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Abstract: Knowing the long-dated dynamic changes of vegetation in the Mu Us Desert is critical for
strengthening sustainable management of vegetation restoration projects in the next planned cycle
until 2050. To predict leaf area indexes (LAIs) under long-dated climate scenarios (2013–2050) in
the Mu Us Desert, the relationship between earlier meteorological data and LAI was tracked with
regression analysis on the basis of LAI data from the Global Land Surface Satellite (GLASS) and
the grid meteorological data during 1982–2012, and the LAIs were estimated based on five-Global
Circulation Model (GCM) ensemble means under three representative concentration pathways (RCP
2.6, RCP 4.5 and RCP 8.5). We found an increasing trend in precipitation and a significant increase in
potential evapotranspiration (PET) during the earlier period in the Mu Us Desert, and that could
continue into the long-dated under three RCPs in the Mu Us Desert. Warming trends occur in the
earlier and long-dated periods for annual average air temperature. Compared with the observations,
the temperature rises respectively by 0.6 °C, 0.7 °C, and 1 °C under the three RCPs mentioned
above. The annual maximum LAI largely increased with a rate-of-change of 0.029 m2

·m−2
·yr-1.

Precipitation has been a major influencing factor to vegetation dynamics and growth in the Mu Us
Desert. The permissible LAIs by 2050 are 0.42–0.88 m2

·m−2, 0.42–0.87 m2
·m−2, and 0.41–0.87 m2

·m−2

under the three RCPs, respectively. Contrasted with the baseline period (1982–2012), the LAI is found
to be already close to the current value in the northwestern and southern Mu Us Desert.

Keywords: leaf area index; vegetation restoration; climatic variables; general circulation models

1. Introduction

For the terrestrial ecosystem, vegetation is an important component. Desert vegetation provides
important water and soil conservation services [1] and plays a dominant role in the prevention of
desertification, mitigation of wind-sand damage, and restoration of the local environment in arid
and semi-arid ecosystems [2–4]. Revegetation is an important approach for restoring degraded
and disturbed ecosystems resulting from inappropriate anthropogenic activities [5,6], and has been
internationally recognized and accepted as one of the most reasonable and effective ways [7–10].
Some international organizations, such as UNDP, UNEP, and FAO, had implemented a series of plans
in sand-fixing plants to prevent and control desertification, especially in developing countries for
rebuilding desert ecosystems.

Since 1978, China has launched some of the most ambitious ecological restoration programs [11,12]
called vegetation rehabilitation programs, including the Grain to Green Project [13], Natural Forest
Conservation Program, and the Three North Shelter Forest System Project [14,15]. The Mu Us Desert is
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one of the main areas of vegetation restoration [9]. Since its implementation in 1978, artificial vegetation
construction has remarkably increased in desert regions and promoted local habitat restoration [16].
However, Guo et al. showed that the soil water status gradually deteriorated with the increase of
vegetation coverage [17]. Mu et al. found that large-scale artificial vegetation restoration caused
excessive consumption of deep soil water and affected the sustainability of vegetation restoration [18].
Feng et al. thought vegetation expansion in water-limited desert regions would exacerbate the shortage
of water resources [19]. It is a challenge as how best to recover vegetation and safeguard regional
water resources safely at the same time in Mu Us Desert.

Limited efforts have focused on soil water carrying capacity for vegetation [20–22], which is
associated with plot scales [22–24]. Due to the strong influences from multiple environmental controls
like hydrological and climate elements, terrain, vegetation types, and soil characteristics with spatial
and temporal heterogeneity at a regional scale [25], the research results from plot scales could not
be directly applied to guide the ecological construction and allocate water resources optimally on a
larger scale. The planned period for the next cycle ending is in 2050 [14,26,27]. However, how much
vegetation is reasonable and effective for re-vegetation projects in the Mu Us Desert remains uncertain.

