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a b s t r a c t 

To achieve high measurement accuracy with less computational time in phase shifting interferometry, a random 

phase retrieval approach based on difference map normalization and fast iterative algorithm (DN&FIA) is pro- 

posed, it doesn’t need pre-filtering, and has the advantage of the iterative algorithms-high accuracy, moreover, 

it also has the advantage of non-iterative algorithms-timesaving, it only needs three randomly phase shifted in- 

terferograms, and the initial phase shifts of the iteration can be random, last but not least, it is effective for the 

circular, straight or complex fringes. The simulations and experiments verify the correctness and feasibility of 

DN&FIA. 
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. Introduction 

Since the optical phase distribution can be easily extracted by several
nterferograms, the phase shifting interferometry (PSI) has been widely
sed in optical measurement [1–3] . The accuracy of PSI mainly depends
n the interferometer, environment and phase shifting algorithm (PSA),
or the fixed interferometer and environment, the performance of PSA is
ery important to the accuracy of PSI, outstanding PSA can be applied
o suppress the different kinds of errors, such as the miscalibration of
iezo-transducer (PZT), detector error, vibrational error, air turbulence
n the working environment, instability of the laser, and so on [4–6] . 

To date, the PSA can be divided into two types. The first type is
he fixed-step PSA which can obtain the phase distribution by a se-
ies of phase shifted interferograms with equal and known phase shifts.
his kind of algorithm needs at least three phase shifted interferograms,
oreover, it can work well only when the phase shift is equal to the
re-set value, otherwise, a large error or deviation of phase retrieval
ill appear. Hence, this kind of algorithm is suitable for the situation
ith outstanding interferometer and stable environment. 3-step, 4-step,
-step, and N-step PSAs etc. are all the outstanding fixed-step algorithms
4] . 

The second type is the random PSA. This kind of algorithm is suitable
or the general interferometer and environment since it can overcome
he phase shift error due to the miscalibration of PZT, vibrational er-
or, air turbulence, instability of the laser frequency. For the random
SA, it can be divided into the iterative and non-iterative PSAs. Gen-
rally, the accuracy of the iterative PSA is relatively high, but it costs
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ore time because of the iterative operation. In 2004, an advanced iter-
tive algorithm (AIA) based on a least-squares iterative procedure was
ntroduced to extract phase distribution from randomly phase shifted
nterferograms [7] . It copes with the limitation of the existing iterative
lgorithms by separating a frame-to-frame iteration from a pixel-to-pixel
teration, and provides stable convergence and accurate phase extrac-
ion. In 2008, Xu et al. [8] presented an advance iterative algorithm
o extract phase distribution from randomly and spatially non-uniform
hase shifted interferograms, this algorithm divides the interferograms
nto small blocks and retrieves local phase shifts accurately by iterations.
n 2013, an iterative PSA based on the least-squares principle was devel-
ped to overcome the random piston and tilt wavefront errors generated
rom the phase shifter [9] . In general, for optical metrology, especially
or the in-situ metrology, the instantaneity of PSA is very important,
hile the iterative PSA costs more time, hence, only a small number of

terative PSAs have been developed. 
The non-iterative PSA spends less time than the iterative PSA, but

he accuracy may be not as high as the iterative PSA. In 1992, Far-
ell and Player [10] utilized Lissajous figures and ellipse fitting to cal-
ulate the phase difference between two interferograms, and in 2016,
iu et al. [11] proposed a PSA which can simultaneously extract the
ested phase and phase shift from only two interferograms using Lis-
ajous figure and ellipse fitting technology, but these two algorithms
oth need pre-filtering and the non-uniform intensity distribution will
ffect the accuracy. From 2003 to 2014, Cai et al. [12–20] proposed a
eries of statistical algorithms which can extract the phase shifts and
ested phase, however, most of these algorithms need to know the
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ntensities of object and reference. From 2011 to 2017, [21–27] pro-
osed a series of PSAs based on principal component analysis (PCA)
hich is an efficient technique for phase extraction by converting a set
f possibly correlated variables into a set of values of uncorrelated vari-
bles, but it cannot determine the global sign of the measured phase,
nd it needs more than three interferograms because it need to subtract
elatively accurate mean. In 2012, [28] presented a two-step demodu-
ation based on the Gram-Schmidt orthonormalization method (GS2), it
equires subtracting the DC term by filtering before performing GS2. In
014, Wang et al. [29] proposed an advanced GS method called GS3, the
ajor advantage of this method is that it performs well when the phase

hift is close to 𝜋 as most two-step algorithms become invalid in this
ituation. Although non-iterative PSA costs less time than the iterative
SA, some non-iterative PSAs also spend more time on the pre-filtering
r the determination of the global sign of the measured phase (PCA),
ence, saving time is essential for both the iterative and non-iterative
SAs. 

To achieve the high measurement accuracy with less time, the PSA
s critical. For the non-iterative PSA with less than three phase shifted
nterferograms, it is difficult to obtain the high accuracy. For the iter-
tive PSA, it can obtain the high accuracy, but it needs more time. To
alance the computational time and accuracy, the research of iterative
SA with less time is essential. 

In this paper, we will discuss the accurate and timesaving phase re-
rieval approach with unknown phase shifts. Section 2 presents the prin-
iple and process of the proposed PSA based on difference map normal-
zation and fast iterative algorithm (DN&FIA). In Section 3 the simula-
ion of DN&FIA is discussed, and the comparison with AIA is performed.
ection 4 evaluates the novel PSA with the experimental data. The con-
lusion is finally drawn in Section 5 . 

