = 8.879 rad), (c) and (d) the extracted phase distributions obtained by DGS-LEF (PV = 34.156 rad, RMS = 8.885 rad) and advanced iterative 

algorithm (PV = 34.133 rad, RMS = 8.885 rad), (e) and (f) the differences between the reference and extracted phase distributions by DGS-LEF and AIA. 
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ive algorithm are performed as the symmetrical fringes. The size of the
nterferograms with the asymmetrical fringes is 201 × 201, and other
onditions are same as the symmetrical fringes. Fig. 7 shows the re-
ults of the asymmetrical fringes, we can see that, both DGS-LEF and
dvanced iterative algorithm are effective for the asymmetrical fringes,
nd the RMS values of the differences between the reference phase and
he phase extracted by DGS-LEF and advanced iterative algorithm are
.1461 rad and 0.1497 rad, that is to say, the accuracy of DGS-LEF is also
16 
igher than that of advanced iterative algorithm for the asymmetrical
ringes. Moreover, the computational time of DGS-LEF and advanced
terative algorithm are respectively 0.98 s and 5.66 s, we can get the
onclusion the same as the symmetrical fringes. Through the above ex-
eriments, we verify that, for both the symmetrical and asymmetrical
ringes, the proposed DGS-LEF without pre-filtering can obtain relatively
ccurate result with less computational time by only three interfero-
rams. 
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. Conclusion 

In this paper, we present random PSA based on difference map
ram–Schmidt othonormalization and Lissajous ellipse fitting method,

he difference maps are obtained by the three phase shifted interfero-
rams firstly, then the expressions with the sine and cosine signals of the
ested phase are obtained by the GS method, finally the phase distribu-
ion is extracted by the LEF method. We have compared this proposed
ethod with well-evaluated advanced iterative algorithm by the simu-

ated and experimental data, we get the conclusion that the proposed
ethod is easy to implement and can achieve high accuracy with no
re-filtering and less computational time, and the fringe numbers are
est to be more than 3 if the high accuracy is requested. Moreover,
he phase shift can be random except for too small relative phase shift
etween two adjacent interferograms. Finally, the proposed method is
uitable for the whole phase distribution calculation, and effective for
he symmetrical and asymmetrical fringes. The simulations and exper-
ments demonstrate the validity of the proposed method. In summary,
his proposed method is a power tool for the phase retrieval with ran-
om phase shift. 
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