For this problem, based on regression analysis between LAI and climatic variables, we predicted the
dynamic changes of vegetation in the later period (2013–2050). The adopted data included meteorological
data, LAIs data (1982–2012), and five GCMs under three RCPs (2.6, 4.5, and 8.5) from the Fifth Phase of the
Coupled Model Intercomparison Project (CMIP5) from 2013 to 2050. Our specific objectives are as follows:
the first is to analyze variation of water and heat conditions including precipitation (P), temperature (T),
and potential evapotranspiration (PET) from 1982 to 2012 and estimate their further variation (2013–2050)
under various RCPs relative to 1982–2012; the second is to further explore spatiotemporal variation of
LAI during 1982–2012 in the Mu Us Desert; the third objective is to predict the dynamic changes of LAIs
(2013–2050) under the long-dated scenarios (2013–2050).

2. Research Data and Methods

2.1. Situation of the Research Area

We chose the Mu Us Desert as the research area which lies on 106◦50′–111◦30′ E longitude
and 37◦61′–40◦22′ N latitude and covers approximately 4 × 104 km2 (Figure 1). It is located in the
transitional zone of arid and semi-arid, most of which belong to the continental monsoon climate [28],
with an average annual temperature of 6.0–8.5 °C. The average annual precipitation is 250–440 mm,
of which more than 60% occurs in summer. The present vegetation of research area is comprised of
steppe or grassland, and the western margin belongs to the desertification steppe zone, the central and
eastern parts belong to the typical grassland zone, and the southeast margin develops forest grassland.
The major vegetation groups in this area are grassland, shrub, meadow, and marsh vegetation, chiefly
dominated by Stipabungeana, Artemisia frigida, Caragana korshinskii, and Carexstenophylla, and so on [29].
There are various landscape types dominated by fixed, semi-fixed, or mobile dunes. In addition,
grasslands and interconnected lakes and swamps are sporadically distributed [30]. The zonal soils
consist of dark loessial soils, light chestnut soil, and brown soil, and the azonal soils are mainly sandy
soils, meadow soils, and saline-alkali soils from east to west in this region [31]. It is noteworthy that
there is a bedrock-dominated area in the northwest of the study area [32,33].
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Figure 1. Mu Us Desert and meteorological stations location.

2.2. Data Source and Processing

All daily meteorological data including temperature, air pressure, relative humidity, wind speed,
sunshine hours, and precipitation (mean, minimum, maximum) were obtained from 16 meteorological
stations within and near the Mu Us Desert from China’s National Meteorological Administration
during the earlier period of 1982–2012. Then we interpolated the data onto a 0.083 grid covering the
whole desert region using a thin plate smoothing spline method with the ANUSPLIN 4.3 software
(Australian National university, Canberra, Australia) [34]. Moreover, 8-km re-sampling of the existing
90-m resolution digital elevation model (DEM) was developed by the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (RESDC). The data of land use at a 1:100,000 scale
in 2010 was also provided by RESDC.

The simulated climate projections from 1982–2050 were acquired from five GCMs (GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) under RCP 2.6, 4.5, and 8.5.
The daily variables (the mean, maximum, and minimum temperatures (K); precipitation (kg·m−2

·s−1);
shortwave downwelling radiation (W·m−1); near-surface wind speed (m·s−1); and relative humidity
(%)) of the GCMs were downscaled to 0.5, and the bias was corrected by the Inter-Sectoral Impact
Model Intercomparison Project (ISI-MIP) [35,36].

The leaf area index (LAI) 15-daily temporal resolution data from the Mu Us Desert were obtained
from the Global Land Surface Satellite (GLASS) LAI product because it provides temporally continuous
profiles from 1982 to 2012 and is more accurate and of a higher quality than the CYCLOPES and MODIS
LAI product with a 5-km spatial resolution in 1982–2000 and 1-km in 2001–2012 [37]. LAI has been chosen
as the indicator of vegetation growth due to the understanding of broader biophysical and physiological
processes, including photosynthesis, respiration, transpiration, carbon cycling, NPP, etc. [38,39].