. Principles 

.1. Principle of the difference map normalization (DN) 

In PSI, the intensity distribution of the phase shifted interferograms
an be expressed as: 

 𝑖𝑗 = 𝑎 𝑖𝑗 + 𝑏 𝑖𝑗 cos 
(
𝜑 𝑗 + 𝜃𝑖 

)
(1)

here i = 1,2,…, P represents the image index with P the total number
f phase shifted interferograms, P is set to 3, for simplicity, we use a
ingle symbol j = 1,2,…, Q to denote the bidimensional pixel position
ith Q the total number of pixels, a ij and b ij respectively represent

he background intensity and modulation amplitude, 𝜑 j is the tested
hase, and 𝜃i represents the phase shift between interferograms. Because
here is only a piston 𝜃1 between 𝜑 j and 𝜑 𝑗 + 𝜃1 , which doesn’t affect
he phase distribution, for simplicity, we define 𝜃1 = 0 in the following
iscussion. 

Firstly, we implement the subtraction between the three phase
hifted interferograms to filter the background intensity since the sub-
raction can cost less time than the filtering algorithm. Generally for
he background intensity and modulation amplitude distributions, both
he fluctuation between different interferograms and the non-uniformity
etween different pixels exist due to the instability of the light source,
owever, the subtraction can still filter most of the background inten-
ity, hence, for simplicity, we assume that a ij and b ij are irrelevant to
 , only relevant to j in the filtering process, so 𝑎 1 𝑗 = 𝑎 2 𝑗 = ⋯ = 𝑎 𝑃 𝑗 = 𝑎 𝑗 ,
 1 𝑗 = 𝑏 2 𝑗 = ⋯ = 𝑏 𝑃 𝑗 = 𝑏 𝑗 , and a best condition of this assumption can be
iven that it is best to use the light source with high stability or apply
o the synchronous phase-shifting interferometer (SPSI). 

Two difference maps between the 1st, 2nd, and 3rd interferograms
an be defined as: 

 1 𝑗 = 𝐼 1 𝑗 − 𝐼 2 𝑗 = 2 𝑏 𝑗 sin 
( 

𝜃2 
2 

) 

sin 
( 

𝜑 𝑗 + 

𝜃2 
2 

) 

= 2 𝑏 𝑗 sin 
( 

𝜃2 
2 

) 

cos 
(
Φ𝑗 − 

𝜋

2 

)
= 2 𝑏 𝑗 sin 

( 

𝜃2 
2 

) 

cos 
(
Φ′

𝑗 

)
(2) 
19 
 2 𝑗 = 𝐼 1 𝑗 − 𝐼 3 𝑗 = 2 𝑏 𝑗 sin 
( 

𝜃3 
2 

) 

sin 
( 

𝜑 𝑗 + 

𝜃3 
2 

) 

= 2 𝑏 𝑗 sin 
( 

𝜃3 
2 

) 

cos 
(
Φ𝑗 + Δ − 

𝜋

2 

)
= 2 𝑏 𝑗 sin 

( 

𝜃3 
2 

) 

cos 
(
Φ′

𝑗 + Δ
)

(3) 

here Φ𝑗 = 𝜑 𝑗 + 

𝜃2 
2 , Δ = 

𝜃3 − 𝜃2 
2 , Φ′

𝑗 
= Φ𝑗 − 

𝜋

2 . 
Since the phase shifts between the different interferograms are differ-

nt, 𝜃2 ≠ 𝜃3 and 2 𝑏 𝑘 sin ( 
𝜃2 
2 ) ≠ 2 𝑏 𝑘 sin ( 

𝜃3 
2 ) , the amplitude of D 1 j is different

rom D 2 j . Hence, to eliminate the effect of the different amplitudes, the
ormalization is introduced to cope with two difference maps. More-
ver, whether the Euclidean 2-norm or infinity norm can normalize the
ifference vectors D 1 j and D 2 j , we will choose the Euclidean 2-norm
ince we want to obtain the new phase shifted interference signals with-
ut the background intensity in the following. 

Generally, the normalization of the vector u can be expressed as 

̃ = 𝑢 ∕ 
√⟨𝑢, 𝑢 ⟩ = 𝑢 ∕ ‖𝑢 ‖ (4) 

here �̃� represents the normalized vector, ‖ · ‖ and ⟨ · , · ⟩ respectively
epresent the 2-norm and the inner product. 

Normalizing the two difference vectors D 1 j and D 2 j , we can obtain 

̃
 1 𝑗 = 

𝐷 1 𝑗 ‖‖‖𝐷 1 𝑗 
‖‖‖ = 

𝑏 𝑗 cos 
(
Φ′

𝑗 

)√ 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 

) (5) 

̃
 2 𝑗 = 

𝐷 2 𝑗 ‖‖‖𝐷 2 𝑗 
‖‖‖ = 

𝑏 𝑗 cos 
(
Φ′

𝑗 + Δ
)√ 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 + Δ
) (6) 

If we have more than one fringe in the interferograms, we have the
ollowing approximation 

𝑄 ∑
=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 

)
− 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 + Δ
)

= 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 ⋅
[
cos 

(
Φ′

𝑗 

)
− cos 

(
Φ′

𝑗 + Δ
)]

⋅
[
cos 

(
Φ′

𝑗 

)
+ cos 

(
Φ′

𝑗 + Δ
)]

= −4 
𝑄 ∑
𝑗=1 

𝑏 2 𝑗 ⋅ sin 
(
2Φ′+Δ

2 

)
⋅ sin 

(
−Δ
2 

)
⋅ cos 

(
2Φ′+Δ

2 

)
⋅ cos 

(
−Δ
2 

)
= 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 ⋅ sin 
(
2Φ′ + Δ

)
⋅ sin ( Δ) 

