
Journal of Optics

ACCEPTED MANUSCRIPT

Multi-resolution progressive computational ghost imaging
To cite this article before publication: cheng zhou et al 2019 J. Opt. in press https://doi.org/10.1088/2040-8986/ab1471

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2019 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 132.174.250.101 on 03/04/2019 at 08:02

https://doi.org/10.1088/2040-8986/ab1471
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/2040-8986/ab1471


Multi-resolution Progressive Computational Ghost
Imaging

Cheng Zhou1,2,3, Tian Tian4, Chao Gao5, Wenlin Gong6,
and Lijun Song1,2

1 Institute for Interdisciplinary Quantum Information Technology, Jilin
Engineering Normal University, Changchun 130052, China
2 Jilin Engineering Laboratory for Quantum Information Technology,
Changchun 130052, China
3 Center for Quantum Sciences and School of Physics, Northeast Normal
University, Changchun 130024, China
4 School of Science, Changchun University, Changchun 130022, China
5 Department of Physics, Changchun University of Science and Technology,
Changchun 130022, China
6 Key Laboratory for Quantum Optics and Center for Cold Atom Physics of
CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of
Sciences, Shanghai 201800, China

E-mail: gongwl@siom.ac.cn and ccdxslj@126.com

’

February 2019

Abstract. Most studies on ghost imaging focus on high-quality and
high-resolution imaging with few measurements. However, as far as
we know, continuous multi-resolution imaging is rarely mentioned. In
this work, we both theoretically and experimentally demonstrate a
method that uses the Hadamard derived pattern to realize continuous
multi-resolution imaging simply and quickly, which we call multi-
resolution progressive computational ghost imaging, whereby both the
reconstruction time and measurements required for multi-resolution
images can be significantly reduced. This approach improves the
flexibility of ghost imaging, and can be extended to multi-resolution
image-dependent practical applications such as target tracking and
recognition.
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1. Introduction

Ghost imaging (GI) is realized by correlating the light
field reflected (or transmitted) from the object with
the reference light field [1]. Because all the photons
transmitted (or reflected) from the object illuminate
the same bucket detector and the measurement
method is global random, this technique has the
superiority of higher sensitivity in detection
and higher efficiency in information extraction
than traditional optical imaging [2]. And GI
has aroused increasing interest in the applications like
remote sensing [3, 4, 5], super-resolution [6], optical
encryption [7].

In order to simplify the schematic of GI,
computational ghost imaging (CGI) that re-
quires only one optical path was theoretically
proposed by Shapiro [8] and later was demon-
strated by Bromberg [9]. In 2009, Katz et al.
introduced compressive sensing into image re-
construction of CGI where better reconstruc-
tion result can be obtained by even using the
measurement far below Nyquist limit [10]. In
order to enhanced the imaging characteristics
of compressive GI, most works were focused on
the imaging scenes and sparse representation of
the targets [11, 12, 13].

Recently, the optimization coding of speck-
le pattern for GI was considered [14, 15, 16, 17,
18]. These schemes are important ways to re-
duce the number of measurements, reconstruc-
tion time and computating resources. Averbuch
et al. [14] proposed a high-performance imag-
ing scheme which directly uses the patterns that
form the sparse basis to replace classical ran-
dom speckle patterns. Then, a more optimized
method named compressive adaptive computa-
tional ghost imaging (CCGI) was reported by
Aβmann et al. The CCGI scheme can over-
came the shortcomings of image restoration is
time-consuming and the computation resource
required is relatively high [15]. Subsequently,
Yu et al. [16] proposed a adaptive compressive
ghost imaging (ACGI) scheme, which made to-
tal L-level wavelet transform on the image, and
produced full screen scattered speckles by using
sparse random matrices, whereby the measure-
ments required for any image size can be fur-
ther reduced. Later, Soldevila et al. [17] pro-

posed another similar method, which is based
on smart sampling of the scene with a smal-
l set of masks. These masks were adaptively
resized when the part of the scene needs to be
recorded with higher resolution. More practi-
cal, Phillips et al. [18] proposed a framework
that exploited the spatiotemporal redundancy
of many dynamic scenes. This study recognizes
that sometimes there is no need to image the en-
tire field of view in high resolution, but provides
patterns enabling the resolution to be continu-
ously tuned across the field of view.

