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The phase diversity (PD) algorithm will eventually be converted into a large-scale nonlinear numerical optimi-
zation problem, so the selection of numerical optimization algorithmwill directly determine the accuracy and speed
of the algorithm settlement. In this paper, we introduce the cuckoo search optimization algorithm, which has the
advantages of simple model, few parameters, and easy implementation, to the phase diversity algorithm. By im-
proving the step size control factor in the original cuckoo search algorithm, we canmake it have faster optimization
speed for PD. In the simulation experiments, we further proved and gave a simple explanation in theory that in the
case of large-scale wavefront sensing, compared to the traditional particle swarm algorithm, this improved algo-
rithmhas higher accuracy and faster convergence speed. Finally, we set up a simple experimental system and proved
the effectiveness of the improved cuckoo search algorithm for PD. © 2018 Optical Society of America
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1. INTRODUCTION

Wavefront sensing is an important part of active optics and
adaptive optics systems. There are many commonly used wave-
front detection methods. Some methods depend on the hard-
ware facilities [1–4] and others are based on images [5–7].
In these methods, the phase diversity (PD) algorithm has
the advantages of simple optical path, no special requirements
for optical devices, and no additional sensors. In recent years,
it has gained many applications [8–10].

The phase diversity algorithm will eventually be converted
into a large-scale nonlinear numerical optimization problem.
Therefore, how to choose an effective numerical optimization
algorithm determines the accuracy and speed of the final aber-
ration solution. The commonly used numerical optimization
algorithms include particle swarm optimization [11], back
propagation neural network [12,13], genetic algorithm [14],
and Broyden–Fletcher–Goldfarb–Shanno (BFGS) [15].

The traditional particle swarm optimization algorithm needs
to establish a balance between diversification and centraliza-
tion; otherwise, it is easy to fall into the local optimum.
Although there have been related papers to solve this problem,
the number of Zernike polynomials in the phase diversity
algorithm cannot be too much. The training time of the neural
network algorithm is generally longer, and the accuracy of the

training sample is generally difficult to guarantee. The tradi-
tional BFGS method converges only when the evaluation func-
tion is a convex function, and the calculation time is longer,
which requires a higher computational burden.

Synthesizing the above questions, this paper proposes the
use of the cuckoo search (CS) optimization algorithm [16–18]
to solve the large-scale nonlinear optimization problem in the
phase diversity algorithm. The optimization algorithm has the
advantages of simple model, few parameters, and easy imple-
mentation. And the algorithm has higher settlement accuracy
with faster convergence speed when the dimension of the
optimization parameter is higher.

To improve the convergence rate of cuckoo algorithms, this
paper proposes a variable step size adaptive cuckoo optimiza-
tion algorithm based on the traditional cuckoo algorithm,
which improves the step size control factor, and applies it to
the phase diversity algorithm.

2. PHASE DIVERSITY TECHNIQUE

The phase diversity algorithm was proposed by Gonsalves in
1982 [19]. The main goal of PD is to reconstruct the wavefront
aberration of the focal optical system by building an optimiza-
tion problem.
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The relations of the focus image collected in the focus
surface and the object in the spatial domain in this optical
system are

i�x, y� � o�x, y� � PSF�x, y�, (1)

and the relationship in the frequency domain is

I�u, v� � O�u, v� •OTF�u, v�: (2)

And PSF�u, v� can be obtained by the inverse Fourier transform
of generalized pupil function:

PSF�u, v� � jFT−�P�x, y��j2: (3)

In the above equation, the variables x, y are all variables in the
spatial domain. o�x, y� is the distribution function of the two-
dimensional object. i�x, y� is the intensity distribution of the
image on the ideal focal plane. PSF�x, y� is the optical system
point spread function corresponding to the intensity distribution
of an ideal focal plane image. P�x, y� is the generalized pupil
function for an optical system. FT−�� is a two-dimensional
inverse Fourier transform operation.