≈ 0 

(7) 

Then we will have the approximation 
 

 

 

 

 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 

)
≈

√ √ √ √ √ 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 
(
Φ′

𝑗 + Δ
)

(8) 

Then the above normalized difference vectors can be rewritten as 

̃
 1 𝑗 = 𝑐 𝑗 cos 

(
Φ′

𝑗 

)
(9) 

̃
 2 𝑗 = 𝑐 𝑗 cos 

(
Φ′

𝑗 + Δ
)

(10) 

here 𝑐 𝑗 = 

𝑏 𝑗 √ √ √ √ 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 ( Φ′
𝑗 ) 

= 

𝑏 𝑗 √ √ √ √ 

𝑄 ∑
𝑗=1 

𝑏 2 𝑗 cos 2 ( Φ′
𝑗 +Δ) 

. 

𝜃2 cannot be equal to 𝜃3 since the phase shift must exist between
ifferent phase shifted interferogarms, hence, Δ is non-zero value, from
qs. (9) and (10) , we can see that �̃� 1 𝑗 and �̃� 2 𝑗 are just as two phase
hifted interference signals without the background intensity, Δ repre-
ents the phase shift between two new phase shifted interference signals,
nd c j denotes the new modulation amplitude. Because of the fluctua-
ion, non-uniformity of the original modulation amplitude b ij and the
pproximation error of Eq. (8) , the new modulation amplitude c j are
oth relevant to the pixel positions and image index, hence Eqs. (8) and
9) are rewritten as 

̃
 𝑚𝑗 = 𝑐 𝑚𝑗 cos 

(
Φ′

𝑗 + Δ𝑚 

)
(11) 
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here m = 1,2 denotes the index of the new phase shifted interference
ignals, Δ1 = 0 and Δ2 = Δ. 

We know that there is only a piston between 𝜑 j and Φ′
𝑗 
, which doesn’t

ffect the phase distribution, hence we can use Φ′
𝑗 

to express the tested
hase. 

.2. Principle of the fast iterative algorithm(FIA) 

After the difference map normalization (DN), we design a fast it-
rative algorithm (FIA) which can accurately extract the tested phase
istribution with less computational time. In the following, we will in-
roduce the proposed method in detail: 

Step1: We select a limited number of samples at regular intervals
from Eq. (11) , the phase shifted signal with the chosen samples
can be expressed as 

�̃� 

𝑡 
𝑚𝑛 

= 𝑐 𝑚𝑛 cos 
(
Φ′

𝑛 + Δ𝑚 

)
(12)

here n = 1,2,…, N denotes the chosen pixel number with N the total
umber of chosen pixels. 

Step 2: Provided that c mn is irrelevant to m , only relevant to n ,
then 𝑐 1 ,𝑛 = c 2 ,𝑛 = c 𝑛 . By setting 𝜂𝑛 = 𝑐 𝑛 cos Φ′

𝑛 
, and 𝜉𝑛 = − 𝑐 𝑛 sin Φ′

𝑛 
,

Eq. (11) can be rewritten as 

�̃� 

𝑡 
𝑚𝑛 

= 𝜂𝑛 cos Δ𝑚 + 𝜉𝑛 sin Δ𝑚 (13)

The sum of squared differences between the theoretical and actual
alue of the phase shifted signal can be expressed as 

 𝑛 = 

2 ∑
𝑚 =1 

(
�̃� 

𝑡 
𝑚𝑛 

− �̃� 𝑚𝑛 

)2 = 

2 ∑
𝑚 =1 

(
𝜂𝑛 cos Δ𝑚 + 𝜉𝑛 sin Δ𝑚 − �̃� 𝑚𝑛 

)2 
(14)

here �̃� 𝑚𝑛 is actual value of the difference phase shifted signal obtained
y the experimental data. 

According to the least-squares theory [7–9] , S n should be minimum,
or the known Δ1 and Δ2 , 𝜕 𝑆 𝑛 ∕ 𝜕 𝜂𝑛 = 0 , 𝜕 𝑆 𝑛 ∕ 𝜕 𝜉𝑛 = 0 , so 

 𝑛 = 𝑇 − 1 𝑅 𝑛 (15)

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
2 ∑

𝑚 =1 
cos 2 Δ𝑚 

2 ∑
𝑚 =1 

sin Δ𝑚 cos Δ𝑚 

2 ∑
𝑚 =1 

sin Δ𝑚 cos Δ𝑚 

2 ∑
𝑚 =1 

sin 2 Δ𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(16)

 𝑛 = 

[
𝜂𝑛 𝜉𝑛 

]𝑇 
(17)

 𝑛 = 

[ 2 ∑
𝑚 =1 

�̃� 𝑚𝑛 cos Δ𝑚 

2 ∑
𝑚 =1 

�̃� 𝑚𝑛 sin Δ𝑚 

] 𝑇 
(18)

𝜂n and 𝜉n can be obtained by Eq. (15) , and the tested phase can be
alculated by 

′
𝑛 
= tan −1 

( 

− 

𝜉𝑛 

𝜂𝑛 

) 

(19)

To further save time, the unwrapped process is ignored, and we only
eed to justify the quadrant of the phase Φ′

𝑛 
. 

