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ABSTRACT Object tracking has become widespread in many fields, such as autonomous vehicles, video 

surveillance and robotics. However, it is far from the requirements for real-world applications. Recently, 

Siamese network based trackers have attracted high attention by balancing accuracy and speed. Because these 

trackers only learn a similarity measurement model via off-line training, the exemplar branch has insufficient 

discriminant information to adapt to the constantly changing appearance of the target in subsequent frames. 

We propose a Siamese network based tracker that improves upon tracking performance as follows. First, an 

adaptive background superposition initialization is proposed and used in the exemplar branch to make full 

use of the limited prior information in the first frame. Second, a light-weight convolutional neural network is 

proposed and applied as the tracker’s backbone; it compresses the dimensions of the feature to ensure speed 

and accuracy. Third, the channel attention module is introduced into our tracker and integrated with adaptive 

background superposition initialization. The feature map of the original exemplar image and its background 

changed image are adjusted by a channel attention model and fused to enhance the representation of the 

exemplar image. The GOT-10k dataset is applied to train our tracker. Finally, experiments on the object 

tracking benchmark (OTB) and visual object tracking (VOT) demonstrate the effectiveness of our proposed 

approach compared with state-of-the-art trackers. 

INDEX TERMS Adaptive background superposition initialization, channel attention module, object 

tracking, Siamese network. 

I. INTRODUCTION 

Visual object tracking is a vital and fundamental research topic 

in computer vision as it provides a basis for further semantic 

level analysis (action recognition, scene recognition, etc.). In 

a model-free object tracking task, given the initial bounding 

box of the target in the first frame, the objective is to localize 

the same target in subsequent frames. However, lack of prior 

information of the arbitrary target makes it difficult to design 

trackers; furthermore, there are many challenges in object 

tracking, such as illumination variations, occlusions, 

deformations, etc. Object tracking has many important real-

world applications, such as, autonomous vehicles, video 

surveillance, and robotics. Therefore, it is necessary to build a 

tracking algorithm that can balance speed and accuracy. 

Recently, tracking algorithms based on correlation filters 

[1]-[8] have been widely used. These trackers significantly 

reduce computational complexity and enable the algorithm to 

achieve real-time requirements by using the properties of the 

circulant matrix that can be diagonalized in Fourier space. 

However, their tracking results are inaccurate. Subsequently, 

convolutional neural networks (CNNs) have been proven as 

excellent for target detection, image classification, and other 

computer vision tasks. CNNs have incredible performance in 

feature representation. Thus, they have been introduced into 

correlation filters as feature extractors; trackers with deep 

features [9]-[14] have achieved state-of-the-art results on 

object tracking benchmark (OTB) [15], [16] and visual object 

tracking (VOT) [17]. However, the extractor for deep features 

is computationally complex, and it is difficult to achieve an 

acceptable real-time speed even if GPU, FPGA, and other 

hardware are used to accelerate the computing speed. 
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 Siamese networks are another solution to solve the problem 

of object tracking [18]-[24] as they have achieved good results 

in face recognition, image matching, and other computer 

vision tasks. Object tracking can be expressed as a similarity 

learning problem; the similarity between an exemplar image 

and a candidate image is evaluated by learning a similarity 

measure function. Because these Siamese trackers only learn 

a similarity measurement model via off-line training, the 

exemplar branch has insufficient discriminant information to 

adapt to the constantly changing appearances of the targets in 

subsequent frames. Furthermore, AlexNet [8] is still the 

backbone of most Siamese trackers, which is a relatively 

shallow network (only five convolutional layers and two max 

pooling layers). Thus, this simple network cannot fully exploit 

the capabilities of deep neural networks. 

In this work, we propose a novel tracking algorithm based 

on Siamese networks. The main contributions are as follows: 

1) We propose an adaptive background superposition 

initialization strategy. The background color of the target 

in the exemplar image is adaptively changed; then, the 

feature maps of the original exemplar image and its 

background changed image are fused to enhance the 

feature representation of the target. 

2) We design an efficient light-weight network that contains 

thirteen convolutional layers and three max pooling layers. 

This network can compress the dimensions of the feature 

to ensure speed and accuracy and it is used as the 

backbone of our tracker. 