The pupil function of the optical system can be represented
by the modulus value A�x, y� and the phase ϕ�x, y�. The
equation is

P�x, y� � A�x, y� exp�iϕ�x, y��: (4)

Assuming that the pupil of the optical system is an ideal
pupil, the module value is in the range of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
≤ D,

A�x, y� � 1; the module value is in the range offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
> D, A�x, y� � 0. In the equation, ϕ�x, y� is the

unknown wavefront aberration. The phase diversity function
can be developed by a Zernike polynomial with orthogonality
in the unit circle [20]:

ϕ�ρ, θ� �
XN
i

aici�ρ, θ�, (5)

where N is the number of items of the selected Zernike poly-
nomial expansion item. The coefficients c1 − c3 stand for
piston, tip, and tilt of the wavefront aberration, which have
no effect on the quality of the image, so in this article we
do not consider c1 − c3.

Similarly, the relations of the defocus image collected in the
defocus surface and the object in the spatial domain in this
optical system are

id �x, y� � o�x, y� � PSFd �x, y�, (6)

and the relationship in the frequency domain is

Id �u, v� � O�u, v� •OTFd �u, v�, (7)

PSFd �u, v� � jFT−�Pd �x, y��j2, (8)

Pd �x, y� � A�x, y� exp i�ϕ�x, y� � ϕd �x, y��: (9)

In the above equation, ϕd �x, y� is the known defocus amount
introduced, which can be represented by the fourth term rep-
resenting the defocus amount in the Zernike polynomial:

ϕd �x, y� � a4c4�ρ, θ�: (10)

The evaluation function is defined according to the maximum
likelihood theory [21] to evaluate the degree of correlation

between the reconstructed image and the actual image. The
evaluation function’s expression is given by Eq. (11),

E�o, a� � �i�x, y� − o�x, y� � PSF�x, y��2
� �id �x, y� − o�x, y� � PSFd �x, y��2, (11)

according to Parseval theory and convolution theory,

E�O, a� � �I�u, v� − O�u, v�OTF�u, v��2
� �Id �u, v� − O�u, v�OTFd �u, v��2, (12)

under the following conditions:

δE�O, a�
δO

� 0, (13)

and further derivation

E�a� �
X

u∈X ,V∈Y

jI�u, v�OTFd �u, v� − Id �u, v�OTF�u, v�j2
jOTF�u, v�j2 � jOTFd �u, v�j2

:

(14)

3. MODIFIED CUCKOO SEARCH ALGORITHM

A. Review of the Traditional Cuckoo Search
Algorithm
The CS algorithm is a swarm intelligence algorithm proposed
by Yang in 2008 [22]. This algorithm is based on the obligate
brood parasitic behavior of some cuckoo species in combina-
tion with the Lévy flight behavior of some birds and fruit flies.
In recent years, due to its advantages such as simple model, few
parameters, and easy implementation, it has been widely used
in various numerical optimization problems.

The way in which cuckoos in nature choose to lay eggs is
random or similar. When simulating the spawning method of
cuckoo nests, we need to hypothesize the following three ideal
states:

(1) The cuckoo only produces one egg at a time, and
hatches with randomly selected bird nests.

(2) The most suitable nest position in each randomly
selected nest position is reserved for the next generation.

(3) The number of bird nests is fixed at n, and the owner of
the nest finds the exotic eggs with probability of pa ∈ �0, 1�.
In this case, the host bird can either get rid of the egg, or simply
abandon the nest and build a completely new nest.

On the basis of these three ideal states, the basic steps of CS
can be summarized as follow [23]:

(1) Initialize the cuckoo search algorithm parameters.
The parameters consist of the number of nests (n), the dis-

covering probability (pa) and the stopping criterion.
(2) Generate initial nests or eggs of host birds.
The initial locations of the nests are determined by the set of

values randomly assigned to each decision variable as

x�0�i,j � round�xj,min � rand�xj,max − xj,min��, (15)

where x�0�i,j determines the initial value of the jth variable for the
ith nest; xj,min and xj,max are the minimum and the maximum
allowable values for the jth variable; and rand is a random num-
ber in the interval [0,1]. The rounding function is accom-
plished due to the discrete nature of the problem.
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(3) Generate new nests via Lévy flights.
In this step, all the nests except for the best one are replaced

based on quality by new cuckoo eggs produced with Lévy
flights from their positions as

x�t�1�
i � x�t�i � a0S�x�t�i − x�t�best�rand: (16)

In the equation, xti indicates that the ith nest is in the nest
position of the tth generation. a0 indicates the amount of step
control, which is usually taken as 0.01, which xtbest is the optimal
solution of the tth generation nest positions. rand is a random
number from a standard normal distribution, S is a random walk
based on the Lévy flights. The Lévy flight essentially provides a
random walk while the random step length is drawn from a Lévy
distribution.