Step 3: Provided that c mn is irrelevant to n , only relevant to m ,
so 𝑐 𝑚 1 = c 𝑚 2 = ⋯ = c 𝑚𝑁 

= c 𝑚 . By setting 𝜂𝑚 = 𝑐 𝑚 cos Δ𝑚 , and 𝜉𝑚 =
− 𝑐 𝑚 sin Δ𝑚 , Eq. (12) becomes 

�̃� 

𝑡 
𝑚𝑛 

= 𝜂𝑚 cos Φ′
𝑛 
+ 𝜉𝑚 sin Φ′

𝑛 
(20)

The squared sum of the differences between the theoretical and ac-
ual value of the difference phase shifted signal can be expressed as 

 𝑚 = 

𝑁 ∑
𝑛 =1 

(
�̃� 

𝑡 
𝑚𝑛 

− �̃� 𝑚𝑛 

)2 = 

𝑁 ∑
𝑛 =1 

(
𝜂𝑚 cos Φ′

𝑛 + 𝜉𝑚 sin Φ′
𝑛 − �̃� 𝑚𝑛 

)2 
(21)
20 
For the known Φ′
𝑛 
, the least-squares criterion yields 

 𝑚 = 𝑇 ′− 1 𝑅 𝑚 . (22)

 

′ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑁 ∑
𝑛 =1 

cos 2 Φ′
𝑛 

𝑁 ∑
𝑛 =1 

sin Φ′
𝑛 cos Φ′

𝑛 

𝑁 ∑
𝑛 =1 

sin Φ′
𝑛 cos Φ′

𝑛 

𝑁 ∑
𝑛 =1 

sin 2 Φ′
𝑛 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(23)

 𝑚 = 

[
𝜂𝑚 𝜉𝑚 

]𝑇 
(24)

 𝑚 = 

[ 
𝑁 ∑
𝑛 =1 

�̃� 𝑚𝑛 cos Φ′
𝑛 

𝑁 ∑
𝑛 =1 

�̃� 𝑚𝑛 sin Φ′
𝑛 

] 𝑇 
(25)

𝜂m 

and 𝜉m 

can be obtained by Eq. (22) , and the phase shift of two
ew phase shifted interference signals can be calculated by 

𝑚 = tan −1 
( 

− 

𝜉𝑚 

𝜂𝑚 

) 

(26)

Step 4: Repeat steps 2 and 3 until |( Δ𝑘 
2 − Δ𝑘 

1 ) − |Δ𝑘 −1 
2 − Δ𝑘 −1 

1 || <
𝜀 , the iteration terminates, and the accurate phase shifts can be
obtained, where ɛ is the predefined converging threshold of iter-
ation, i.e., 10 − 5 rad, and k represents the number of iterations. 

Step 5: Perform step 2 using the extracted phase shifts and the whole
samples of Eq. (11) , then the accurate phase distribution can be
obtained, note that, the unwrapped process is needed in the fi-
nal step, and this is the only unwrapped process in the proposed
method. 

Note that, the new parameter c mn is relevant to both m and n , for
ne pixel, there are five unknowns which are c 1 n , c 2 n , Δ1 , Δ2 and Φ′

𝑗 
,

ut we have only two equations, we can’t calculate the phase distribu-
ion, hence, we assume that Δ1 , Δ2 are known and the new parameter
 mn is irrelevant to m , only relevant to n to calculate the tested phase,
hen we assume that c mn is irrelevant to n , only relevant to m to calcu-
ate the phase shift, then use the iterations to decrease the error of the
ssumptions, and obtain the relatively accurate result. 

The proposed method is an iterative algorithm, but it costs less time,
here are three reasons, firstly, the background intensity is filtered by
mplementing the subtraction between the three phase shifted interfer-
grams, this process costs less time than the filtering algorithm, more-
ver, FIA doesn’t need to calculate the background intensity to further
ave time, secondly, only a limited number of simples are chosen to
ake part in the iterative process, this method saves most of time, lastly,
nly one time of unwrapped process is used in the whole calculation,
his timesaving method is often used in the iterative algorithm. More-
ver, the first two reasons are also the differences between the proposed
ethod and AIA. 

. Simulation 

To verify the effectiveness of the method proposed above, we per-
orm a series of numerical simulations, and compare it with the well-
valuated method AIA. In the following, all computations are performed
ith the CPU of Intel(R) Core(TM) i7-6700 and the 8 GB memory, and
e use the Matlab software for coding. 

Firstly, we test the method with different kinds of fringes, including
ircular, straight and complex fringes. The background intensity and
odulation amplitude are set as 𝑎 𝑖 ( 𝑥, 𝑦 ) = 𝑁 𝑎 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] and
 𝑖 ( 𝑥, 𝑦 ) = 𝑁 𝑏 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] respectively, where −1 ≤ 𝑥 ≤ 1 , −1 ≤
 ≤ 1 . Generally, the background intensity and modulation amplitude
ave frame-to-frame fluctuation, hence, N a of the 1st, 2nd and 3rd in-
erferograms are set as 1, 0.95 and 0.9, N b of the 1st, 2nd and 3rd inter-
erograms are set as 0.9, 0.85 and 0.8. For the circular fringes, the tested
hase is set as 𝜑 = 𝑁 𝑓 𝜋( 𝑥 2 + 𝑦 2 ) , in which 𝑁 𝑓 = 5 is the fringe number
n the interferogram. The phase shifts of the three phase shifted interfer-
grams are preset as 0 rad, 1.5 rad and 3.5 rad respectively. Moreover,
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Fig. 1. Simulated interferograms with the cir- 

cular fringes, background intensity, modula- 

tion amplitude and reference phase distribu- 

tion. (a), (b) and (c) the three phase shifted in- 

terferograms, (d) and (e) the simulated back- 

ground intensity and modulation amplitude of 

the first phase shifted interferogram, (f) the 

reference phase distribution (PV = 31.416 rad, 

RMS = 6.656 rad). 