3) We introduce a channel attention module [25], which is 

an improvement of SEblock in SENet [26], to our tracker 

in the exemplar branch. This module is used to re-weight 

the channels of the feature maps to improve feature 

extraction. Meanwhile, the channel attention module can 

be integrated with the adaptive background superposition 

initialization. 

4) Extensive experiments conducted on OTB benchmarks 

[15], [16] and VOT challenge [17] demonstrate that our 

algorithm achieves competitive results compared with 

those of state-of-the-art trackers. 

The remainder of this article is organized as follows. 

Closely related works are presented in Section II. The details 

of out tracker are provided in Section III. Experiments are 

conducted on multi benchmarks and the results are shown in 

Section IV. Finally, Section V concludes this work. 

 
II. RELATED WORK 

In this section, we introduce three aspects of work related to 

our study: (i) deep features for correlation filter based tracking; 

(ii) Siamese network based tracking; (iii) attention 

mechanisms.  

A.  DEEP FEATURES FOR CORRELATION FILTER 
BASED TRACKING  

Because the accuracy of image classification has been 

improved by nearly 10% from 74.2% to 83.6% by using 

AlexNet at the Large Scale Visual Recognition Challenge 

(ILSVRC) 2012 [27]. CNNs have gained unprecedented 

attention in computer vision. The close integration of 

correlation filter trackers and CNN has promoted the 

development of object tracking in recent years. DeepSRDCF 

[12] applies deep features from a pre-trained VGGNet [28] 

and principal component analysis (PCA) is used to reduce the 

data dimensionality. C-COT [11] applies features from three 

convolutional layers by using a pre-trained VGGNet and 

learns a discriminative continuous convolution operator to 

improve performance. ECO [10] combines deep features with 

handcrafted features (Histogram of Oriented Gradients (HOG) 

[29] and Color Names (CN) [30] ) and factorizes the 

convolution operator to reduce the number of parameters. 

UPDT [9] introduced the adaptive fusion of deep and shallow 

features to fully utilize the capabilities of CNNs. However, the 

speeds of these trackers struggle to meet the requirements of 

real-life applications. 

B.  SIAMESE NETWORK BASED TRACKING 

To overcome the low speed of trackers that use pre-trained 

networks as feature extractor. Recently, the Siamese network 

has drawn great attention in the field of object tracking. 

GOTURN [31] introduced the Siamese network into the field 

of object tracking for the first time and uses a simple feed-

forward network without online training. SINT [23] matches 

the given target in the initial frame with the candidates in next 

frame, and then returns the most similar target as determined 

by the learnt matching function. Re3 [32] uses a recurrent 

network to obtain better features generated by the exemplar 

branches. Inspired by the correlation methods. SiamFC [22] 

first introduced a correlation layer to the Siamese network. 

CFNet [24] improves SiamFC by adding a correlation filter to 

the exemplar branch to update the template model, making the 

Siamese network more robust to appearance changes. DSiam 

[20] learns the appearance variation of the target and 

background suppression from previous frames online. Dong et 

al. [33] introduced triplet loss to improve the performance of 

SiamFC and CFNet. Kuai et al. [34] introduced target 

objectness model and the target template model to improve the 

performance of SiamFC. SiamRPN [35] introduced the region 

proposal network (RPN) to generate the bounding boxes of 

targets. However, the backbone networks utilized in most 

Siamese trackers, such as AlexNet, are still shallow, so they 

cannot fully exploit the capabilities of deep neural networks. 

C. ATTENTION MECHANISMS 

Attention modules have been used widely in the field of deep 

learning. In 2015, Bengio et al. [36] first introduced an 

attention module into natural language processing (NLP). 

Then, attention module was implemented in computer vision 

applications, such as image classification [37], object 

detection [38], and object tracking [18], [19], [21]. Li et al. [39] 

introduced channel attention to adaptively impose channel-

wise  weight  on  the  integrated  features  in  correlation  filter 
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FIGURE 1. Overall architecture of our tracker. It contains two asymmetric branches, namely 
the exemplar and search branches. The blue branch is the adaptive background superposition 
initialization branch, which is part of the exemplar branch. 

 

tracking. RASNet [40] introduced general attention, residual 

attention, and channel attention to Siamese trackers. 

DensSiam [19] applies self-attention to make the network 

focus on non-local features. SA-Siam [21] applies channel 

attention module in its semantic branch to improve the 

distinguishing ability of the semantic branch. In this work, we 

apply a channel attention module to improve feature extraction.  