In the algorithm of Manategna [24],

s � μ

jνj1∕β , (17)

where u and v follow the standard normal distribution:

u ∼ N �0, σ2u�, ν ∼ N �0, σ2ν�, (18)

σu �
�

Γ�1� β� sin�πβ∕2�
Γ��1� β�∕2�β2�β−1�∕2

�
1∕β

, σν � 1: (19)

Lévy flights are more efficient than Brownian random walks in
exploring unknown, large-scale search space. There are many
reasons to explain this efficiency, and one of them is due to
the fact that the variance of Lévy flights,

σ2�t� ∼ t3−β, 1 ≤ β ≤ 2, (20)

increases much faster than the linear relationship (i.e., σ2�t� ∼ t .)
of Brownian random walks. This also provides a theoretical basis
for higher ability of the cuckoo algorithm to solve high-dimensional
problems than the traditional particle swarm algorithm.

(4) Alien eggs discovery.
After updating by location, contrast random numbers

r ∈ �0, 1� and pa, if r > pa, build new ones at new locations
via Lévy flights. Finally, keep a group of bird nests y�t�1�

i with
better test values, still remembered as xt�1

i .

The CS can be summarized as the pseudo code shown
in Fig. 1.

B. Variable Step Size Adaptive Cuckoo Search
Algorithm
The step size of the position update in the CS algorithm is a
random move in combination with the special Lévy flight of
birds and fruit flies. When moving, the smaller the step, the
slower the convergence rate, and the easier it is to fall into
the local optimum solution. The larger the step, the faster
the convergence speed is, and the easier it is to jump off the
local optimal value and oscillate at the global optimal value.
Because the step size generated by Lévy flight is random, it lacks
adaptability. In order to improve the adaptability of the algo-
rithm, inspired by the self-adaptation idea proposed in the
literature when studying the particle swarm algorithm, this
chapter uses the step-length factor update formula to replace
the original a0, so as to improve the CS algorithm. The im-
proved algorithm is called the variable step size adaptive cuckoo
search algorithm (VSACS).

p is an integer greater than 1, in the range [1,30]. Draw the
curve of a0 is a function of t∕Tmax, when p is taken as 1, 3, 5,
10, 20, and 30, respectively. t is the current number of itera-
tions and Tmax is the specified maximum number of iterations.
The curve is shown in Fig. 2.

The improved algorithm flow is shown in Fig. 3.
The step size update equation is

a0 � exp�−30 × �t∕Tmax�p�: (21)

The step size factor a0 of the bird nest position update gradually
decreases as the number of iterations t increases. During the
initial iteration of the algorithm, a large step length factor is
maintained so that the algorithm can quickly converge to
the position near the global optimal bird’s nest. At the same
time, the algorithm is prevented from falling into the local op-
timum. As the number of iterations increases, the step size
gradually decreases. In the later stage of operation, the algo-
rithm transforms into a local search and performs a finer search
near the global optimal position. This makes the CS algorithm
more adaptive and the number of iterations is significantly re-
duced. The value of p will be explained in the next section.

Fig. 1. Pseudo code of the cuckoo search algorithm.
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Fig. 2. Curve of a0 is a function of t∕Tmax.
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4. NUMERICAL SIMULATION

A. Simulations of VSACS with Different p
In this section, a number of vast numerical simulations are
processed to choose best value of p in the VSACS.

We randomly introduce 100 sets of coefficients within a
certain range. For each set of aberration coefficients, we can
use them to generate the in-focus and defocus point-spread
function (PSF) images with Fourier optics.

Below we will use the VSACS with p � 5, p � 15, and p �
30 for PD, and give the root mean square error of calculated
Zernike coefficients and true Zernike coefficients in the same
number of iterations, which is expressed as Eq. (22), where n is
the number of the aberration coefficients considered, cti are the
ith true aberration coefficients, and cri are the nth calculated
aberration coefficients:

RMSE �
�Pn�4−1

i�4 �cti − cri �2
n

�1∕2
: (22)

In the VSACS, discovering probability pa � 0.25. The number
of nests is 20 [16,18]. λ � 632 nm and ϕd �x, y� � λ.

