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ABSTRACT In recent years, with the development of the unmanned aerial vehicle (UAV) and battlefield
environments, the UAV swarm has attracted significant research attention. To solve problems regarding
poor state consensus among swarm individuals due to a small number of individuals easily falling into
local minima upon encountering an obstacle, this paper proposes a flocking obstacle avoidance algorithm
with local interaction of obstacle information. To make the UAV swarm follow the desired trajectory with
better state consensus, we improved the flocking control algorithm of agents according to the characteristics
and requirements of the UAV swarm. The obstacle avoidance algorithm for the UAV swarm is based on
Olfati-Saber’s multi-agent obstacle avoidance algorithm. The proposed method has individuals in the swarm
communicate obstacle information with their neighbors, and we present a simple analysis of this method.
The method improves the cooperative obstacle avoidance capability of the flocking control algorithm. The
simulation results showed that the proposed flocking control algorithm provides a better tracking effect and
consensus for the UAV swarm when avoiding obstacles.

INDEX TERMS Fixed-wing UAV swarm, multi-agent system, flocking control, cooperative obstacle
avoidance, consensus, local information communication.

I. INTRODUCTION
Flocking is a common phenomenon in nature that has
gained significant attention in various research fields [1]–[7].
In 1986, Reynolds [8] introduced three heuristic rules of
flocking control: cohesion, separation, and alignment. Ever
since, this classical model has often been applied to flocking
control of multi-agents.

In recent years, the unmanned aerial vehicle (UAV), as the
embodiment of the agent, has attracted much attention due
to increasingly high autonomy levels and the application
value of the UAV in military and civilian fields [9]–[15].
According to Lanchester’s laws, the number of combat units
is a decisive factor for victory or defeat in warfare and is more
important than the unit’s capability. Thus, the application of
UAV swarms in warfare situations may affect battlefield con-
ditions. The cooperative UAV swarm can accomplish highly
difficult and dangerous tasks, which has roused the interest
of many researchers. Towards these advantages, the issue
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of flocking obstacle avoidance is a major focus in flocking
control.

Qiu and Duan [16] presented a UAV distributed flock-
ing control algorithm for obstacle environments based on a
pigeon flocking model, which used pigeon behavior where
flocks switch between hierarchical and egalitarian inter-
action modes at different flight phases. Olfati-Saber [5]
proposed an additional feedback term to track a virtual
leader, which is necessary to avoid fragmentation. The author
also presented a flocking algorithm with obstacle avoid-
ance capability by creating a virtual agent on the bound-
ary of each nearby obstacle. Su et al. [6] considered a
case where only a small fraction of agents has informa-
tion about the virtual leader with a constant velocity and
a varying velocity. Kownacki and Ołdziej [17] presented
a novel approach to swarm control of small fixed-wing
UAVs through cohesion and repulsion behaviors combined
with leadership. Zhang and Duan [18] presented a 3D flock-
ing control algorithm for tracking a desired trajectory with
obstacle avoidance capability using the improved artificial
potential field method. Li et al. [19] studied the multi-agent
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system coordination obstacle avoidance algorithm using a
variable structure method, wherein only some agents have
dynamic information on obstacles and each agent has a local
interaction. Sakai et al. [20] proposed a flocking algorithm
that does not distinguish between a robot and an obstacle,
which was constructed by modifying Olfati-Saber’s con-
trol law [5]. Iovino et al. [21] presented a real quad-rotor
UAV experiment using a distributed flocking algorithm with
obstacle avoidance capability, where the obstacle avoidance
algorithm was derived from [5]. Wang et al. [22] used
the artificial potential function combined with the stream
function to asymptotically reach the ideal stable flocking
motion, which not only keeps the dynamic multi-agent sys-
tem constantly network-connected, but also enables all agents
to avoid obstacles without being caught in local minima.
Luo and Duan [23] presented a distributed control framework
based on homing pigeon hierarchy strategies to solve the
problem of flocking. The algorithms were generally imple-
mented to achieve stable performance by controlling the
local position and velocity of each UAV. Vries and Sub-
barao [24] used a potential function to generate steering
commands to control a swarm of quad-rotors. A flocking
obstacle avoidance algorithm has been proposed using a com-
bination of velocity consensus and local artificial potential
field [25].