Moreover, Sun et al. [19] proposed a Rus-
sian Dolls ordering of the Hadamard basis C-
GI method in which they optimized the mea-
surement order of the Hadamard matrix, and
achieved optimal reconstruction for any trunca-
tion of that pattern sequence. Noteworthy, the
Hadamard matrix has a significant characteris-
tic that each Hadamard matrix contains with-
in it each lower order Hadamard matrix, and
each even order Hadamard matrix can realize
a kind of resolution imaging in CGI. If we re-
order the hadamard matrix from low to high by
even order, the multi-resolution images will be
obtained in a set of CGI experimental.

Here, a scheme that combines the advan-
tages of Ref.[19] and the ideas of progressive
transmission [20], which we call multi-resolution
progressive computational ghost imaging (M-
PCGI). This scheme has four main advantages:
1). Continuous multi-resolution images can be
obtained directly and quickly; 2). The com-
plexity is lower than that of compressive sens-
ing schemes based on wavelet transform, thus
it is more suitable for applications that do not
require higher multi-resolution imaging such as
air surveillance; 3). The ordering of Hadamard
derived pattern can be significantly fewer than
‘Russian Dolls’ ordering [19]; 4). We overcame
the difficulty of determining the spatial resolu-
tion.

The rest of the paper is organized as
follows. In section 2, we review the Hadamard
transformation and propose the scheme of
multi-resolution progressive imaging utilizing
the Hadamard derived pattern. In section 3,
we demonstrate our experiment by taking the
airplane model as a target object and discuss
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Multi-resolution Progressive Computational Ghost Imaging 3

the effect of detection signal-to-noise ratio. In
section 4, the conclusion is made.

2. Theoretical analysis

The schematic diagram of CGI is presented in Fig. 1.
A projector as the light modulator projects the
modulated light field onto an object with a reflection
coefficient O(x, y). The total reflected signals are
collected by a bucket detector. The mth light field
and bucket signal are expressed as I(m)(x, y), B(m),
respectively.

Object

Detector

Computer

Projector

Figure 1. (Color online) Schematic diagram of computational
ghost imaging.

2.1. Theory of image reconstruction

In conventional GI, the reflected coefficient can
be obtained by computing the correlation between
I(m)(x, y) and B(m)

OGI(x, y) =
1

M

M∑
m=1

[(B(m) − ⟨B(m)⟩) ·

(I(m)(x, y)− ⟨I(m)(x, y)⟩)], (1)

where ⟨B(m)⟩ = 1
M

∑M
m=1 B

(m) and ⟨I(m)(x, y)⟩ =
1
M

∑M
m=1 I

(m)(x, y). We can transform the I(m)(x, y)
(dimensions p × q) of M measurements into a matrix
form

Φ =


I(1)(1, 1) I(1)(1, 2) · · · I(1)(p, q)
I(2)(1, 1) I(2)(1, 2) · · · I(2)(p, q)

...
...

. . .
...

I(M)(1, 1) I(M)(1, 2) · · · I(M)(p, q)

 . (2)

Here, each row of the matrix Φ is converted from a row
vector of length p× q, which is obtained by reshaping
the mth light field I(m)(x, y).