 
III.  PROPOSED ALGORITHM 

The overall of our algorithm is introduced in Section III.A. 

Then, the adaptive background superposition initialization, 

convolutional network architecture, and channel attention 

module are presented in detail in Sections III.B, III.C, and 

III.D. Finally, the details of how to train this network are 

described in Section III.E.  

A.  ALGORITHMIC OVERVIEW 

The overall architecture of our tracker is shown in Fig. 1. This 

Siamese network is made up of two asymmetric branches, 

namely the exemplar and search branches. The exemplar 

branch consists of a main branch and an adaptive background 

branch; they each contain a CNN and a channel attention 

module. However, the search branch only uses a convolutional 

network. Finally, the exemplar and search branches are joined 

by a convolution layer, and the convolution kernel is the 

feature map of the exemplar image. The final output is a 

response map that represents the similarity between the search 

and exemplar images. 

     After training, the tracking process can be described as a 

cross-correlated operation using a pre-trained Siamese 

network: 

 c( , ) ( ) ( ( ( )) ( ( )))f z x x z z b          (1) 

where φ(•) denotes the convolutional network, α(•) denotes the 

channel attention module, λ is the merge parameter, and b 

denotes a bias. The workflow in Fig. 1 shows that two inputs 

are required for our Siamese network, namely a target image 

patch z and a candidate search region x. zc is the background 

color changed image of z, and it is calculated via the 

background color adaptive selection algorithm. A response 

map that represents the similarity between the search image 

patch and the target image patch will return. Then, we 

determine the maximal value of the response and map it onto  

the original frame to acquire the position of our target in the 

following frame. 

B.  ADAPTIVE BACKGROUND SUPERPOSITION 
INITIALIZATION  

In a Siamese network based tracker, if we update the model, it 

will introduce drift over time due to a miss-match of the target. 

Thus, the model is not updated in almost all Siamese network 

based trackers. This makes the feature representation of the 

target obtained from the initial frame crucial. Thus, we 

propose an adaptive background superposition initialization 

strategy to enhance the feature representation of the targets. 

 

FIGURE 2. The top images are the original exemplar images and the 
bottom images are their background changed images. The sequences 
from left to right are Jumping, Car25, and Walking2 from the OTB 
benchmarks. 

 

     According to visual common sense, the greater the 

difference between the target and the background, the easier it 

is to distinguish the target. Therefore, we design a background 

color adaptive selection algorithm to increase the contrast 

between the target and the background so as to improve the 

distinguishing  ability.  As  shown  in  Fig.  2,  the  exemplar  
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TABLE I  
BACKBONE ARCHITECTURE OF OUR TRACKER. ALL THE CONVOLUTIONAL LAYERS ARE INTEGRATED WITH 

RELU EXCEPT THE LAST ONE. ’CONV*-BN’ STANDS FOR CONVOLUTIONAL LAYER WITH BATCH 

NORMALIZATION LAYER. ’CONV*’STANDS FOR CONVOLUTIONAL LAYER. ‘MP*’ STANDS FOR THE MAX 

POOLING LAYER. 

    Activation Size 

Layer Kernel Size Out and In Chan.  Stride For Exemplar For Search Chan. 

    135  135 263  263 3 

CONV1-BN 3  3 32  3 1 133  133 261  261 32 

CONV2-BN 3  3 64  32 1 131  131 259  259 64 

MP1 2  2  2 65  65 129  129 64 

CONV3-BN 3  3 128  64 1 63  63 127  127 128 

CONV4-BN 1  1 64  128 1 63  63 127  127 64 

CONV5-BN 3  3 128  64 1 61  61 125  125 128 

MP2 2  2  2 30  30 62  62 128 

CONV6-BN 3  3 256  128 1 28  28 60  60 256 

CONV7-BN 1  1 128  256 1 28  28 60  60 128 

CONV8-BN 3  3 256  128 1 26  26 58  58 256 

MP3 2  2  2 13  13 29  29 256 

CONV9-BN 3  3 512  256 1 11  11 27  27 512 

CONV10-BN 1  1 256  512 1 11  11 27  27 256 

CONV11-BN 3  3 512  256 1 9  9 25  25 512 

CONV12-BN 1  1 256  512 1 9  9 25  25 256 

CONV13 3  3 256  256 1 7  7 23  23 256 

 

images comprise a target and its background. If the pixel mean 

of the target and its background is within a certain range and 

the mean of the target is more than 127, we fill the background 

with black; if the pixel mean of the target and its background 

is within a certain range and the mean of the target is less than 

127, we fill the background with white; otherwise, we do not 

change the color of background. The color of the background 

area is determined by 
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where Mt and Mb stand for the means of pixels in the area of 

the target and its background, respectively. T is the threshold 

of the means of pixels between the area of the target and its 

background. 