(a) The number of Zernike polynomials is 7 (c4–c10 of the fringe
Zernike coefficients), and the range of aberration coefficients is
�−0.25λ, 0.25λ�. The maximum number of iterations is 200.
(b) The number of Zernike polynomials is 12 (c4–c15 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.25λ, 0.25λ�. The maximum number of iterations
is 1500.

As can be seen from Fig. 4 and Table 1, in the two cases,
it can be seen that the RMSE of the VSACS with p � 30 for
PD is significantly lower than others, so the p of VSACS is
chosen to be 30 in this article.

B. Simulations of VSACS and CS
In this section, a number of vast numerical simulations are
processed to verify the effectiveness and accuracy of the algo-
rithm of VSACS than CS.

We randomly introduce 100 sets of coefficients within a certain
range. For each set of aberration coefficients, we can use them to
generate the in-focus and defocus PSF images with Fourier optics.

First, we give the number of iterations of the traditional
cuckoo search algorithm for PD and variable step size adaptive
cuckoo search algorithm for PD when the value of evaluation
function Eq. (14) is less than 0.001 under the following differ-
ent conditions. In the following cases, λ � 632 nm and
ϕd �x, y� � λ.

In the VSACS and CS, discovering probability pa � 0.25
and p � 30 [16,18]. For easy comparison, the number of nests
of the VSACS is the same as the number of nests of the CS.
The number of nests is 20 [16,18].

Fig. 3. Pseudo code of improved cuckoo search algorithm.
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Fig. 4. Root mean square error of the true Zernike coefficients and calculated Zernike coefficients of VSACS for PD with different p under
different conditions. In (a), the range of aberration coefficients to be searched is �−0.25λ, 0.25λ�, and the dimension is 7. In (b), the range of
aberration coefficients to be searched is �−0.25λ, 0.25λ�, and the dimension is 12.

Table 1. Mean RMSE of the True Zernike Coefficients
and the Calculated Zernike Coefficients of VSACS for PD
with Different p under Two Different Conditions

Range (λ) �0.25 �0.25
Zernike Size 7 12

p � 5 1.140e − 05 2.173e − 05
p � 15 4.350e − 06 1.763e − 05
p � 30 3.386e − 06 1.125e − 05
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(a) The number of Zernike polynomials is 7 (c4–c10 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.25λ, 0.25λ�.
(b) The number of Zernike polynomials is 12 (c4–c15 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.25λ, 0.25λ�.
(c) The number of Zernike polynomials is 7 (c4–c10 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.5λ, 0.5λ�.
(d) The number of Zernike polynomials is 12 (c4–c15 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.5λ, 0.5λ�.

As can be seen from Fig. 5 and Table 2, in the four cases,
when the value of the evaluation function Eq. (14) is less than
0.001, the number of iterations of the VSACS is significantly
less than the CS, so the VSACS algorithm has faster conver-
gence speed, and the improvements to a0 are effective.

C. Simulations of VSACS and PSO
Compared to other population-based population algorithms,
the VSACS has a higher solution accuracy and a faster solution
speed in the case of large-scale wavefront sensing. This is be-
cause VSACS has two search capabilities [25]: local search and
global search, controlled by a switching/discovery probability.
The local search is very intensive with about 1/4 of the search
time (for pa � 0.25), while the global search takes about 3/4 of
the total search time. This allows the search space to be ex-
plored more efficiently on the global scale, and consequently
the global optimality can be found with a higher probability.

We still randomly introduce 100 sets of coefficients within a
certain range. For each set of aberration coefficients, we can use
them to generate the in-focus and defocus PSF images with
Fourier optics.

Below we will use the VSACS for PD, the particle swarm
optimization (PSO) for PD, and give the root mean square
error of calculated Zernike coefficients and true Zernike coef-
ficients in the same number of iterations, which is expressed as
Eq. (22). λ � 632 nm and ϕd �x, y� � λ. The maximum num-
ber of iterations is 1500.