The flocking obstacle avoidance algorithms used in the
above papers did not consider the interaction of obstacle
information within the swarm and thus could not use that
information to avoid obstacles to the maximum extent. This
results in a poor consensus within the swarm when avoiding
obstacles. Therefore, to solve this problem, we propose a
shared obstacle information algorithm. The UAV flocking
control algorithm with obstacle avoidance capability pro-
posed in this paper is based on Saber’s agent flocking control
algorithm and considers some of the dynamic characteristics
of the UAV and altitude consistency for UAVs. Some of
the disadvantages of the agent flocking obstacle avoidance
algorithm described in Saber’s paper have been discussed
in [21]. The method tends to result in oscillations and indi-
viduals falling into local minima when UAVs move near
obstacles. In this paper, we propose an algorithm for the
interaction and sharing of obstacle information between indi-
viduals in the UAV swarm so that the swarm can pass through
obstacles steadily. A simple analysis of the algorithm is also
presented.

The rest of this paper is organized as follows. Section II
presents a flocking control algorithm of agents with obstacle
avoidance capability and describes a simplified UAV model
with a constraint condition and the UAV flocking control
algorithm based on flocking control of agents. The proposed
obstacle avoidance algorithm with local communication of
obstacle information and algorithm analyses are detailed
in Section III. A comparison of simulations is conducted
in Section IV, and our concluding remarks are drawn in
Section V.

II. FLOCKING CONTROL ALGORITHM
The dynamics of agents are modeled as second-order integra-
tors in a three-dimensional Euclidean space as follows:{

q̇i = pi
ṗi = ui,

i = 1, 2, ...N , (1)

where qi, pi, and ui ∈ Rn denote the position, velocity, and
control input vectors of the i-th agent, respectively. Each
agent can only communicate with its neighbors within its
communications region, and the neighboring set at time t is
denoted as follows:

Nαi (t) = {j : ||qi − qj||r, j = 1, 2, ...,N , j 6= i, (2)

where ‖·‖ is the Euclidean distance and r is the maximum
interaction radius or maximum critical distance. The desired
geometric model of the swarm requires that each agent be
equally distanced from all of its neighbors and satisfy the
following constraints:∥∥qi − qj∥∥ = d, ∀i, j ∈ Ni (t), (3)

where d is a positive constant indicating the minimum allow-
able distance or minimum critical distance between every pair
of neighboring agents, and d ≤ r .

In a multi-obstacle environment, the input of each agent
in the multi-agent control algorithm consists of the following
three components [5]:

ui = uαi + u
β
i + u

γ
i , (4)

where α, β, and γ denote three kinds of agents used directly
from the Olfati-Saber thesis. The α-agent denotes an arbitrary
agent in the swarm, and the β-agent is generated from the pro-
jection of neighboring α-agents on the surface of the obstacle
to represent the physical obstacle avoided. The γ -agent is
used to construct the navigational feedback and represents the
target to be tracked. uαi denotes the (α, α) interaction terms,
uβi denotes the (α, β) interaction terms, and uγi is a distributed
navigational feedback. The definitions of uαi , u

β
i , and u

γ
i are

as follows:

uαi = −c
α
q

∑
j∈Nαi

ρH (qi) φα (qi)− cαp
∑
j∈Nαi

aij (qi)
(
pi − pj

)
,

(5)

uβi = −c
β
q

∑
k∈Nβi

bi,k (qi) φβ (qi)−cβp
∑
k∈Nβi

bi,k (qi)
(
pi−p̂i,k

)
,

(6)

uγi = −c
γ
q σ1

(
qi − qγ

)
− cγp

(
pi − pγ

)
− cγhQh, (7)

uαi causes the agents to gather together and consists of two
components. The first component sets the distance between
agents to the desired distance. The second component sets
the velocity to be consistent with its neighbors. The specific
expression for the first component is as follows:

φα (qi) =
Dij√

1+ εα
∥∥Dij∥∥2 , (8)
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Dij =
(
qi − qj

)
−

qi − qj∥∥qi − qj∥∥ ∗ d, (9)

ρH (qi) =
(
∥∥qi − qj∥∥− d)2

H
+ 1, (10)

whereH , εα, cαq , and c
α
p are normal constants. The value ofH

is typically greater than d . It is important to note that fragmen-
tation is a pitfall of flocking by the Olfati-Saber algorithm.
The purpose of using ρH (qi) is to prevent fragmentation. The
value of ρH (qi) increases rapidly when the distance between
agents grows larger.