2.3. Local Thin Plate Smoothing Spline Method

ANUSPLIN (Australian National university, Canberra, Australia) is based on the interpolation
theory of ordinary thin plate and local thin plate spline function. Local thin plate smoothing spline
method is an extension of thin plate smoothing spline prototype, which allows the introduction of a
linear covariant quantum model in addition to the ordinary spline independent variables [40]. In this
study, two modules, SPLINA and LAPGRD in the software, were used to interpolate meteorological
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factors, such as precipitation and temperature, with longitude and latitude as independent variables
and altitude as covariables. The theoretical statistical model of local thin plate smoothing spline is:

zi = f (xi) + bT yi + ei (i = 1, . . . , N), (1)

where, zi is the dependent variable at point i in space, xi is the independent variable of d dimensional
spline, f is the unknown smoothing function of xi, yi is the independent covariant of p dimension, b is
the p dimensional coefficient of yi, ei is the random error of independent variables with expected value
0 and variance wiσ

2, where wi is the known local relative variation coefficient as the weight, σ2 is the
error variance and is constant at all data points but usually unknown.

As can be seen from Equation (1), when the second term is missing in the equation, namely, when
the covariant dimension p is 0, the model can be simplified as ordinary thin plate smoothing spline.
When the first independent variable is missing, the model becomes a multiple linear regression model.

The functions f and b can be determined by least squares estimation:

N∑
i=1

zi − f (xi) − bT yi

wi
+ ρJm f (x) (2)

where, Jm (f ) is the roughness measure function of function f (xi), it is called the spline number, but also
called roughness number in ANUSPLIN (Australian National university, Canberra, Australia). ρ is a
positive smoothing parameter; it acts as a balance between data fidelity and surface roughness. ρ is
usually determined by the minimization of generalized cross-validation (GCV) but also by minimization
of the generalized maximum likelihood (GML) or expected true square error (MSE).

2.4. Potential Evapotranspiration (PET)

The Penman–Monteith model can be used to calculate daily reference evapotranspiration (PET0

in mm·d−1) then annual PET is obtained by summing all PET0. The calculation formula is as follows
and the calculation process of each component can be found in the literature [41].

PET0 =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(3)

where, ∆ represents curve slope of saturation vapor pressure vs. air temperature (kPa °C−1), Rn and
G represent respectively net radiation and soil heat flux (MJ m−2 d−1), γ represents psychometric
constant, T represents average daily air temperature (°C), u2 represents average daily wind speed
at the 2-m height (m s−1), es and ea are, respectively, the saturation vapor pressure and actual vapor
pressure (kPa).

2.5. Theil-Sen Trend Estimator

The linear regression analysis was used to detect the temporal and spatial variation of annual
maximum LAI, average annual precipitation (P), air temperature (T) and PET in the Mu Us Desert.
The overall trends of LAI and climatic variables were reflected by fitting a least squares regression
through the time series of each pixel, and the trend slope coefficients were calculated [42], which is
computed from:

Slope =
n
∑n

i=1 i · xi −
∑n

i=1 i
∑n

i=1 xi

n
∑n

i=1 i2 −
(∑n

i=1 i
)2 (4)

where, slope represents the average change rate (i.e., trend) of the time-series data. n is the cumulative
years during the study period, and i is the year serial number. xi represents a dependent variable (i.e.,
LAI, precipitation (P), air temperature (T), or PET) for year i.
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These correlation coefficients between LAI and other climate variables (i.e., P, T, or PET) can be
calculated by using the Pearson correlation method. We have checked the data before using linear
regression and Pearson correlation to be sure that all data have a normal distribution.

3. Result Analysis

3.1. Climatic Variables

To check the performance of simulated values of climatic variables from 2013–2050 in the Mu Us
Desert, the linear regression analysis was performed for the fitting of the data between the simulated
annual values and corresponding observational values during the earlier period (1982–2012). The fitting
results (Figure 2) showed that: the coefficients of determination (R2) demonstrated the simulations and
observations generally agreed with R2 of 0.6463 and 0.5786 for P and T, respectively. This indicated
that the later climate prediction data using the above-obtained linear regression equation could achieve
good results and have the rationality and credibility of application.
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Figure 2. Comparison of the observed and simulated annual values during 1982–2012.