In this paper, the “traditional PSO algorithm” particularly re-
fers to the variant of the PSO algorithm proposed by Clerc [26],
for this variant seems more widely applied at present.

In the traditional PSO algorithm, the learning factors c1 and
c2 are usually set as c1 � c2 � 2.05 [11,27]. The population
size is 40, and w � 0.7298.
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Fig. 5. Number of iterations of CS for PD and VSACS for PD when the evaluation function Eq. (14) value is less than 0.001 under different
conditions. In (a), the range of aberration coefficients to be searched is �−0.25λ, 0.25λ�, and the dimension is 7. In (b), the range of aberration
coefficients to be searched is �−0.25λ, 0.25λ�, and the dimension is 12. In (c), the range of aberration coefficients to be searched is �−0.5λ, 0.5λ�, and
the dimension is 7. In (d), the range is �−0.5λ, 0.5λ�, and the dimension is 12.

Table 2. In the Four Cases, the Average Number of
Iterations of CS and VSACS When the Value of Evaluation
Function Eq. (14) Value Is Less Than 0.001

Range �−0.25λ, 0.25λ� �−0.5λ, 0.5λ�
Zernike Size 7 12 7 12

CS 157.29 393.14 279.67 1126.02
VSACS 77.41 261.44 141.19 788.03
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In the VSACS, discovering probability pa � 0.25 and
p � 30 [16,18]. For easy comparison, the number of nests
is the same as the population size of the traditional PSO algo-
rithm; the number of nests is 40.

(a) The number of Zernike polynomials is 24 (c4–c27 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.1λ, 0.1λ�.
(b) The number of Zernike polynomials is 20 (c4–c23 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.25λ, 0.25λ�.
(c) The number of Zernike polynomials is 16 (c4–c19 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.35λ, 0.35λ�.
(d) The number of Zernike polynomials is 12 (c4–c15 of the
fringe Zernike coefficients), and the range of aberration coef-
ficients is �−0.5λ, 0.5λ�.

In Table 3, the mean RMSE is the average RMSE of 100
sets of experiments.

From Fig. 6 and Table 3, it can be seen that the RMSE of the
VSACS for PD is significantly lower than that of PSO for PD under
the different conditions. This shows that the VSACS for PD has a
stronger solving ability in the case of a high solution dimension,
benefiting from the variance of Lévy flights increasing much faster
than the linear relationship of Brownian random walks.

In a large number of simulation experiments, we found
that the VSACS has a higher probability of finding the
global optimum solution than the PSO algorithms. The spe-
cific experimental data of this phenomenon will not be given
here. We will explore this phenomenon further in the future
work.

Table 3. Mean RMSE of the True Zernike Coefficients
and the Calculated Zernike Coefficients of VSACS for PD,
PSO for PD under Four Different Conditions

Range (λ) �0.1 �0.25 �0.35 �0.5

Zernike Size 24 20 16 12

PSO 1.101e − 02 6.762e − 02 5.340e − 02 0.303e − 01
VSACS 0.190e − 02 7.065e − 04 1.500e − 03 0.295e − 06
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Fig. 6. Root mean square error of the true Zernike coefficients and calculated Zernike coefficients of VSACS for PD, and PSO for PD under
different conditions. In (a), the range of aberration coefficients to be searched is �−0.1λ, 0.1λ�, and the dimension is 24. In (b), the range of aberration
coefficients to be searched is �−0.25λ, 0.25λ�, and the dimension is 20. In (c), the range of aberration coefficients to be searched is �−0.35λ, 0.35λ�,
and the dimension is 16. In (d), the range of aberration coefficients to be searched is �−0.5λ, 0.5λ�, and the dimension is 12.

Fig. 7. Simplified block diagram of the experiment system of PD.
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5. EXPERIMENT

In order to further verify the effectiveness of the VSACS for
PD, we conducted a simple experiment. A simplified block dia-
gram of the verification experiment system of PD is shown in
Fig. 7, and the real facility of the optical system is shown
in Fig. 8.

The detector is installed in a one-dimensional precision
translation stage. By moving it we can obtain a pair of PSFs
with known defocus amount. A small amount of phase diversity

can be introduced into the optical system through using the
deformation mirror (DM).