     The feature map of the original exemplar image and its 

background changed image are adjusted by a channel attention 

model and then fused to enhance the representation of the 

exemplar image.  

C.  CONVOLUTIONAL NETWORK ARCHITECTURE 

We apply a CNN as the backbone of our tracker. Our 

backbone network has thirteen convolutional layers and three 

max pooling layers. The convolutional filters are 3 × 3 filters 

and 1 × 1 filters, the number of channels is doubled after every 

max pooling operation, and 1 × 1 filters are placed between 3 

× 3 convolutions. Batch normalization layers are also used 

after convolutional layers to accelerate the training and 

regularize the model. Details of our convolutional network are 

listed in Table 1.  

     The significant feature of our network is that 1 × 1 filters 

are used many times as compared with AlexNet and VGGNet. 

1 × 1 filters can compress the number of channels, which 

reduces the decline in speed when using a deeper 

convolutional network. 1 × 1 filters reduce the number of 

parameters and allow our tracker to run on some small GPU 

memory devices. Furthermore, 1 × 1 filters can increase the 

non-linearity and mix cross-channel information to improve 

the generalization capability of the network. 

D.  CHANNEL ATTENTION MODULE 

The feature map U∈RWHC contains multiple channels with 

different types of visual patterns. The information of some 

channels are more useful than that of others. Channel attention 

module is used to re-weight the channels and it has been 

validated as effective for some computer vision tasks. Thus, 

the channel attention module in CBAM [25] is introduced to 

our network to improve performance. This channel attention 

module comprises two pooling layers, a shared multi-layer 

perceptron (MLP), and two sigmoid activation layers, whereas 

the MLP consists of two fully connected layers. The overall 

architecture of this module is shown in Fig. 3. 

     This channel attention module is an improvement of 

SEblock in SENet [21]. SEblock only uses a global average 

pooling layer. Whereas global average pooling has feedback 

for every value on the feature map, global max pooling only 

has feedback where the value is the maximum in a sub-region, 
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which can be used as a complementary to global average 

pooling. Consequently, we introduce this improved channel 

attention module to our tracker. Given the input U∈RWHC , 

the feature map of the final output V∈RWHC can be 

calculated by 

 
( ( ( ))

+ ( ( )))

V Sigmoid MLP AvgPool U

MLP MaxPool U U




,  (3) 

where  signifies a channel-wise multiplication function. 

U
V

Global 

Avgpooling
SigmoidMLP

Global 

Maxpooling
SigmoidMLP

 FIGURE 3. Overall architecture of the channel attention module. 

E.  TRAINING THE NETWORK 

To train our Siamese network, we select GOT-10k [41], which 

contains more than 10000 video sequences and more than 1.5 

million annotated bounding boxes, as the training dataset. This 

dataset has a wide range of scenarios and objects. Therefore, 

it is very suitable for training deep trackers.  

Generation of Training Samples. Considering the speed of 

image transformation in training, each video frame of the 

dataset is cropped and scaled offline in advance to obtain a 

127127 exemplar image and a 255255 search image. This 

processing of images is similar to that in SiamFC [22] and 

CFNet [24]. Before cropping and scaling the exemplar image 

z, the center position of the target and the target size (w, h) are 

obtained according to the labeled information of the target. 

The square exemplar image is cropped from the original frame 

and the center is the same as the target. The scale factor s can 

be formulated as 

    2 2  127 127s w c s h c     ,  (4) 

where c=(w + h)/4 is the context of our target image patch. 

Each element u∈D is divided into positive or negative samples 

according to the following equation: 

 
1  

 ] [
1

cif k u p R
y u

otherwise

  
 


,  (5) 

The total stride of the network is k, pc denotes the center of the 

score map, and R is the radius used to distinguish between 

positive and negative samples. 