Thus, Eq. 1 can be rewritten into a matrix form

OGI(x, y) =
1

M
(Φ− I ⟨Φ⟩)T (B − I ⟨B⟩)

=
1

M
(Φ− I ⟨Φ⟩)T (Φ− I ⟨Φ⟩)O

=
1

M
ΨTΨO , (3)

where, B is an M×1 vector and composed by M times
of measurement, that is B = [B(1), B(2), · · · , B(M)]T .
Similarly, O is an M × 1 vector made up of
the reflection coefficient O(x, y) of object, O =
[O(1, 1), O(1, 2), · · · , O(p, q)]T . In addition, Ψ = Φ −
I ⟨Φ⟩, ΦO = B, and ⟨B⟩ = ⟨Φ⟩O. I represents an
M × 1 column vector of all elements with a value of
1. ⟨Φ⟩ is a 1 × N row vector, which denotes the
average of each column of Φ. Theoretically, a high
quality reconstructed image will be obtained by Eq. 3,
if ΨTΨ is a diagonal matrix. And in CGI system, the
full-width at half maximum of ΨTΨ diagonal nonzero
elements determines the spatial transverse resolution
of the preset light field [21], which is proportional
to the resolution on the object plane. Hence, to
realize the multi-resolution progressive computational
ghost imaging, a multi-resolution ΨTΨ with different
measurements number is extremely essential.

2.2. Reordering methods for Hadamard derived
pattern

To enable high-speed multi-resolution progressive com-
putational ghost imaging, we optimized the sequence
of Hadamard derivative pattern to achieve real-time
high-resolution imaging. Then, we will show how
to select and use Hadamard derived pattern to
actualize the multi-resolution progressive imag-
ing.

The Hadamard basis is a square matrix composed
of +1 and −1, and can be generated rapidly by
Kronecker product, that is

H21 =

[
+1 +1
+1 −1

]
,

H2k = H21 ⊗H2k−1 =

[
+H2k−1 +H2k−1

+H2k−1 −H2k−1

]
,

(4)

where 2 < k (integer), and ⊗ denotes the Kronecker
product. Hence, a Hadamard matrix of size M ×
N(M = N),

H2k(m,n) =


H(1, 1) H(1, 2) · · · H(1, N)
H(2, 1) H(2, 2) · · · H(2, N)

...
...

. . .
...

H(M, 1) H(M, 2) · · · H(M,N)

 .(5)

To construct a modulation matrix of the light field
for GI, we will select an arbitrary row of H2k(m,n) to
obtain a two-dimensional Hadamard derived pattern

H
(m)

2k
(x, y).
To get a set of Hadamard derived pattern

H
(m)

2k
(x, y), we first generate a high-order Hadamard

matrix H2k(m,n) that can satisfy the imaging
resolution [taking k = 2 for example, as shown in
the left panel of Fig. 2(a)]. Then, we extract each row
of H2k(m,n) to obtain the corresponding single row
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Figure 2. (Color online) Reordering methods for Hadamard derived pattern. (a) Hadamard derived pattern of order four
construction process; (b) Hadamard pattern of order eight and the corresponding derived pattern; (c) Hadamard derived pattern of
different order sets; (d) Reordered Hadamard derived pattern.

vectors[as shown in the middle panel of Fig. 2(a)]. At

last, we acquire the two-dimensional matrix H
(m)

2k
(x, y)

of x rows and y columns. (Starting) from the
top (all the way) down to the bottom of the
columns in the right extreme in Fig. 2(a), we

give the derived pattern H
(m)
22 (2, 2) with m = 1, 2, 3, 4,

respectively.
Since the Hadamard matrix is a direct product

of H21 , the higher order Hadamard matrix naturally
contains the distribution information of lower order
Hadamard matrix. For example, with k = 4,
the 16pixel × 16pixel Hadamard pattern H24(16, 16)
is shown in the left subfigure of Fig. 2(b). The
corresponding Hadamard derived pattern in the right
subfigure Fig. 2(b) contains the 4-order Hadamard

derived matrix H
(m)
22 (4, 4), which is labelled by brown

frames. For the purpose of reordering, we enlarge the
latter matrix to the same size as the former one. In a
similar derived approach, every pattern H

(m)

2k
(x, y) is

a proper subset of the H
(m)

2k′ (x, y) for k′ > k, and the
relationship between the sets is shown in Fig. 2(c).