The second component of uαi is aij (qi) = ρh

(
‖qi−qj‖

r ,

hα
)
∈ [0, 1] , j 6= i.ρh (z) is a bump function defined as

follows [1]:

ρh (z) =


1, z ∈ [0, h)
1
2

[
1+ cos

(
π
(z-h)
(1− h)

)]
, z ∈ [h, 1]

0, otherwise

(11)

The purpose of uγi is to allow the agents to track the
virtual leader or the desired trajectory. It consists of three
components. cγq , c

γ
p , and cγh are normal constants. qγ and

pγ denote the position and velocity of the virtual leader,
respectively. The first and third components are denoted as
follows [5], [16]:

σ1
(
qi − qγ

)
=

qi − qγ√
1+ εγ

∥∥qi − qγ ∥∥2 , (12)

Qh =

 0
0
qhi

−
 0

0
qhγ

. (13)

The purpose of Qh is to minimize the altitude differences
between agents and to set the altitude as close as possible to
that of the virtual leader. qhi and qhγ denote the altitudes of
agents and virtual leader, respectively.

The purpose of uβi is to avoid obstacles. Its principle is
as follows: we construct a virtual agent with position and
velocity on the surface of the obstacle within the detectable
range of the agent in the swarm, and denote the virtual agent
as the β-agent. The method of construction is as follows [5]:

i) For an obstacle with a hyper-plane boundary that has a
unit normal ak and passes through the point yk , the position
and velocity of the β-agent are determined by

q̂i,k = Pqi + (I-P) yk , p̂i,k = Ppi, (14)

where P = I − akaTk is a projection matrix.
ii) For a spherical obstacle with radius Rk centered at yk ,

the position and velocity of the β-agent are given by

q̂i,k = µqi + (I − µ) yk , p̂i,k = µPpi, (15)

where µ = Rk/ ‖qi − yk‖ , ak = (qi − yk )/ ‖qi − yk‖, and
P = I − akaTk .
According to the above method, a virtual β-agent with

corresponding velocity and position is constructed, as shown

FIGURE 1. Position and velocity of the β-agent.

in Figure 1. The ultimate goal is to keep individuals in the
swarm consistent with the virtual β-agent while maintaining
a certain distance.

The role of uβi is to make agents pass around obstacles.
cβq and c

β
p are positive constants, and u

β
i is defined as follows:

φβ (qi) =
qi − q̂i,k√

1+ εβ
∥∥qi − q̂i,k∥∥2 − 1, (16)

bi,k (qi) = ρh

(∥∥qi − q̂i,k∥∥
rO

, hβ

)
, (17)

where εβ is a positive constant and rO is the UAV’s maximum
detection distance to the obstacle.

A. UAV FLOCKING CONTROL BASED ON FLOCKING
ALGORITHM OF AGENTS
Usually, we consider the multi-UAV system to be a multi-
agent system. However, we must acknowledge that the
motion of the UAV ismuchmore complicated. The simplified
kinematic model of a fixed-wing UAV is as follows [27]:

ẋi = Vicos (ψi),

ẏi = Visin (ψi),

V̇i =
1
τν

(
V c
i − Vi

)
,

ψ̈i = −
1
τψ̇
ψ̇i +

1
τψ

(
ψc
i − ψi

)
,

ḧi = −
1
τḣ
ḣi +

1
τh

(
hCi − hi

)
, (18)

where [xi, yi, hi],Vi, ψi, and ḣi denote the inertial position,
forward velocity, heading angle, and speed of altitude of the
i-th UAV, respectively. V c

i , ψ
c
i , and hCi are the command

inputs for velocity, heading angle, and altitude to the cor-
responding autopilots, respectively. τψ , τν, and (τ ḣ, τh) are
the positive time constants for the heading angle, velocity,
and altitude response with respect to the corresponding com-
mand inputs, respectively. These four parameters are positive
constants that depend on the implementation of the autopilot
and the status prediction configuration. Referring to [27],
the specific values will be introduced later.