Fig. 2. Simulated results of the circular fringes. (a) and (b) the phase distributions extracted by DN&FIA (PV = 31.929 rad, RMS = 6.663 rad) and AIA (PV = 31.927 rad, 

RMS = 6.663 rad), (c) and (d) the phase error distributions after using DN&FIA and AIA, (e) the difference between the extracted phase distributions by DN&FIA and 

AIA, (f) and (g) the iterative curves of DN&FIA and AIA. 
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he Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB generated
y the function awgn in Matlab is added to the interferograms. With the
bove parameters setting, three simulated phase shifted interferograms
ith the size of 401 ×401 are generated, as shown in Figs. 1 (a) − (c),
nd the background intensity and modulation amplitude distributions
f the first phase shifted interferogram are shown in Figs. 1 (d) and (e),
he reference phase distribution is illustrated in Fig. 1 (f). 

Then we respectively use DN&FIA and AIA to extract the tested phase
istribution. For DN&FIA, the initial phase shifts of the iteration are re-
pectively set as 0 rad and 0.5 rad, and only 41 ×41 pixels are uniformly
elected to take part in the iterative process, it will highly save time.
nd, the initial phase shifts of the iteration for AIA are respectively set
s 0 rad, 1 rad and 3 rad. In addition, the predefined converging thresh-
ld of iteration for DN&FIA and AIA is 10 − 5 rad. Fig. 2 (a) and (b) show
he phase distributions extracted by DN&FIA and AIA, and the phase
rror distributions are shown in Fig. 2 (c) and (d). The RMS phase er-
21 
ors of DN&FIA (0.1179 rad) and AIA (0.1231 rad) are similar, and the
ifference between the phase distributions extracted by two methods
s shown in Fig. 2 (e), the RMS value is only 0.0427 rad, that is to say,
he accuracies of these two methods are similar. The iterative curves of
N&FIA and AIA are plotted in Figs. 2 (f) and (g). 

For the straight fringes, the theoretical phase is set as 𝜑 = 𝑁 𝑠 𝜋𝑥 ,
n which 𝑁 𝑠 = 5 , and for the complex fringes, the phase is set as 𝜑 =
 𝑥 𝜋𝑥 + 𝑁 𝑦 𝜋𝑥 + 𝑁 𝑐 𝑝𝑒𝑎𝑘𝑠 ( 401 ) , in which 𝑁 𝑥 = 𝑁 𝑦 = 𝑁 𝑐 = 5 , other pa-

ameters are same as the circular fringes. Fig. 3 shows one of the sim-
lated interferograms with the straight fringes and reference phase dis-
ribution. Fig. 4 represents the simulated results of the straight fringes
sing DN&FIA and AIA. For the complex fringes which are asymmetri-
al, as shown in Fig. 5 (a), the complex phase distribution is drawn in
ig. 5 (b), and the simulated results are shown in Fig. 6 . For the straight
ringes, the RMS phase errors of DN&FIA and AIA are 0.1179 rad and
.1235 rad, and the RMS value of the difference between the phase
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Fig. 3. Simulated interferogram with the straight fringes and reference phase 

distribution. (a) One of the simulated interferograms, (b) reference phase distri- 

bution (PV = 31.416 rad, RMS = 9.092 rad). 
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Fig. 5. Simulated interferogram with the complex fringes and reference phase 

distribution. (a) One of the simulated interferograms, (b) reference phase distri- 

bution (PV = 89.375 rad, RMS = 18.359 rad). 
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istributions extracted by two methods is 0.0347 rad. For the complex
ringes, the RMS phase errors of DN&FIA and AIA are 0.1182 rad and
.1232 rad, and the RMS value of the difference is 0.0319 rad. From the
bove simulations, we can get the conclusion as the circular fringes, the
ccuracies of two methods are similar. 

Moreover, we compare the computational time for DN&FIA and AIA,
he results are shown in Table 1 . We can see that, the computational time
f DN&FIA is further less than that of AIA. Hence, we get the conclusions
hat, DN&FIA is suitable for the circular, straight and complex fringes,
nd it can obtain relatively accurate phase distribution as AIA with less
ime. 

Secondly, we perform the proposed method with different chosen
amples to compare the accuracy and computational time, the compu-
ational time and RMS phase errors of the circular, straight and complex
ringes with different chosen samples are shown in Table 2 , where T and
 represent computational time and RMS phase error, and Cir, Str and
om represent the circular, straight and complex fringes. For the differ-
nt fringes with the same number of chosen samples, the computational
ime is similar because the processing time only depends on the num-
er of chosen pixels, and the computational time is increasing with the
ncrease of chosen samples, however, the RMS phase errors are stable
hen the chosen pixels are more than 41 ×41, hence, for the samples
ith 401 ×401, the best chosen samples are 41 ×41, it can obtain high
ccuracy and cost less computational time simultaneously. Moreover,
or different fringes, when the chosen samples are less than 41 ×41,
here are some differences, the results of the circular fringes are rela-
ively stable for different chosen pixels, but for the straight and com-
ig. 4. Simulated results of the straight fringes. (a) and (b) the phase distributions extr

MS = 9.087 rad), (c) and (d) the phase error distributions after using DN&FIA and AI

IA, (f) and (g) the iterative curves of DN&FIA and AIA. 

22 
lex fringes, when the chosen samples are too few, the phase errors are
elatively large since the fringes are asymmetric, that is to say, when
he chosen samples are less than 41 ×41, for the straight and complex
ringes, different chosen samples will affect the accuracy, but for the
ymmetric circular fringes, different chosen samples will slightly affect
he accuracy. 