With the lower and higher derived pat-
tern in our hand, we are now ready to re-
order them. For a high order derived pattern

H
(m)

2k
(x, y), k = 2 × κ, we first extract the lowest

order derived pattern, i.e., H
(m)
22×1(2, 2) and pre-

pose it. Then, extract hadamard derived pat-

terns of order 16 [H
(m)
22×2(4, 4)] from the remain-

ing Hadamard derived patterns [H
(m)
22×κ(x, y) −

H
(m)
22×1(2, 2)] and place it behind the previ-

ously extracted derived patterns [H
(m)
22×1(2, 2)],

and deal with the rest lower order patterns

[H
(m)
22×3(8, 8),H

(m)
22×4(16, 16),H

(m)
22×5(32, 32), · · · ,H2×(κ−1)

2 ]
according to priority in the same way.

(a) (b) (c) (d)

(e) (f) (g) (h)

8380th row

0
50

100

0

50

100

0

0.2

0.4

0.6

0.8

1

y/pixel
x/pixel

Peak

(i)

Figure 3. (Color online) Comparison of the full-widths at half-
maximum of ΨTΨ with different measurements number. (a)
M = 22×1 (2×2 resolution); (b) M = 22×2 (4×4 resolution); (c)
M = 22×3 (8×8 resolution); (d) M = 22×4 (16×16 resolution);
(e) M = 22×5 (32 × 32 resolution); (f) M = 22×6 (64 × 64
resolution); (g) M = 22×7 (128× 128 resolution); (h) Reordered
Hadamard pattern; (i) the data in the 8380th row of the matrix
(d) is reshaped as a 128pixel× 128pixel image.

Concretely, in the language of the sets theory,
H22×1 is a proper subset of H22×2 which is notated
as H22×1 $ H22×2 [to make it simple, we omit the
superscript m in what follows], and the complementary
set as {H22×2H22×1 = H22×2 −H22×1 , which is shown
by the green area in Fig. 2(c). As for the higher
order, every two adjacent even orders will produce a
corresponding complementary set {H22×κH22×(κ−1) =
H22×κ − H22×(κ−1) , whose elements will be reordered
in our scheme[as shown in Fig. 2(d)]. In a word,
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Measurement times Imaging scheme Reconstructed multi-resolution images (          resolutation)

TCGI

MPCGI

TCGI

MPCGI

TCGI

MPCGI

TCGI

MPCGI

TCGI

MPCGI

16384

(M=       ) 
2 72 ×

256

(M=       ) 
2 42 ×

1024

(M=       ) 
2 52 ×

4096

(M=       ) 
2 62 ×

64

(M=       ) 
2 32 ×

2 +2

2 +2

2 +2

2 +2

2 +2

4 +4

4 +4

4 +4

4 +4

4 +4

8 +8

8 +8

8 +8

8 +8

8 +8

16 +16

16 +16

16 +16

16 +16

32 +32

32 +32

32 +32

64 +64

64 +64

128 +128

128 +128

 
m n×

Figure 4. (Color online) Numerical simulation experimental results of TCGI and MPCGI schemes with different measurement
times.

by enlarging the complementary set constantly we
completed the Hadamard derived pattern reordering,

H
(m)

2k
(x, y)new, and the two dimensional form can be

expressed as H2k(m,n)new which is equivalent to
Φ in Eq. 2. At this point, Ψ = H2k(m,n)new −
I ⟨H2k(m,n)new⟩, the different full-widths at half-
maximum of ΨTΨ with different measurements
number M = 22×κ(κ = 1, 2, · · ·) can be efficiently
calculated, as shown in Fig 3. If the data in the
8380th row of the matrix Fig. 3(d) is reshaped
as a 128pixel × 128pixel image, as displayed in
Fig. 3(i), the full-width at half-maximum of the

peak image determines the spatial transverse
resolution of GI [21]. So, as can be seen from
Fig. 3(a)-(g), we can get seven different full-
width at half-maximum images when M = 22×7.
Hence, we can achieve the multi-resolution
progressive progressive imaging quickly.