Considering the constraints of a real UAV model, based on
the above model, velocity limits, acceleration limits, heading
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angle limits, climbing velocity limits, and climbing accel-
eration limits were introduced. The limiting model is as
follows [26]:

vmin ≤ Vi ≤ vmax ,

amin ≤ V̇i = a ≤ amax ,

ωmin ≤ ψ̇i = ω ≤ ωmax ,

αmin ≤ ψ̈i ≤ αmax ,

λglide ≤ ḣi ≤ λclimb,

ahmin ≤ ḧi ≤ ahmax . (19)

It should be noted that, if the heading angle equation in
the simplified kinematics model of the UAV is regarded as a
first-order equation, the roll angle cannot be initialized. This
is because, according to the coordinated turning condition,
the roll angle is calculated from the velocity and heading
angular velocity. The pitch angle is calculated with the climb-
ing rate and velocity, as shown below [27].

φi = atan
(
Vi ∗

ψ̇i

g

)
, (20)

θi = asin(ḣi/Vi). (21)

To apply the agent swarm algorithm to the UAV swarm,
we must establish the relationship between the UAV motion
model and the agentmotionmodel, referring to previouswork
by Zhang and Duan [18]. Regarding the UAV swarm system
movement in three-dimensional space, the position, velocity,
and control vectors are given by qi = [xi, yi, hi]T , pi =
[Vicosψi,Visinψi, ḣi]

T , and ui = [ux,i, uy,i, uh,i]T , respec-
tively. Using ṗi = ui, we obtain:

V̇i = ux,icosψi + uy,isinψi, (22)

ψ̇i =
uy,icosψi − ux,isinψi

Vi
. (23)

Substituting equations (22) and (23) into the UAV simpli-
fied model (19) yields:

V c
i = τv

(
ux,icosψi + uy,isinψi

)
+ Vi, (24)

ψc
i =

τψ

τψ̇V i

(
uy,icosψi − ux,isinψi

)
+ τψ ψ̈i + ψi, (25)

hci = hi +
τh

τḣ
ḣi + τhuh,i. (26)

III. FLOCKING OBSTACLE AVOIDANCE CONTROL
ALGORITHM WITH SHARED OBSTACLE
INFORMATION CAPABILITY
The obstacle avoidance algorithm was introduced in
Section II, but note that, as stated in the paper by
Iovino et al. [21], multiple UAVs may fall into local optima
or decision-making dilemmaswhen using this obstacle avoid-
ance algorithm, as described below.

As depicted in Figure 2, three UAVs with the same velocity
encounter an obstacle. The projective value of velocity of
UAV i on the obstacle surface is 0, and the projection of the
velocity of UAV j and m on the surface of the obstacle have

FIGURE 2. Multiple UAVs encountering an obstacle.

the same value with different directions. According to the
algorithm in Section II for calculating ui, especiallyµ

β
i , it can

be found that the velocity value of UAV i is affected by obsta-
cles, which gradually decreases, but the direction of UAV i’s
velocity is not affected due to p̂i,k = 0. The velocity direction
and values of UAV j and p are affected to the same degree.
This ultimately leads to UAV i potentially colliding with the
obstacle and UAV j and p bypassing the obstacle separately.
Of course, in practice, the projection of the speed of UAV i
on the obstacle will not always be 0 during approach due to
various disturbances, which means that UAV i can bypass the
obstacle. However, due to the limitations of the algorithm,
in the initial stage of the obstacle entering the UAV i detection
range, the speed will decrease rapidly, while the direction
cannot be changed rapidly, which may eventually cause the
distance between UAV i and the obstacle to exceed the mini-
mum allowable distance. To summarize, UAV i cannot jump
out of the local optimum quickly, which causes the swarm
to have poor consensus. Therefore, to solve this problem,
we propose a shared obstacle information algorithm.