Thirdly, provided that the tested phase distribution 𝜑 =
 𝑓 𝜋( 𝑥 2 + 𝑦 2 ) , which N f represents the fringe number in one inter-

erogram. In Section 2 , in order to meet the approximation in Eq. (8) ,
e assume that there is more than one fringe in the interferogram,

n the following, we vary the fringe numbers while fixing the SNR to
0 dB to obtain the best range of the fringe numbers using DN&FIA. As
an be seen from Table 3 , when the fringe number is less than 0.7, the
MS phase error is relatively larger, and the ratio of RMS phase to RMS
hase error is also larger. For the range of fringe numbers between 0.8
nd 2.0, the RMS phase error is unstable. When the fringe numbers
re more than 2, the RMS phase errors are similar, in this case, the
pproximation error is nearly stable, hence, we can conclude that the
ringe numbers are best to be more than 2 if high accuracy is requested . 

Then, we study the proposed method with the different initial phase
hifts, the conditions are same as the above circular fringes. According
o the Eqs. (9) and (10) , we know that the relative phase shift between
wo new interference signals is 

𝜃3 − 𝜃2 
2 , so the theoretical value of the

elative phase shift for the proposed method is 1 rad. The number of
terations and computational time of different initial phase shifts are
lotted in Fig. 7 . Through the simulation, we found that the RMS phase
rrors are same for the different initial phase shifts, they are 0.1179 rad.
rom Fig. 7 , we can see that, the closer the initial phase shift is to the
acted by DN&FIA (PV = 32.108 rad, RMS = 9.086 rad) and AIA (PV = 32.092 rad, 

A, (e) the difference between the extracted phase distributions by DN&FIA and 
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Fig. 6. Simulated results of the complex fringes. (a) and (b) the phase distributions extracted by DN&FIA (PV = 89.732 rad, RMS = 18.360 rad) and AIA 

(PV = 89.716 rad, RMS = 18.360 rad), (c) and (d) the phase error distributions after using DN&FIA and AIA, (e) the difference between the extracted phase dis- 

tributions by DN&FIA and AIA, (f) and (g) the iterative curves of DN&FIA and AIA. 

Table 1 

Computational time of different methods with different fringes. 

Time (s) Circular fringes Straight fringes Complex fringes 

DN&FIA 1.20 1.20 1.21 

AIA 17.09 17.28 17.00 
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heoretical phase shift, the less the number of iterations is, and the com-
utational time is also least, however, the difference between the longest
ime and shortest time is only 0.07 s, it will hardly affect the efficiency of
he proposed method, in addition, when the initial phase shift is equal to
he theoretical phase shift, 6 iterations are also needed since the fluctu-
tion between different interferograms and the non-uniformity between
ifferent pixels exist, and large noise is added to the interferograms. For
ost iterative algorithms, the initial value of iteration will affect the

ffectiveness of the algorithm, but DN&FIA can remove this restriction
ecause different initial values will not affect the accuracy and the com-
utational time will be only less affected, hence, the initial phase shifts
f the iteration for DN&FIA can be set randomly. 

We know that the phase shifts are important to the PSAs, hence,
t is necessary to discuss the phase error due to different phase shifts
or the proposed method. In order to get the general conclusion, we
tudy the phase error due to different phase shifts with different situ-
tions and fringes. The phase shifts of the 1st and 2nd frames are re-
pectively set as 0 rad and 1 rad while the phase shift of the 3rd frame
s uniformly changed from 2.0 rad to 5.21 rad (the range of relative
hase shift between the 2nd and 3rd interferograms is from 1 rad to
.21 rad). In situation 1, only 20 dB noise is added to the phase shifted
nterferograms, and for the situation 2, except for the 20 dB noise, the
ackground intensity and modulation amplitude are non-uniform, N a 
Table 2 

Computational time and RMS phase errors of different

Samples 6 ×6 11 ×11 21 ×21 41 × 41 

Cir T (s) 1.10 1.12 1.16 1.20 

P (rad) 0.1179 0.1181 0.1182 0.1179 

Str T (s) 1.11 1.12 1.15 1.20 

P (rad) 0.1414 0.1563 0.1181 0.1179 

Com T (s) 1.12 1.13 1.17 1.21 

P (rad) 0.1187 0.1205 0.1184 0.1182 

23 
nd N b of the three interferograms are set as 1 and 0.9. In situation 3,
xcept for the 20 dB noise, for the background intensity and modula-
ion amplitude, only the fluctuation between different interferograms
xists, 𝑎 1 = 1 , 𝑎 2 = 0 . 95 , 𝑎 3 = 0 . 9 , 𝑏 1 = 0 . 9 , 𝑏 2 = 0 . 85 , 𝑏 3 = 0 . 8 . In situation
, except for the 20 dB noise, both the fluctuation and non-uniformity of
he background intensity and modulation amplitude exist, N a of the 1st,
nd and 3rd interferograms are set as 1, 0.95 and 0.9, N b of the 1st, 2nd
nd 3rd interferograms are set as 0.9, 0.85 and 0.8. The simulated results
re plotted in Fig. 8 . From Fig. 8 , we can come to the following conclu-
ions: (1) for all the fringes, the RMS phase error in situation 4 is largest
ecause situation 4 is most complex, the mixed errors cause the largest
hase error, and situation 1 has the smallest error since it is simplest,
oreover, the phase error in situation 3 is larger than that in situation
, that is to say, the effect of the fluctuation between different inter-
erograms is larger than that of the non-uniformity between different
ixels for DN&FIA; (2) the RMS phase errors are different due to differ-
nt phase shifts, while the phase shift is close to 2.0 rad, the RMS phase
rror is significantly large since small practical phase shift ( 𝜃3 − 𝜃2 ) ∕2
ill introduce large phase error; (3) the corresponding phase shifts of

he minimum RMS phase errors for different fringes and situations are
ame, it is 3.606 rad, the relative phase shift between 2nd and 3rd inter-
erograms is 2.606 rad; (4) the curves of RMS phase errors are relatively
mooth when the range of phase shift between the 1st and 3rd interfero-
rams is from 2.64 rad to 4.57 rad, hence the above range of phase shift
an be considered when the relatively high accuracy is demanded. 