Experimental parameters are set as follows: the focal length
of the lens is 180 mm, the defocus distance is 1.5 mm, the
wavelength is 632.8 nm, and the pixel size of the detector is
5500 nm.

The calculated Zernike coefficients by the VSACS and true
Zernike coefficients measured by the Shack–Hartman wave-
front sensors (S-H WFS) and the root mean square error of
the coefficients calculated by Eq. (22) are shown in Table 4.
This fact can qualitatively demonstrate the effectiveness of
the modified algorithm.

The Zernike coefficients solved by the VSACS are used in
this paper to reconstruct the defocus image and the focus im-
age, which is the actual image acquisition for the experiment,
and the reconstruction accuracy is evaluated by using the fol-
lowing Eq. (23) as the criterion [28,29]:

oRMSE �
(PM

i�1

PN
j�1 �ô�i, j� − o�i, j��2PM

i�1

PN
j�1 o�i, j�2

)
1∕2

: (23)

o�i, j� is the actual image acquisition for the experiment,
and ô�i, j� is the reconstruction image by the VSACS. The
smaller the RMSE value is, the better the image reconstruction

Fig. 8. Real facility of the optical system for PD.

Table 4. Calculated Zernike Coefficients by VSACS and True Zernike Coefficients Measured by the S-H WFS

Coefficient

Case1 Case2 Case3

Set Calculated Set Calculated Set Calculated

a5 −0.0943 −0.0934 0.0474 0.0480 −0.1064 −0.1015
a6 −0.0215 −0.0281 −0.0803 −0.0800 −0.1917 −0.1961
a7 −0.0018 −0.0020 0.0396 0.0444 0.1451 0.1425
a8 1.1176 1.1018 0.3782 0.3644 0.7738 0.7520
a9 −0.4244 −0.4368 −0.3286 −0.3191 0.0586 0.0577
a10 0.1845 0.1781 0.1177 0.1172 0.1378 0.1331
a11 −0.0390 −0.0374 −0.0312 −0.0297 0.0179 0.0187
a12 0.0069 0.0087 0.0054 0.0061 0.0008 0.0010
a13 −0.0013 −0.0009 0.0068 0.0008 0.0021 0.0015
a14 −0.0034 −0.0022 0.0011 0.0013 0.0018 0.0023
RMSE (λ) 0.0071 0.0059 0.0074

Table 5. Images Acquired Directly from Experiments and Images Reconstructed with the Zernike Coefficients
Calculated by the Improved Cuckoo Search Algorithm and Reconstruction RMSE

Defocus Image(a) In-focus Image(a) Defocus Image(b) In-focus Image(b) Defocus Image(c) In-focus Image(c)

Directly collected
images through
experiments

Reconstruction
image

Reconstruction
RMSE

1.35% 2.26% 0.60% 0.47% 0.68% 1.04%
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quality is, and the higher the accuracy of the phase diversity
algorithm is.

Images acquired directly from experiments and images re-
constructed with the Zernike coefficients calculated by the
VSACS are shown in Table 5. In Table 5, the words “in-focus”
and “defocus” mean only that the two images are collected at
different focal planes. It can be seen from Table 5 that the maxi-
mum root mean square error value of the experimental image
reconstructions is only 2.26%, which fully proves the effective-
ness of the VSACS for PD.

6. CONCLUSION

The phase diversity algorithm will eventually be converted into
a large-scale nonlinear numerical optimization problem. The
choice of numerical optimization algorithm determines the ac-
curacy and speed of the final aberration solution. We introduce
the cuckoo search optimization algorithm into the phase diver-
sity algorithm, and by optimizing the step size factor of the
traditional cuckoo search algorithm, the convergence speed
of the cuckoo search algorithm for PD is accelerated. A large
number of simulations are used to prove the effectiveness of this
optimization algorithm for PD. Especially in the case of large-
scale dimension of optimization variables, the convergence rate
and accuracy of the VSACS algorithm for PD are higher than
the traditional PSO for PD under the different conditions.
Finally, we verified the effectiveness of VSACS for PD through
a simple experiment.

Funding. National Natural Science Foundation of China
(NSFC) (11703027).
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