Loss function. The logic loss function is similar to that in 

SiamFC [22] and it can be formulated as 

  
1

,   ( [ ], [ ])
u D

y v l y u v u
D

L


  ,  (6) 

where v denotes the returned score value of the inputted target-

candidate image pair and y∈[+1,-1] is the ground truth label. 

Then, the parameters θ of the Siamese network can be 

calculated by minimizing the loss function: 

  
, ,

, ( , ;rg min )a
z x y

y f zL x


 ,  (7) 

After stochastic gradient descent (SGD) is applied, (7) can be 

solved. 

 
IV.  EXPERIMENTS 

In this section, our algorithm is compared with other state-of-

the-art algorithms. Experiments are conducted on OTB 

benchmarks and VOT challenge. We train and evaluate our 

tracker using Python and Pytorch on an Intel i7-8700K CPU 

with a GTX 1080 Ti GPU card. Implementation details are 

shown in Section IV.A, and the experiments on OTB 

benchmarks and VOT challenge are described in Sections 

IV.B and IV.C. Ablative studies and further discussion about 

the proposed light-weight network, adaptive background 

superposition initialization, and channel attention module are 

described in Section IV.D. The effects of different training 

datasets on tracking performance are shown in section IV.E. 

Finally, the analysis of merge parameter is shown in Section 

IV.F. 

A.  IMPLEMENTATION DETAILS 

Training. Our proposed tracker are trained on GOT-10k [41] 

by solving (7) with SGD. We set the radius R to 8 pixels and 

the batch size to 8. Kaiming Normal Initialization [42] is used 

to initialize the parameters of our network. The learning rate 

exponentially decays from 10-2 to 10-5 . The weight decay is 

set to 0.0005 and the momentum is 0.9. 

Tracking. To further improve the performance of our 

algorithm, we follow the SiamDW [43] to use larger size 

image in tracking phase. The sizes of the exemplar image and 

the search image are set to 135135 and 263263. The 

merge parameter λ is set to 0.21. T is set to 60. Scale change 

often accompanies tracking; to obtain a better performance 

when dealing with scale variation, three fixed scales 

{0.96;1;1.04} are used to search the target. Linear 

interpolation is used to update the scale, and the scale factor is 

set to 0.59. The cosine window function is introduced and 

applied in the score map to penalize large displacements, and 

the window influence is set to 0.27. The tracking algorithm 

can run at an average speed of 50 frames per second (fps). 

B.  EXPERIMENTS ON THE OTB DATASET 

OTB benchmarks [15], [16] are widely used tracking 

benchmarks in recent years, which consist  of three datasets, 

namely OTB-2013, OTB-50 and OTB-100. One-pass 

evaluation (OPE) is applied to evaluate the performance of 

trackers in OTB benchmarks. Overlap ratio  and center 

location error are applied to obtain their own success and 

precision plots, respectively. Detailed information on these 

evaluation indicators can be found in [15], [16]. 
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(d) (e) (f) 

FIGURE 4. Success and precision plots of OPE on OTB-100, OTB-50, and OTB-2013, respectively 

 

1)  COMPARISON WITH STATE-OF-THE-ART 
TRACKERS 

Our trackers are compared with two types of algorithms, 

namely correlation filter-based trackers (DSST [2], Staple [3], 

KCF [4], and SAMF [5]) and Siamese network based trackers 

(DCFNet [12], SiamFC [16], and CFNet [18]). The 

experimental results of the eight trackers are shown in Fig. 4. 

The threshold for distance precision is 0 to 50 pixels and the 

threshold for overlap precision is 0 to 1. 

Fig. 4 shows that our proposed tracker achieves the best 

overall performance with AUC scores of 64.5%, 57.6%, and 

66.9% on OTB-100, OTB-50, and OTB-2013, respectively.  

2)  ATTRIBUTE-BASED EVALUATION 

In OTB benchmarks, all sequences are annotated with eleven 

attributes, and each sequence contains several challenges. To 

measure the performance of our algorithms on different 

attributes, the experiment is conducted on OTB-100. The 

success plots of different attributes are shown in Fig. 5. 

The success rate of challenge attributes is applied to 

measure the performances of tracking algorithms in handling 

specific challenging situations. As shown in Fig. 5, our tracker 

ranks first except for low resolution and out-of-view, which 

are slightly lower than those of other trackers. Fig. 5 

demonstrates that our tracker has good robustness and can 

handle almost all challenging situations. 