To study whether the correspondingly relative phase shift between
he 2nd and 3rd interferograms of the minimum RMS phase errors is a
onstant, the phase shifts of the 1st and 2nd frames are respectively reset
s 0 rad and 1.5 rad while the phase shift of the 3rd frame is uniformly
hanged from 2.5 rad to 5.71 rad, the range of relative phase shift be-
 fringes with different chosen samples. 

81 ×81 101 × 101 201 ×201 401 ×401 

1.57 1.82 3.97 13.38 

0.1179 0.1179 0.1179 0.1179 

1.57 1.83 3.97 13.20 

0.1179 0.1179 0.1179 0.1179 

1.59 1.85 4.00 13.05 

0.1182 0.1182 0.1182 0.1182 
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Table 3 

RMS phase and RMS phase errors with different fringe numbers using DN&FIA. 

Fringe numbers 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

RMS phase (rad) 0.7822 0.8710 0.9728 1.0980 1.2323 1.3673 1.4643 1.5975 

RMS phase error (rad) 0.1693 0.1472 0.1251 0.1176 0.1170 0.1176 0.1183 0.1195 

Fringe numbers 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

RMS phase (rad) 1.7306 1.8637 1.9968 2.1300 2.2631 2.3962 2.5293 2.6625 

RMS phase error (rad) 0.1219 0.1237 0.1237 0.1222 0.1199 0.1179 0.1184 0.1177 

Fringe numbers 3.0 4.0 5.0 15 25 35 45 

RMS phase (rad) 3.9937 5.3249 6.6561 19.9684 33.2807 46.5929 59.9052 

RMS phase error (rad) 0.1175 0.1179 0.1179 0.1176 0.1175 0.1175 0.1177 

Fig. 7. The results of different initial phase shifts. (a) and (b) the 

number of iterations and computational time of different initial 

phase shifts. 

Fig. 8. The RMS phase errors of different phase shifts using DN&FIA ( 𝜃1 = 0 , 𝜃2 = 1 ). (a), (b) and (c) RMS phase errors of the circular, straight and complex fringes 

with different phase shifts and situations. 
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n  
ween the 2nd and 3rd interferograms is same as the above simulations,
he results of the circular fringes are shown in Fig. 9 (a), we can see that,
he curves are similar to the above simulations, but the best phase shift
f the 3rd interferogram is 3.892 rad, that is to say, the relative phase
hift between the 2nd and 3rd interferograms is 2.392 rad, which is not
qual to the above simulations, hence, the best relative phase shift be-
ween 2nd and 3rd interferograms is a variable value due to different
elative phase shifts between 1st and 2nd interferograms, the best phase
hift between 2nd and 3rd interferograms with the different phase shifts
24 
etween 1st and 2nd interferograms is plotted in Fig. 9 (b), and for sit-
ation 4, the minimum RMS phase errors which are corresponding to
he best phase shifts between 2nd and 3rd interferograms is plotted in
ig. 9 (c). From Fig. 9 (b) and (c), we can see that, for the simulated condi-
ions, when the phase shift between 1st and 2nd interferograms is 2 rad,
nd the phase shift between 2nd and 3rd interferograms is 2.071 rad,
he RMS phase error is minimum, it is 0.1095 rad. 

In addition, the relationship between the best phase shift and fringe
umbers is studied, we simulate the circular fringes when the fringe
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Fig. 9. The results of the circular fringes with different phase shifts using DN&FIA method. (a) RMS phase errors of different phase shifts when 𝜃1 = 0 , 𝜃2 = 1 . 5 , (b) 

the best phase shift between 2nd and 3rd interferograms with different phase shifts between 1st and 2nd interferograms, (c) the mimimim RMS phase errors for the 

different phase shifts between 1st and 2nd interferograms in situation 4. 

Fig. 10. The RMS phase errors of the circular fringes with different phase shifts 

using DN&FIA when the fringe number is 2. 
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umber is 2, and other conditions are same as Fig. 8 (a), the result is
lotted in Fig. 10 . From Fig. 10 , we can see that, the best phase shift
s same as the circular fringes when the fringe number is 5, so we can
onclude that the fringe number will not affect the best relative phase
hift. 

Based on the above different simulations, the conclusions of the
roposed DN&FIA can be summarized as: (1) It can achieve the high
ccuracy as AIA with less computational time by only three interfre-
grams; (2) whether the circular, straight or complex fringes, the pro-
osed method is valid; (3) the fringe numbers are best to be more than
 if the high accuracy is requested; (4) the initial phase shifts of the iter-
tion can be set randomly because different initial values will not affect
he accuracy, and slightly affect the computational time; (5) the phase
hift can be random except for the small practical phase shift ( 𝜃3 − 𝜃2 ) ∕2 ,
nd the best relative phase shift between 2nd and 3rd interferograms is
 variable value due to different relative phase shifts between 1st and
25 
nd interferograms, moreover, the fringe number will not affect the best
elative phase shift. 