To demonstrate the advantages of this
method, we select an aircraft image with the
image size of 128pixel × 128pixel as the target
object for numerical simulation experimental.
The comparison results with traditional com-
putational ghost imaging (TCGI) using natural
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Multi-resolution Progressive Computational Ghost Imaging 6

order Hadamard derived pattern are shown in
Fig. 4. By comparing the results TCGI and
MPCGI in Fig. 4, it is noteworthy that the
MPCGI can obtain 3, 4, 5, 6 and 7 multi-
resolution images respectively when the mea-
surement times is 64(M = 22×3), 256(M = 22×4),
1024(M = 22×5), 4096(M = 22×6), 16384(M =
22×7). Obviously, the MPCGI can obtain κ im-
ages with different resolutions when the mea-
surement times are M = 22×κ, κ = 1, 2, 3, · · ·.
With this, continuous multi-resolution imaging
is realized. The results also show that this
scheme can be used for imaging at low mea-
surement times. For example, MPCGI method
can perform low-resolution imaging on the tar-
get object of 128pixel× 128pixel when M = 22×4,
but TCGI did not.

3. Experimental results

To verify the feasibility of MPCGI, we conducted a
series of experiments. In the experiments, the object
is an aircraft model [see Fig. 5(h)] with the size of
20cm×17cm and positioned about 0.72 m, 2.42 m away
from the projector (XGIMI Z4 Air miniature projector)
and bucket detector (Thorlabs, PDA100A-EC, 320-
1100 nm, 2.4 MHz BW, 100 mm2), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Multi-resolution progressive computational ghost
imaging results. (a) M = 22×1 (2× 2 resolution); (b) M = 22×2

(4×4 resolution); (c) M = 22×3 (8×8 resolution); (d) M = 22×4

(16 × 16 resolution); (e) M = 22×5 (32 × 32 resolution); (f)
M = 22×6 (64 × 64 resolution); (g) M = 22×7 (128 × 128
resolution); (h) Original object.

We adopted a set of reordered Hadamard derived

pattern H
(m)
22×7(128, 128)new, m = 1, 2, 3, · · · , 16384,

i.e., we have done a set of seven resolutions MPCGI
experiments and the results are shown in Fig. 5.
With the increase of the number of the measurements,
the aircraft image information of the reconstructed
image gradually becomes clear, i.e., image resolution
steadily increased with measurement times. When the
imaging resolution of MPCGI is 4× 4 [Fig. 5 (b) M =
22×2], the position of the target object can be clearly
identified. Hence, the target location can be locked

by a low-resolution image with a small number of
measurements. Even forM = 22×5 (32×32 resolution),
we can clearly distinguish the clear outline of the target
object (an aircraft), which is enough for the military
reconnaissance. As the number of measurements is
further increased, the details of the reconstructed
image gradually emerge. For example, the engines
on both sides of the aircraft have been reconstructed
by measuring 22×6 times, as shown in Fig. 5(f). To
achieve the same efficiency, 5460 times are needed in
the TCGI scheme. Hence, 1364 measurement times
can be reduced by our MPCGI scheme. Furthermore,
after a 4-fold increase in resolution, we find out
that the reconstructed image Fig. 5(g) is much the
same with Fig. 5(f), which shows that, in a few
cases, high imaging resolution is indispensable to
CGI, but there is a waste of resources in ultra-high
imaging resolution. The results of MPCGI experiments
verify the feasibility of the multi-resolution progressive
imaging and low resolution location.

Object

Detector

Computer

Projector

Laser

Attenuator

Gound Glass

Spectroscope

Figure 6. (Color online) Schematic diagram of computational
ghost imaging under background light noise.