Figure 3 showed the spatial distributions of the long series P, T, and PET during the observed
period and RCP 4.5 scenario (RCP 2.6 and RCP 8.5 scenarios were omitted) in the Mu Us Desert.
The distributions of P exhibited similar spatial patterns during the observed period and all RCP
scenarios, and had a gradually decreasing from east to west with the range of 198.4–383.6 mm,
218.6–427 mm, 218.1–422 mm, and 215.4–422.3 mm for the earlier period and three RCPs (2.6, 4.5,
and 8.5) in the Mu Us Desert (Figure 3a,b). The spatial patterns of T were not uniform between
observations and scenarios, but were similar for three RCPs scenarios, with the range of 5.7–9.2 °C,
7.7–10.2 °C, 7.6–10.1 °C, and 7.9–10.4 °C for the observed period and all RCP scenarios, respectively
(Figure 3c,d). The spatial distributions of annual PET were similar during the observed period
and all scenarios, and had a gradual increase from east to west with the range of 942.6–1110.4 mm,
1095.7–1226.7 mm, 1084.5–1224.2 mm, and 1093.4–1230.8 mm in the Mu Us Desert for the observed
period and all the RCP scenarios, respectively (Figure 3e,f).
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Figure 3. The spatial distributions of the long series annual precipitation (P), air temperature (T),
and potential evapotranspiration (PET) during the observed period and representative concentration
pathways (RCP) 4.5 scenario in the Mu Us desert.

Figure 4 showed the change process of annual precipitation, air temperature, and the PET time
series of the observed spatial mean values for the earlier observed period (1982–2012) and the simulated
spatial mean values for the later period (2013–2050) using the 10-year running mean in the Mu Us
Desert. Figure 4a provided the time series of observed and simulated regional mean values of annual
precipitation. The results indicated annual fluctuation and an increasing trend in precipitation during
the observed period, and the change rate of 0.6 mm·yr−1 (p ≥ 0.05). The increasing trend in precipitation
was captured in all scenarios in the Mu Us Desert (Table 1). Comparing the observed precipitation
during the earlier period with the result of the five-GCM ensemble mean during 2013–2050 under the
three RCPs, precipitation changes were uniform between observations and scenarios, yet the change
magnitude of precipitation was different under the three RCPs. The annual precipitation slightly
rose by 9.8%, 11.0%, and 10.6% by 2050 under the three RCPs contrasting the precipitation during
the observed period (Table 1). The time series of regional mean values of annual air temperature
was presented in Figure 4b. A warming trend occurred during the earlier period (p < 0.01) and it
is expected that the average annual temperature will continue to warm in the later period (p < 0.01,
Table 1) in the Mu Us Desert. Compared with the observations, the simulated temperature increased
with most strong changes for RCP 8.5 and smallest magnitudes for RCP 2.6. Relative to the observation
period, the annual temperature rose respectively by 0.60 °C, 0.69 °C, and 0.97 °C by 2050 under the
three RCPs (Table 1). Figure 4c showed a time series of observed and simulated regional mean values
of annual PET. The results revealed that an increasing trend in PET has appeared during the earlier
period (p < 0.05) and were projected to persist into the later period under each RCP (p < 0.01, Table 1).
Comparing the observed values during the earlier period with the results of the five-GCM ensemble
mean, PET rose respectively by 7.3%, 6.5%, and 7.0% under three RCPs (Table 1).



Sustainability 2019, 11, 3151 7 of 13
Sustainability 2019, 11, x FOR PEER REVIEW 7 of 13 

 

Figure 4. Changes of observed and simulated regional mean values of annual precipitation (a), air 

temperature (b), and PET (c) in the Mu Us Desert. 

Table 1. The regional mean values and the trends of annual precipitation, air temperature, and PET 

in Mu Us Desert. 