. Demonstration with experimental data 

In order to verify the performance of the proposed method, three
roups of experiments are performed to do the phase retrieval by the
roposed method and AIA. The experimental setup is Twyman–Green
nterferometer with 4D camera which is a kind of synchronous phase-
hifting interferometer (SPSI) [30] , four phase-shifted interferograms
ith the phase shifts 0, 𝜋/2, 𝜋 and 3 𝜋/2 can be extracted from a sin-
le image snapshotted by the 12 bit polarization camera PolarCam with
he pixel number of 1208 × 1348 and the pixel size of 7.4 μm from 4D
echnology, Inc. [31–33] , hence, the background intensity and modula-
ion amplitude will be relatively stable between different phase shifted
nterferograms, that is to say, the experiment meets the condition of the
ssumption before Eq. (2) . Moreover, we test different objects to cap-
ure the circular, straight and complex fringes, the objects are placed in
he test arm. For the first experiment, three phase shifted interferograms
ith the circular fringes are collected, the size of the interferograms is
01 ×401, and the phase shifts are 0, 𝜋/2 and 𝜋. For DN&FIA, the ini-
ial phase shifts are respectively set as 0 rad and 1 rad, and only 40 ×40
ixels are uniformly selected to take part in the iterative process. And,
he initial phase shifts of AIA are respectively set as 0 rad, 1 rad and
 rad. One of the interferograms is shown in Fig. 11 (a), the extracted
hase distributions using DN&FIA and AIA are shown in Fig. 11 (b) and
c), Fig. 11 (d) shows the difference between the phase distributions ex-
racted by DN&FIA and AIA, the RMS value of the difference is only
.0165 rad, we can get the same conclusion as the simulations, the ac-
uracies of DN&FIA and AIA are similar. In addition, they both need
0 iterations, the iterative curves are plotted in Fig. 11 (e) and (f), and
he computational time of DN&FIA and AIA are respectively 1.8 s and
8.48 s, we can see that DN&FIA spends less time than AIA. 
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Fig. 11. Experimental results of the circular fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA 

(PV = 68.9120 rad, RMS = 14.2523 rad) and AIA (PV = 68.9074 rad, RMS = 14.2519 rad), (d) the difference between the phase distributions extracted by DN&FIA 

and AIA (RMS = 0.0165 rad), (e) and (f) the iterative curves of DN&FIA and AIA. 

Fig. 12. Experimental results of the straight fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA 

(PV = 22.2001 rad, RMS = 6.0484 rad) and AIA (PV = 22.2026 rad, RMS = 6.0503 rad), (d) the difference between the phase distributions extracted by DN&FIA and 

AIA (RMS = 0.0564 rad), (e) and (f) the iterative curves of DN&FIA and AIA. 
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Then, the second and third experiments with the straight and com-
lex fringes are performed, and the complex fringes are randomly ob-
ained by the deformable mirror, the size of the interferograms with the
traight fringes is also 401 ×401, and the size of the interferograms with
he complex fringes is 201 ×201, other conditions are same as the above
ircular fringes. Figs. 12 and 13 show the results of the straight and com-
lex fringes, we can see that, both DN&FIA and AIA are effective for the
ifferent fringes. Moreover, for the straight fringes, the RMS value of
he difference between the phase distributions extracted by DN&FIA and
IA is 0.0564 rad, and the computational time for DN&FIA and AIA are
26 
.7 s and 18.30 s respectively. And, for the complex fringes, the RMS
alue of the difference between the phase distributions extracted by
N&FIA and AIA is 0.0507 rad, and the computational time for DN&FIA
nd AIA are 0.58 s and 4.15 s. For these two kinds of fringes, the ac-
uracies are also similar for two methods, and for the computational
ime, we get the conclusion the same as the circular fringes. Through the
bove experiments, we verify that, for the circular, straight and complex
ringes, the proposed DN&FIA can obtain relatively high measurement
ccuracy as AIA with less computational time by only three interfero-
rams. 
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Fig. 13. Experimental results of the complex fringes. (a) One of the phase shifted interferograms, (b) and (c) the phase distributions extracted by DN&FIA 

(PV = 30.2191 rad, RMS = 4.3279 rad) and AIA (PV = 30.0985 rad, RMS = 4.3262 rad), (d) the difference between the phase distributions extracted by DN&FIA and 

AIA (RMS = 0.0507 rad), (e) and (f) the iterative curves of DN&FIA and AIA. 
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. Conclusion 

In this paper, we present a PSA based on difference map normal-
zation and fast iterative algorithm, the difference maps are obtained
y three phase shifted interferomgrams firstly, and then normalization
s performed for the difference maps, the results are just as two phase
hifted interference signals without the background intensity. Next the
east-squares algorithm is applied to extract the phase distribution, and
nly a limited number of samples are chosen to take part in the iterative
rocess to save time. We have compared DN&FIA with AIA by the simu-
ated data and experimental data. The proposed algorithm can achieve
igh measurement accuracy as AIA, and cost less time than AIA, and
he fringe numbers are best to be more than 2 if the high accuracy is
equested. In addition, the initial phase shifts of the iteration can be
andom, and the phase shifts can be random except for the small prac-
ical phase shift ( 𝜃3 − 𝜃2 ) ∕2 . Finally, the proposed algorithm is effective
or the circular, straight or complex fringes. The simulations and exper-
ments demonstrate the validity of the proposed method. In summary,
his proposed method is a power tool for the phase retrieval with ran-
om phase shift. 
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