When the distance between UAV i and the obstacle is less
than the maximum detection distance rO, UAV i not only
needs to share its own position and speed information with
the surrounding UAVs, but it also needs to share the obstacle
information, (q̂i,k , p̂i,k ), that it has detected. Of course, when
UAV i receives the location and speed information of the
surrounding UAVs, it also receives the obstacle information
shared by other UAVs. When UAV i receives the obstacle
information shared by multi-UAVs, only one pair of obstacle
information (q̂τ,k , p̂τ,k ) is selected. The pair is selected based
on the maximum speed value, max(

∥∥p̂τ,k∥∥). When the speed
values of multiple pairs of obstacle information are equal,
the pair for which q̂τ,k and qi have the minimum distance,
min(

∥∥qi − q̂τ,k∥∥), is selected. When the velocity and distance
values of multiple pairs of obstacle information are equal,
a pair is selected randomly. How does UAV i use the selected
obstacles information? There is an intuitive awareness that
UAV i is farther away from q̂τ,k in position and closer to p̂τ,k
in speed. Thus, we obtain the following equation:

uβ,τi = −c
β,τ
q

 qi − q̂τ,k√
1+ εβ,τ

∥∥qi − q̂τ,k∥∥2 − 1


− cβ,τp

(
pi − p̂τ,k

)
. (27)
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FIGURE 3. Multiple UAVs encountering an obstacle.

When the swarm encounters an obstacle, the input of the
UAVs can be one of four cases:

ui = cαuαi + cγ u
γ
i , (28)

ui = cαuαi + cβu
β
i + cγ u

γ
i , (29)

ui = cαuαi + cγ u
γ
i + cτu

β,τ
i , (30)

ui = cαuαi + cβu
β
i + cγ u

γ
i + cτu

β,τ
i . (31)

We use Figure 3 to illustrate equations (28)–(31).
The distance relationship between UAVs in Figure 3 is as

follows:

d1O< rO, d4O<rO, d5O<rO, d2O > rO, d3O > rO
d45< r, d14 > r, d12<r, d23<r, d13 > r,

where d1O denotes the distance betweenUAV 1 and the obsta-
cle, d45 denotes the distance between UAV 4 and UAV 5, and
so on. Thus, the input for UAV 4 and UAV 5 is equation (31),
the input for UAV 1 is equation (29), the input for UAV 2 is
equation (30), and the input for UAV 3 is equation (28).

A. ALGORITHMS ANALYSIS
In the process of UAV swarm flight, the normal algorithm
also requires interactive data, whereas the proposed algorithm
only adds obstacle information to the data for obstacles that
require interaction. The proposed algorithm also needs to
filter the received obstacle information and compute uβ,τi .
Therefore, the complexity of the proposed algorithm is not
greatly increased compared to the normal algorithm.

We use some visualized expressions to illustrate the supe-
riority of the proposed algorithm. Figure 4-a(1) is the case of
the normal algorithm and 4-a(2) is the case of the proposed
algorithm. In Figure 4-a(1), the distance between UAVs and
obstacles is less than rO, the distance between UAV i and
j is d , and their speed is the same. Thus, uαi = 0 and
uαj = 0. The velocity direction of UAV i is perpendicular to
the obstacle, so p̂i,k = 0. From the above assumptions, the
input of UAV i and j are obtained as follows:

ui = cβu
β
i + cγ u

γ
i , (32)

uj = cβu
β
j + cγ u

γ
j . (33)

In Figure 4-a(2), UAVs and obstacles have the same
assumptions as in Figure 4-a(1), but because UAVs share
obstacle information with each other, the input of UAVm and
UAV n are obtained as follows:

um = cβuβm + cγ u
γ
m + cτu

β,τ
m , (34)

un = cβuβn + cγ u
γ
n + cτu

β,τ
n . (35)

The obstacle avoidance terms in equations (32)–(35) are
composed of two parts, which can be expressed as uβi = uβi,q+

uβi,p. u
β
i,q keeps the UAV away from q̂.,k , and u

β
i,p causes the

UAV to approach p̂.,k . Therefore, equations (32)–(35) can be
expressed as follows:

ui = cβ
(
uβi,q + u

β
i,p

)
+ cγ u

γ
i , (36)

uj = cβ
(
uβj,q + u

β
j,p

)
+ cγ u

γ
j , (37)

um = cβ
(
uβm,q+u

β
m,p

)
+cτ

(
uβ,τm,q+u

β,τ
m,p

)
+ cγ uγm, (38)

FIGURE 4. Multiple UAVs encountering an obstacle using a(1) the normal algorithm and a(2) the proposed algorithm.
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TABLE 1. Parameters of the simplified kinematic model of the UAV.

un = cβ
(
uβn,q + u

β
n,p

)
+ cτ

(
uβ,τn,q + u

β,τ
n,p

)
+ cγ uγn . (39)