Period P (mm) P-trend (mm·yr−1) T (°C) T-trend (°C·yr−1) PET (mm) PET-trend (mm·yr−1) 

1982–2012 299.26 0.60 7.96 0.049 ** 1038.92 1.67 * 

RCP 2.6 328.45 0.37 * 8.55 0.026 ** 1114.37 1.90 ** 

RCP 4.5 332.06 0.54 ** 8.65 0.032 ** 1106.10 2.00 ** 

RCP 8.5 331.00 0.66 ** 8.92 0.045 ** 1111.71 2.02 ** 

Note: *and ** denote respectively statistically significant trend of p < 0.05 and p < 0.01. 

3.2. Vegetation Dynamics 

There are various types of land use (e.g., farmland, urbanization, and water bodies) in the study 

area where the desert is not completely covered. To accurately explore the characteristics of 

spatiotemporal vegetation variation and its inherent relationship with climate change, the above-

mentioned types of land use were excluded from the analysis. 

Spatial distribution of the over years mean from 1982–2012 in annual maximum of LAI reflected 

the general situation of vegetation growth, and the value range of annual maximum LAI was 0.4–0.9 

m2·m–2 (Figure 5a). The value between 0.6–0.8 and 0.4–0.6 m2·m–2 was the main body, and occupied 

64.4% and 30.8% of the whole area, respectively, with the higher values of LAI occurring in the south 

and the lower values in the northwest of the study area. 

In the whole study area, annual maximum LAI derived from GLASS was on the rise with the 

change rate of 0.029 m2 m–2 yr–1 (p < 0.05). The area with increasing trend occupied 84.9% of the whole 

area, while the vegetation growth status was mainly slight, and significant improvements were found 

with 83.3% and 1.6% of the total area, respectively (Table 2). Furthermore, vegetation exhibited 

stability or a decreasing trend in some scattered areas of the Mu Us Desert (Figure 5b). 

Figure 4. Changes of observed and simulated regional mean values of annual precipitation (a),
air temperature (b), and PET (c) in the Mu Us Desert.

Table 1. The regional mean values and the trends of annual precipitation, air temperature, and PET in
Mu Us Desert.

Period P (mm) P-trend (mm·yr−1) T (◦C) T-trend (◦C·yr−1) PET (mm) PET-trend (mm·yr−1)

1982–2012 299.26 0.60 7.96 0.049 ** 1038.92 1.67 *
RCP 2.6 328.45 0.37 * 8.55 0.026 ** 1114.37 1.90 **
RCP 4.5 332.06 0.54 ** 8.65 0.032 ** 1106.10 2.00 **
RCP 8.5 331.00 0.66 ** 8.92 0.045 ** 1111.71 2.02 **

Note: *and ** denote respectively statistically significant trend of p < 0.05 and p < 0.01.

3.2. Vegetation Dynamics

There are various types of land use (e.g., farmland, urbanization, and water bodies) in the study area
where the desert is not completely covered. To accurately explore the characteristics of spatiotemporal
vegetation variation and its inherent relationship with climate change, the above-mentioned types of
land use were excluded from the analysis.

Spatial distribution of the over years mean from 1982–2012 in annual maximum of LAI reflected the
general situation of vegetation growth, and the value range of annual maximum LAI was 0.4–0.9 m2

·m–2

(Figure 5a). The value between 0.6–0.8 and 0.4–0.6 m2
·m–2 was the main body, and occupied 64.4% and

30.8% of the whole area, respectively, with the higher values of LAI occurring in the south and the
lower values in the northwest of the study area.

In the whole study area, annual maximum LAI derived from GLASS was on the rise with the
change rate of 0.029 m2 m–2 yr–1 (p < 0.05). The area with increasing trend occupied 84.9% of the
whole area, while the vegetation growth status was mainly slight, and significant improvements were
found with 83.3% and 1.6% of the total area, respectively (Table 2). Furthermore, vegetation exhibited
stability or a decreasing trend in some scattered areas of the Mu Us Desert (Figure 5b).
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Table 2. Trend and variation classification of annual maximum LAI during 1982–2012.