3)  QUALITATIVE ANALYSIS 

We select five representative image sequences (Bird1, 

DargonBaby, Jump, MotorRolling, and Soccer1) from the 

OTB-100 dataset. Almost all challenges can be found in these 

sequences. The bounding boxes of the targets predicted by 

different tracking algorithms are shown in Fig. 6. To better 

present the results of different algorithms, we only show the 

three best trackers (CFNet, SiamFC, and DCFNet) along with 

our tracker. 

As shown in Fig. 6, our tracker has high practical 

performance in handling various challenges. In the Jump and 

MotorRolling sequences, our tracker can always track the 

targets, but other trackers fail; in the Bird1, DargonBaby, and 

Soccer1 sequences, other trackers can also follow the targets, 

but our bounding boxes of the targets are more accurate than 

those of other trackers. 

C.  EXPERIMENTS ON THE VOT DATASET 
TABLE 2 

 COMPARISON OF TRACKERS ON VOT2018 

 EAO Accuracy Robustness 

Ours 0.2397 0.5297 0.501 

DSiam 0.1963 0.5123 0.646 

SiamFC 0.1880 0.5029 0.585 
DCFNet 0.1825 0.4702 0.543 

DensSiam 0.1740 0.4621 0.688 
Staple 0.1694 0.5296 0.688 

KCF 0.1349 0.4472 0.773 

DSST 0.0788 0.3947 1.452 

 

The VOT challenge is a competition of model-free object 

tracking algorithms and it has been held every year since 2013. 

VOT2018   [17]   is   made   up   of   60   annotated   sequences.  
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(j) (k)  

FIGURE 5. Success and precision plots of OPE on OTB-100, OTB-50, and OTB-2013, respectively. The values in brackets in success and precision 
plots of OPE stands for the area under curve (AUC) value and the scores at local error threshold of 20 pixels. 

 

Expected average overlap(EAO), accuracy and robustness are 

used to evaluate the performance of difference trackers. 

Detailed information on these evaluation indicators can be 

found in [17]. Our tracker are compared with DSST [2], Staple  
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FIGURE 6. Qualitative evaluation of the proposed algorithm compared with CFNet, SiamFC, and DCFNet on five 
challenging sequences (from top to bottom: Bird1, DargonBaby, Jump, MotorRolling, and Soccer1). 

 

[3], KCF [4], DCFNet [12], SiamFC [16], DensSiam [19], and 

DSiam [20], the raw results of these trackers are from 

http://votchallenge.net/vot2018/results.html. Our tracker is 

compared with these state-of-the-art trackers and the results 

are shown in Table 2. 

As shown in Table 2, the best three results are marked in 

red, blue and green. Our tracker ranks first in the three 

evaluation metrics. EAO is the most important metric in VOT 

challenge. The EAO score of our method gains relative 

improvement about 27.5% compared with our baseline tracker 

SiamFC and it also improves DSiam by 22.1%. 

D. ABLATION ANALYSIS 

To validate the effectiveness of the proposed light-weight 

network, adaptive background superposition initialization 

module, and channel attention module in our tracker, we 

design and train two other algorithms related to our algorithm. 

We apply SiamFC as our baseline and compare these trackers 

to evaluate the impact of the three module on OTB-100. The 

results are presented in Fig. 7. Among them, the Siam+LWN 

method is similar to SiamFC, but its backbone is replaced by 

our proposed light-weight network. Siam+LWN+CA method 

stands for the tracker with our proposed light-weight network 

and channel attention module. Siam+LWN+CA+ABSI 

method is our final tracker that includes light-weight network, 

channel attention and adaptive background superposition 

initialization modules. 

 

FIGURE 7. Ablation study of our tracker on OTB-100. 

 

1)  ROLE OF THE PROPOSED LIGHT-WEIGHT 
NETWORK 

Our algorithm is based on SiamFC. The difference between 

the Siam+LWN method and SiamFC is that our Siam+LWN 

method replaces the backbone of SiamFC with our proposed 

light-weight network. To validate the effectiveness of our 

http://votchallenge.net/vot2018/results.html
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proposed light-weight network, we compare the two trackers. 

As shown in Fig. 7, the AUC scores of the Siam+LWN 

method improve SiamFC by 7.90% on OTB-100. This is 

because we use a deeper light-weight network to replace the 

shallow backbone in SiamFC, and this network can improve 

the feature extraction. Simultaneously, our proposed network 

applies many 1 × 1 convolutions to compress the number of 

parameters; thus, our algorithm maintains high accuracy and 

high speed, which indicates the superior performance of our 

proposed network. 