These obstacle avoidance terms are shown as solid red
arrows in Figure 4, but uγi is not shown because the effect
of uγi for the UAV is the same in both cases. Obstacles have
a greater impact on UAVs m and n than on UAVs i and j.
UAVs m and n obtain more information about obstacles. The
special case where the velocity directions of UAVs i and n are
perpendicular to the surface of obstacles provides a clearer
understanding. At this special moment, obstacles cause the
velocity value of UAV i to decrease, but the direction of
UAV i is not affected. However, for UAV n, the obstacle
affects both its value and direction. As demonstrated by the
above analysis and explanation, the proposed algorithm has a
better obstacles avoidance effect than the normal algorithm.
The obstacle information detected by each UAV will not
only act on itself but also help the adjacent UAVs acquire
more comprehensive information about obstacles and avoid
obstacles more effectively.

IV. NUMERICAL SIMULATIONS
In this section, we detail the simulations that were performed
to verify the validity of the algorithm. All algorithms were
implemented using a 3.2 GHz CPU and 8 GB memory per-
sonal computer running Windows 10 and Matlab R2016b.
A UAV swarm of 7 UAVs (N = 7) was considered, assuming
the same UAV model for all units, which adheres to the same
UAV kinematic simplification model as shown in Table 1.
According to the UAV model in [27], we used the following
parameter values in our UAV model: τν = 0.2, τψ̇ = 0.6250,
τψ = 0.0156, τḣ = 0.7072, and τh = 1 [27]. In addition,
according to the actual flight characteristics of the UAV,
velocity, acceleration, etc. need to be restricted. The specific
data are given in Table 1.

We provided seven initial parameter values for each of the
7 UAVs. The seven parameter values are position, velocity,
heading angle, heading angular velocity and speed of altitude,
namely [xi, yi, hi,Vi, ψi, ψ̇i, ḣi], where the initial roll angle is
determined according to the velocity and the heading angular
velocity, and the velocity and initial velocity determine the
initial pitch angle. Therefore, the seven initial parameters

TABLE 2. Parameters of the flocking algorithms.

determine the state of the UAV in space described by position,
velocity, angle, and angular velocity. The seven initial states,
once selected, are applied to all the simulations. The values
are selected such that the horizontal position is uniformly
distributed in the interval [−50, 50]× [−70, 70], the altitude
is uniformly distributed in the interval [80, 120], the velocity
is uniformly distributed in the interval [15, 30], the initial
value of the heading angle is 0, the heading angular velocity
is uniformly distributed in the interval [−π /2, π /2], and the
climbing velocity is in the interval [−3, 3]. The step size in
all simulations is 1t = 0.1 s.

The above parameters and initial state values are for a sin-
gle UAV. We must also set parameters and states for the UAV
swarm, as shown in Table 2. Some of the data in Table 1 and
Table 2 are from [5], [18], [26], and [27], and some are from
repetitive simulation experiments.

A. FLOCKING AVOIDING OBSTACLES ALGORITHM
SIMULATION
In this section, we mainly simulate comparisons of the obsta-
cle avoidance algorithms described in Sections II and III, i.e.,
the normal method and the proposed method. The obstacle
avoidance algorithm in Section II is based on Saber’s thesis,
and Section III is an improvement on Saber’s obstacle avoid-
ance algorithm. The simulation environment has the UAV
swarm follow a desired path from [0, 0, 100] to [0, 1500, 100].
The velocity of the swarm is 25 m/s, and the position of the
spherical obstacle is [0, 600, 100], whose radius is 50 m.

Figure 5 shows the simulation results for the two
algorithms. Series b corresponds to the obstacle avoid-
ance flocking algorithm, in which UAVs do not share
obstacle information, with set parameters cβq = 17.5 and
cβp = 17.5. Series c corresponds to the obstacle avoid-
ance algorithm with shared obstacle information, which was
described in Section III, with set parameters cβq = 13 and
cβp = 13. These parameters were obtained through repetitive
simulation experiments. The main purpose is to make the
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FIGURE 5. Comparison of two kinds of flocking algorithms with obstacle avoidance capability. These figures show the simulation
curves of trajectory, velocity, altitude, speed of altitude, heading angle, and distance between each UAV and the obstacle from
t = 15 s. b(1-6) are the results using the normal flocking algorithm with obstacle avoidance. c(1-6) are the results using the
proposed flocking algorithm with shared obstacle information.
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FIGURE 5. (Continued.) Comparison of two kinds of flocking algorithms with obstacle avoidance capability. These figures show the
simulation curves of trajectory, velocity, altitude, speed of altitude, heading angle, and distance between each UAV and the obstacle from
t = 15 s. b(1-6) are the results using the normal flocking algorithm with obstacle avoidance. c(1-6) are the results using the proposed
flocking algorithm with shared obstacle information.