Classification of Variation Trend Area Percentage (%)

Serious degradation Slope ≤ −0.01 /
Slight degradation −0.01 < Slope ≤ −0.0006 5.1

Stability −0.0006 < Slope ≤ 0.0006 9.9
Slight improvement 0.0006 < Slope ≤ 0.01 83.4

Significant improvement Slope > 0.01 1.6

3.3. Correlation Analysis between LAI and Climatic Variables

By correlation analysis, we calculated the correlation coefficients between annual maximum
LAI and climatic variables (Table 3). The results revealed the significant correlation between annual
maximum LAI and precipitation (P), the correlation coefficient was 0.567 (p < 0.01). However, LAI
was negatively correlated with temperature (T) and PET, and the correlation between LAI and PET
was higher than that between LAI and temperature. Furthermore, LAI was also related to terrain
factors such as DEM, longitude, and latitude. LAI was negatively correlated with DEM (p < 0.01) and
positively correlated with longitude (p < 0.01), but there was no significant relationship between LAI
and latitude (p ≥ 0.05).

Table 3. Correlation coefficients between annual maximum LAI and climatic variables.

Variables Correlation Coefficient Variables Correlation Coefficient

P 0.567 ** DEM −0.237 **
T −0.197 Longitude 0.349 *

PET −0.373 ** Latitude −0.065

Note: * and ** denote respectively significant correlation at 5% and 1% level (2-tailed).

3.4. Possible LAIs under Three Scenarios

According to the correlation coefficients in Table 3, we selected the main factors affecting vegetation
growth, including precipitation, PET, longitude, and DEM. Based on regression analysis, we quantified
the relationship between annual maximum LAI and other relevant variables. The corresponding
regression equation was as follows:

LAI = 0.002523P− 0.000305PET − 0.001092Longitude + 0.000056DEM + 0.220101 (R2 = 0.683, p < 0.01) (5)
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Based on the five-GCM ensemble mean in three RCPs, we predicted the LAI in the later
period (2013–2050). The LAIs by 2050 were respectively 0.42–0.88 m2

·m−2, 0.42–0.87m2
·m−2, and

0.41–0.87m2
·m−2 under the three RCPs (Table 4). Compared with the annual maximum LAI in the

earlier period (1982–2012), LAI was found to be already close to the current situation in the northwestern
and southern parts of the study area (Figure 6).

Table 4. The long-dated LAI and its change magnitude.

Period 1982–2012 (m2
·m−2) RCP 2.6 (m2

·m−2) RCP 4.5 (m2
·m−2) RCP 8.5 (m2

·m−2)

LAI 0.4200–0.8550 0.4200–0.8825 0.4189–0.8728 0.4121–0.8739
Magnitude - −0.0412–0.2768 −0.0421–0.2614 −0.0484–0.2647
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4. Discussion

4.1. Change on Climatic Variables

According to the data of IPCC [43], climate change together with anthropogenic emissions of
greenhouse gases has caused the global near-surface temperature rose by 0.7 ◦C from 1951 to 2012,
amounting to an increase with a rate-of-change of 0.01 ◦C yr−1. This research presented that the
impact of global climate change had led to a greater temperature rise in the Mu Us Desert, averaging
to about 0.049 ◦C yr−1 increase during 1982–2012 (Table 1). This increased rate reached 4.9 times
greater than the global level. Li et al. (2015) [44] also reported a strong uptrend in temperature in
most drylands of China during 1948–2008 (0–0.1 ◦C yr−1 increases), except for several small scattered
patches (−0.02–0 ◦C·yr−1 decreases). From Table 1, we can conclude that the warming trends were
projected to persist into the long-dated and, respectively, rose by 0.6 ◦C, 0.7 ◦C, and 1 ◦C by 2050 for
the three RCPs. Based on the five identical GCMs ensemble means, Yin et al. (2015) [45] reported that
annual surface temperature in China would respectively rise by 1.8 ◦C, 2.2 ◦C, and 2.8 ◦C by 2050 for
three RCPs corresponding to the data during 1981–2010. However, long-dated warming magnitude in
the Mu Us Desert was lower than that of China in this study. In addition, precipitation and PET are
projected to increase substantially for all RCPs in China. Our study showed that similar increases were
detected in precipitation and PET for all RCPs by 2050 in the Mu Us Desert.