To evaluate the performance of our scheme
under background light noise, we introduce the
detection signal-to-noise ratio (DSNR) which is
defined as

DSNR = 10log10

⟨B⟩√
⟨(E − ⟨E⟩)2⟩

, (6)

where ⟨B⟩ is the mean signal power and ⟨E⟩ is
the mean background light noise power [22]. For
the 16384 measurements [Fig. 5], the DSNR is close
to positive infinity (without noise), which exceeds the
criterion in applicable practical application scenarios.
Therefore, we add a laser and modulate it by a rotating
ground glass (as shown in Fig. 6), and we weaken the
intensity of the laser by attenuator to get different
DSNR so as to discuss the multi-resolution progressive
imaging performance of the proposed scheme.

In Fig. 7, we show MPCGI results for d-
ifferent DSNR and resolution (equal to the
measurement times). In the low DSNR case
(DSNR<32.71dB), the low-resolution images
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Multi-resolution Progressive Computational Ghost Imaging 7

can be effectively reconstructed [Fig. 7(a)-
(b)]. Unlike low resolution imaging, the high-
resolution imaging can only get blurred re-
constructed images [Fig. 7(c)-(d)]. And if
the DSNR is too low (DSNR<8.62dB), the
experimental system will be invalid. By
contrast, when the DSNR is high enough
(DSNR>32.71dB), the method can effectively recon-
struct the multi-resolution images [Fig. 7(a)-(d)], and
it has fine image formation ability. And when the D-
SNR is 53.86dB, the image quality with M = 16384
[Fig. 7(d) 128× 128 resolution] and M=4096 [Fig. 7(c)
64× 64 resolution] are almost equal in vision. The re-
sults show that high-resolution images are difficult to
obtain at low DSNR (i.e., the greater the resolution,
the worse the noise resistance). When the DSNR is suf-
ficient and there is no big demand for high-resolution,
a large number of measurement times are not required
to obtain the higher resolution images. Simultaneous-
ly, we find that a higher resolution is combined with a
high DSNR for an ideal image reconstruction, and low
resolution imaging robust performance is superior to
high resolution. Moreover, a high resolution imaging
is still the optimal choice in the case of high DSNR.

In the GI experiment, some evaluation in-
dicators (such as signal-to-noise ratio, visibility,
contrast to noise ratio, etc.) require the tar-
get image information and reconstructed image
after a large number of measurements, and it
makes the obtained reference evaluation values
lag behind. In contrast, DSNR can be direct-
ly calculated based on the echo signal power
and background light noise power received by
the detectorand the image information of the
target object is not required. Because of that,
we can refer to the DSNR to analyze whether
the experimental echo signal power meets the
imaging requirements in advance.

48.03dB 53.86dB43.16dB32.71dB24.53dB16.99dB8.62dBDSNR

Results

(a)

(b)

(c)

(d)

Figure 7. Results of different DSNR. (a) M = 22×4 (16 × 16
resolution); (b) M = 22×5 (32 × 32 resolution); (c) M = 22×6

(64× 64 resolution); (d) M = 22×7 (128× 128 resolution).

4. Conclusion

In this paper, we have proposed and demon-
strated a new method named multi-resolution
progressive computational ghost imaging which
uses the Hadamard derived pattern to real-
ize continuous multi-resolution imaging sim-
ply and quickly. Both numerical simulations
and experimental realizations have been used
to demonstrate its exceptional features. First
of all, continuous multi-resolution images can
be retrieved without additional detection; sec-
ond, the number of measurements is much less
than for TCGI scheme; third, the complex-
ity of Hadamard derived pattern reordering
and multi-resolution imaging implementation
is greatly reduced, compared with “Russian
Dolls” ordering of the Hadamard [19] method;
fourth, studies on the effect of DSNR for d-
ifferent resolution can provide some reference
value for practical application. Furthermore, if
the order of hadamard can be further optimized
and the ultra high speed spatial light modula-
tor (such as digital micromirror devices or LED-
array [23]) is used, the MPCGI method can ap-
proximate the real-time imaging requirements
of video frame rate. In some practical appli-
cation scenarios like ground-to-air or air-to-air
imaging, especially air surveillance application-
s, it is necessary to quickly feedback the results
of target detection and recognition based on the
feature information of multi-resolution images.
In this case, the MPCGI method can play an
key role.
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