2)  ROLE OF THE CHANNEL ATTENTION MODULE 

To validate the effectiveness of our channel attention module, 

we compare Siam+LWN method and Siam+LWN+CA 

method. As shown in Fig. 7, the Siam+LWN+CA method 

improves the AUC scores of the Siam+LWN method by 1.59% 

on OTB-100. In our algorithm, the channel attention module 

is learned along with our proposed light-weight network via 

off-line training using GOT-10k, which makes it more 

efficient in object tracking tasks. This module can 

automatically acquire the importance of different channels and 

utilize them to re-weight the channels of the feature map. This 

operation can improve feature extraction and thus improve the 

performance of our proposed tracker. 

3)  ROLE OF ADAPTIVE BACKGROUND 
SUPERPOSITION INITIALIZATION 

In object tracking, the only prior information of the target is 

the initial bounding box in the initial frame. To fully utilize 

this limited prior information, we design an adaptive 

background superposition initialization strategy. As shown in 

Fig. 7, our Siam+LWN+CA+ABSI method improves the 

AUC scores of the Siam+LWN+CA method by 1.10% on 

OTB-100. In the initialization phase, we first apply a 

background color adaptive selection algorithm to change the 

background color of the exemplar image to increase the 

contrast between the target and the background so as to 

improve the discrimination ability. The feature map of the 

original exemplar image and its background changed image 

are adjusted by a channel attention model and then fused to 

enhance the feature representation of the target. Furthermore, 

our final tracker, which includes the three modules, can 

improve the AUC scores of the Siam+LWN method by 2.70% 

on OTB-100, which indicates that integrating the adaptive 

background superposition initialization module with the 

channel attention module can provide optimal results. 

E. TRAINING DATASET ANALYSIS 

At present, the training dataset used in most Siamese trackers 

is ImageNet-VID [44], which only contains 30 object classes 

with 5.4 thousand videos. The object class of ImageNet-VID 

is too few and it may cause overfitting in training Siamese 

tracker. Consequently, Huang et al. proposes a large scale 

dataset called GOT-10k, which has 563 object classes with 10 

thousand videos. The statistical comparison of GOT-10k and 

ImageNet-VID is presented in Table 3. As shown in Table 3, 

GOT-10k is a richer dataset and more suitable for tracking 

Siamese tracker. So we apply GOT-10k dataset as our training 

dataset. The evaluation result of our proposed tracker trained 

on VID and GOT-10k is shown in Fig. 8. 
TABLE 3 

 COMPARISON OF GOT-10K AND IMAGENET-VID 

 GOT-10k ImageNet-VID 

Classes 563 30 

Videos 10k 5.4k 
BBoxes 1.5M 1.03M 

 

FIGURE 8. Success plot result on OTB-100 of our proposed tracker trained on 

ImageNet-VID and GOT-10k. 

 

As shown in Fig. 8, Our tracker trained on GOT-10k can 

improve the AUC scores of trained on ImageNet-VID by 2.38% 

on OTB-100. This experiment indicates that larger scale 

training dataset can improve the performance of Siamese 

tracker. 

F.  MERGE PARAMETER ANALYSIS 

To find the optimal merge parameter λ, different values of λ 

are used to evaluate our tracker on OTB-100. The results are 

shown in Fig. 9, the best performance is achieved around 

λ=0.21. When we increase or decrease the value of λ, AUC 

score of our tracker will deteriorate. So the merge parameter λ 

is set to 0.21 in our final tracker. 

 

FIGURE 9. AUC scores on OTB-100 using different merge parameter λ. 
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V. CONCLUSIONS 

In this paper, we propose a real-time model-free object 

tracking algorithm based on Siamese networks. An adaptive 

background superposition initialization strategy is proposed 

and integrated with channel attention module to fully utilize 

the initial frame and enhance the feature representation of the 

target. Additionally, a novel light-weight network is designed 

and applied as the backbone of our tracker. This network can 

compress the dimensions of features to reduce computational 

complexity. Our tracker is evaluated on OTB-100, OTB-50, 

OTB-2013, and VOT2018 datasets. Experiments demonstrate 

that our algorithm achieves competitive results compared with 

the state-of-the-art trackers. 
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