4.2. Vegetation Dynamics and Correlation with Climatic Variables

At the global scale, change analysis of observed maximum LAI showed to greening [46]. By means
of analyzing inter-annual variability of maximum LAI in the Mu Us Desert during the past 31 years,
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changes in LAI exhibited a similar widespread greening trend with slight and significant improvement
(Figure 5b). Our results indicated that regional vegetation had been improved in the Mu Us Desert.

In drylands, climate change but especially precipitation has a great influence on vegetation growth
and development [47–49]. In this study, we found that the changes of LAI were highly correlated
with precipitation variations, indicating that precipitation was a major climatic element of vegetation
activities in the Mu Us Desert. Previous studies suggested that the warming trend in the earlier period
could exacerbate desertification in desert ecosystems [50]. Nevertheless, this study showed that there
was no significant correlation between LAI and temperature, yet there was a significant negative
correlation with PET in the Mu Us Desert (Table 3).

4.3. Correlation of Vegetation and Ecological Restoration Activities

Given the massive afforestation and re-vegetation programs during the last decade and planning
afforestation and re-vegetation programs ending in 2050 [19,51,52], it is important to recognize that an
over-reliance on afforestation to rebuild desert ecosystems may lead to water shortages that could result in
failure [19,53]. Therefore, under this backdrop, knowing the long-dated dynamic changes of vegetation
is critical for ensuring sustainable development in the vulnerable desert environment. Research results
indicated that compared with the present data (1982–2012), the annual maximum of LAI by 2050 was
already close to the current value in the northwest and south of this study region. This study suggested that
we should consider the permissible maximum critical value of vegetation when the planning for long-dated
restoration programs would be carried out in this region. That may prevent excessive restoration from
resulting in impoverished lands with few ecological and economic benefits [54].

4.4. Uncertainty

Although the GLASS LAI can provide a high-quality temporally continuous dataset, the accuracy
of the dataset is limited and uncertain in the Mu Us Desert, which needs to be further verified. In order
to assess climate model performance and reduce the uncertainty of GCMs performance, the five-GCM
ensemble mean was used, and the earlier simulations were compared with observations during the
observed period. Validation of simulated precipitation and temperature in 1982–2012 showed that the
patterns of two variables were usually similar between simulations and observations in the Mu Us
Desert. Though the simulated results can be improved by the correction method, the improvement
is limited and a number of uncertainties remain because the correction method was based on the
statistical mapping relationship between observation and simulation. Furthermore, these low regression
coefficients of the LAI and climatic variables, terrain (R2 = 0.683) indicated considerable uncertainties
in the regression model. There are some other factors (sunshine, wind speed, and human activities,
etc.) should not be neglected in detecting the spatial distribution pattern of vegetation. It cannot be
ignored that spatial autocorrelation had a great influence on the global regression analysis so it may
not get better estimation results. It is necessary to find a suitable statistical method that addresses
spatial autocorrelation and the corresponding errors in the following study.

5. Conclusions

Based on regression analysis between LAI and some climatic variables in the Mu Us Desert,
we developed a method to determine the long-dated LAIs that could show the vegetation dynamics
and climate change responses as well as the mechanisms of these vegetation dynamics. Our study
suggested that the ecological environment had been improved in the Mu Us Desert and the permissible
LAIs by 2050 were, respectively, 0.42–0.88m2

·m−2, 0.42–0.87m2
·m−2, 0.41–0.87m2

·m−2 under the three
RCPs. Knowing long-dated possible LAI is important for implementing current and planned ecological
restoration. Compared with the baseline period (1982–2012), LAIs were found to be already close to
current values in the northwestern and southern Mu Us Desert. Based on the vegetation dynamics and
the responses under climate change in the Mu Us Desert, it is necessary to research the “threshold” of
key attributes of ecosystems (such as water carrying capacity of vegetation) in long-dated ecological
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restoration and reconstruction projects and to strengthen the management and allocation of water
resources further. That may avoid the excessive restoration leading to contradictions of water utilization
between the ecosystem and human.
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