results of the two algorithms roughly the same, especially
the nearest distance between the UAV and the obstacle,
as shown in Figures 5-b(6) and 5-c(6). Comparing curves in
Figure 5 intuitively, the proposed algorithm has better con-
sistency, especially in speed, speed of altitude, and heading
angle. This shows that the proposed algorithm enables UAVs
in the swarm to rapidly escape from local minima after
encountering obstacles and to maintain consensus with the
surrounding UAVs.

Comparing Figures 5-b(1) and 5-c(1), it is clear that the
proposed algorithm has a smoother flight path when avoiding
the obstacle, especially when flying away from the obstacle.
A comparison of velocity curves in Figures 5-b(2) and 5-
c(2) shows the difference in UAV velocities for the normal
algorithm and the proposed algorithm. For a clearer compar-
ison of the speed differences between UAVs in the swarm,
we plotted the maximum and minimum difference curves of
UAVs in the two algorithms, as shown in Figures 6-d(1) and
6-e(1), which show the differences between the maximum
and the minimum velocities of UAVs from t = 15 s to
t = 50 s. From Figure 6, we see that the peak value of the
velocity difference in the normal algorithm reaches approx-
imately 6 m/s after encountering the obstacle, whereas the
peak value of velocity difference in the proposed algorithm
is approximately 1 m/s, and thus the effect of improvement

is obvious. In Figures 6-d(1) and 6-e(1), the speed difference
curves have a minimum value of 0 after approximately
t = 20 s because the UAVs fly around the obstacles at a
minimum speed, as shown in Figures 5-b(2) and 5-c(2).

Figures 5-b(4) vs. 5-c(4) and 5-b(5) vs. 5c(5) show that
the proposed algorithm has a better consensus on the speed
of altitude and heading angle, especially when flying away
from the obstacle. To specifically evaluate the performance
of the speed of altitude and heading angle, we calculate the
first-order absolute center moment and its sum separately as
follows.

For ḣ:

eḣ(t) =
1
N

∑N

i=1

∣∣∣ḣi(t)− ḣ(t)∣∣∣ ,
ḣ(t) =

1
N

∑N

i=1
ḣi (t),

Eḣ =
∑T

t=0
eḣ (t) . (40)

For ψ :

eψ (t) =
1
N

∑N

i=1

∣∣ψi(t)− ψ(t)∣∣ ,
ψ(t) =

1
N

∑N

i=1
ψi (t),

Eψ =
∑T

t=0
eψ (t). (41)
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FIGURE 6. Comparison of differences between maximum and minimum velocities of UAVs in the swarm based on two algorithms
controlling the UAV swarm while meeting the obstacle. d(1) is the results using the normal flocking algorithm with obstacle
avoidance. e(1) is the results using the proposed flocking algorithm with obstacle avoidance.

FIGURE 7. Comparison of the first-order absolute center moment of speed of altitude (d(2)) and heading angle (e(2)) of the UAV
swarms controlled by two algorithms. Red curves are the results using the proposed flocking algorithm, and blue curves are the
results using the normal flocking algorithm.

Figure 7 and Table 3 show the values of e and E
acquired using the two algorithms. The proposed algorithm
has smaller values of eḣ(t) and eψ (t). Eḣ of the proposed
algorithm improved by 28.60% ((178.16–127.21)/178.16 •
100%) compared with the normal algorithm. Eψ of the pro-
posed algorithm improved by 26.89% compared with the
normal algorithm. This shows that the proposed algorithm
allows the swarm a more gentle speed of altitude and heading
angle.

The speed of altitude has a direct effect on altitude.
The proposed algorithm, with a more stable altitude speed
performance, grants a better tracking performance for the
swarm’s altitude when avoiding the obstacle, as shown in
Figures 5-b(3) and 5-c(3).

The speed, speed of altitude, and heading angle were also
analyzed. A comparison of Figure 6 and Figure 7 shows that,
when the UAV swarm enters the obstacle range and leaves
the obstacle range, the UAV swarm controlled by the normal
algorithm makes large maneuvering changes, resulting in

TABLE 3. The sum of the first-order absolute center moment.

large speed differences, eḣ(t) and eψ (t). In the UAV swarm
controlled by the proposed algorithm, UAVs enter and leave
the obstacle range with smoother changes in speed, speed
of altitude, and heading angle. The reasons for this differ-
ence were explained in Section III. When the UAV swarm
controlled by the proposed algorithm has just entered the
obstacle range, some UAVs can detect obstacles and some
cannot. UAVs that can detect obstacles begin tomake obstacle
avoidance maneuvers, and the UAVs that cannot detect obsta-
cles are prepared for obstacle avoidance under the function
of uβ,τi , such as deceleration and attitude change, so that
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FIGURE 8. Comparison of distances between UAV 5 and other UAVs. f(1) is the results using the normal flocking algorithm with
obstacle avoidance. g(1) is the results using the proposed flocking algorithm with obstacle avoidance.

the swarm has better consistency. When the UAV swarm
controlled by the normal algorithm enters the obstacle range,
UAVs that can detect the obstacle make obstacle avoidance
maneuvers quickly, and UAVs that cannot detect the obstacle
do not prepare for obstacle avoidance, and thus the swarm
does not have good consistency.When the UAV swarm leaves
the obstacle, they show the same behaviors. UAVs that have
left the obstacle range in the UAV swarm controlled by the
proposed algorithm cannot accelerate rapidly under the func-
tion of uβ,τi , thus maintaining a good consistency with UAVs
within the obstacle range. Therefore, the proposed algorithm
allows the UAV swarm to complete the cooperative obstacle
avoidance with good consistency.

We compared the distance between UAVs in the two algo-
rithms during the obstacle avoidance process. In Figure 8,
we plotted the distance curves between UAV 5 and other
UAVs for the two algorithms. The proposed algorithm’s
distance curves are smoother. To illustrate this point more
clearly, we performed simple statistics on the rate of change
of distance using equation (42).

dist =
1

N − 1

∑N−1

i=1

∑end

t=τ

∣∣∣∣ (dist i (t+1t)−dist i (t))1t

∣∣∣∣.
(42)

From Figures 5-b(6) and 5-c(6), it can be seen that the UAV
swarm begins to detect the obstacle around t = 15 s. Prior to
this, the obstacle avoidance algorithm did not start its role.
Therefore, we start from t = 15 s to calculate the average
changes in the distance between UAV 5 and other UAVs. The
statistical results are shown in Table 4.

From Table 4, it can be seen that, after the swarm encoun-
ters an obstacle, the swarm controlled by the proposed algo-
rithm has a smaller rate of change for distance during obsta-
cle avoidance. dist of the proposed algorithm improves by
40.06% compared with the normal algorithm.

Through the above analysis, it can be found that the pro-
posed algorithm has better stability and consistency when
avoiding obstacles.

TABLE 4. The average change in distance between UAV 5 and other UAVs.

V. CONCLUSION
In this paper, we studied UAV swarm obstacle avoidance-
related issues. The proposed multi-agent flocking control
algorithm was applied to a UAV swarm, for which the UAV
kinematics model and UAV dynamic constraints were consid-
ered. We considered the following problems caused by obsta-
cle avoidance for UAV swarms: (1) when the UAV swarm
encounters an obstacle, the individual states of the UAVs
cannot be stable due to fluctuations in the distance between
UAVs and between UAVs and the obstacle; (2) individuals
in the swarm become trapped in local minima, resulting in
the swarm failing to pass obstacles or having poor consensus.
To solve these problems, we proposed a flocking obstacle
avoidance algorithm with shared obstacle information. The
overarching goal of the algorithm is to improve the normal
isolated and local obstacle avoidance algorithm to a global
obstacle avoidance algorithm.We improved the shortcomings
of the normal algorithm, in which it is easy to fall into local
minima and results in poor consensus, and our algorithm
ultimately improves the consensus of the UAV swarm while
avoiding obstacles. Two simulation scenarios were tested,
and the simulation results showed that our algorithm can
achieve better consensus when bypassing the obstacle.
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