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The cosine error of the diffraction grating ruling engine is a systematic error caused by the measurement system.
This error affects grating performance directly. To reduce the effects of the cosine error on grating performance,
we analyze the cause of the cosine error, establish a mathematical model based on the error and the related grating
indicators, and propose a method to reduce the error. To validate the proposed method, we present the results of
grating ruling experiments performed before and after cosine error correction, which show that the method
effectively reduces the cosine error effects. © 2018 Optical Society of America

https://doi.org/10.1364/AO.57.010146

1. INTRODUCTION

The excellence of grating functions such as dispersion, polari-
zation, and phase matching have led to strong demand for these
elements, and particularly for high-quality and large-sized
gratings in fields ranging from astronomy to biochemical analy-
sis, military, and aerospace applications [1–5]. The mechanical
ruling method, which is one of the most important methods for
grating production, is mainly used to produce gratings with
deep grooves and strictly defined shapes, such as echelle
gratings [6,7].

The diffraction grating ruling engine is essential for grating
fabrication when using the mechanical ruling method. In all
early ruling engines, and in many of the later engines, the posi-
tioning of the grooves and the quality of the gratings were de-
pendent on the mechanical accuracy of the component parts
and the assembly accuracy of the entire engine. Considerable
efforts have been made to improve the positioning accuracy of
the ruling engine. However, the fundamental factors that limit
the precision of the ruling engine are material properties such as
its stiffness and stability [8–15]. In the 1950s, the physicists
Harrison and Stroke put Michelson’s proposal of a servo system
controlled using an interferometer into practice; the positions
of the grating grooves were then determined based on the wave-
length of the light, and the grating performance, in terms of
problems such as ghosts and light scattering, improved greatly
[16]. Internationally, the interference servo control system is
used in well-known ruling engines such as the MIT-C engine,
which is currently the largest ruling engine in the world and has
the ability to rule blanks with dimensions of up to 450 mm ×
650 mm × 125 mm, and the Hitachi-4 engine, which has
ruled gratings with 10,000 grooves/mm [17–19].

However, the introduction of interferometric systems is
likely to bring new errors, such as the cosine error and the
Abbe error, which are associated with the beam path structure,
and errors caused by refractive index changes, which will affect
the accuracy of groove positioning and overall grating perfor-
mance. In this paper, based on the characteristics of the beam
path structure of the measurement system used for the
CIOMP-6 ruling engine, we analyze the causes of the cosine
error and establish a mathematical model of the cosine error
and its related indicators. We then propose a method to reduce
the cosine error, and the proposed method is shown to be
effective via the results of grating ruling experiments.

2. COSINE ERROR OF THE CIOMP-6 RULING
ENGINE

The CIOMP-6 ruling engine, which offers travel of 680 mm, is
fitted to rule blanks with dimensions of up to 400 mm ×
500 mm × 100 mm. The carriage yaw during a 680 mm tra-
verse was measured using a collimator to be 0.03 s of arc, which
will cause fanning in 400-mm-long grooves. The CIOMP-6
ruling engine uses dual-frequency laser interferometers as mea-
surement instruments. To measure the yaw error of the carriage
during the grating ruling process, the beam path structure that
we designed is as shown in Fig. 1. As the figure shows, the beam
from the laser is separated into two beams using a beam splitter;
one beam is received at receptor A after passing through inter-
ferometer A and mirror A, while the other is received at recep-
tor B after passing through a beam bender, interferometer B,
and mirror B. Because of the presence of the carriage yaw error,
the carriage displacement measured by one interferometer is
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not the same as that measured by the other. As shown in Fig. 2,
the carriage yaw error at the measurement position is given by

θ � arctan

�
l1 − l2
a

�
: (1)

Here, l1 is the carriage displacement as measured using inter-
ferometer A, l2 is the carriage displacement as measured using
interferometer B, and a (420 mm) is the distance between the
axes of the two measuring beams.

The cosine error of the CIOMP-6 ruling engine is a result of
angular misalignment between the motion direction of the
blank carriage and the laser interferometer beam path. When
the beam path is adjusted, we hope that the position of the laser
spot on the measuring mirror does not shift with the movement
of the blank carriage. However, it is difficult for the human eye
to distinguish whether the position of the laser spot has moved
because the diameter of laser spot is 3 mm, significantly larger
than the potential motion of the spot. In the existing measure-
ment system, mirrors are used in both beam paths, the two
beam paths are adjusted separately, and the cosine error angles
shown in Fig. 3 then likely appear. In Fig. 3, α1 and α2
represent the cosine error angles in beam path 1 and beam
path 2, respectively, the displacements measured using the
two interferometers are d 1 and d 2, and the actual displacements
of the carriage, denoted by d 0

1 and d
0
2, are calculated as follows:�

d 0
1 � d 1 · cos α1

d 0
2 � d 2 · cos α2

: (2)

The deviations between the measured displacements and the
actual displacements (i.e., the cosine errors) are given by(

Δd 1 � d 1 − d 0
1 � d 1 · �1 − cos α1� � d 1 ·

α21
2

Δd 2 � d 2 − d 0
2 � d 2 · �1 − cos α2� � d 2 ·

α22
2

: (3)

It can be found from the above formula that the value of each
cosine error is proportional to the displacement when the
cosine error angle remains constant. The cosine errors between
any two grooves can then be obtained as follows:(

ζ1 � �d i − d i−1� · α
2
1

2 � d · α
2
1

2

ζ2 � �d i − d i−1� · α
2
2

2 � d · α
2
2

2

: (4)

Here, d i is the measurement position of the ith groove, d i−1 is
the measurement position of the �i − 1�th groove, and d is the
grating constant.

3. MATHEMATICAL MODEL OF THE COSINE
ERROR AND THE RELATED INDICATORS OF
THE GRATING

The CIOMP-6 engine uses stop-and-go blank motion, where
the carriage remains stationary during the grating ruling
process. As indicated in the above analysis, the cosine error will
produce a groove error as shown in Fig. 4, where this groove
error has the following characteristics:

(1) The spacing between any two adjacent grooves at the
same ruling position has the same value.

(2) The spacing between two adjacent grooves changes
linearly along the ruling direction.

(3) At the same ruling position in different grooves, the
deviation between actual position and theoretical position
increases with increasing groove number n, the amount of each
increase is constant, and its value is given by the difference
between the spacing of two adjacent grooves at the ruling
position and the grating constant.

The effect of the cosine error on the grating performance can
be divided into two cases.

Fig. 1. Beam path structure of the measurement system. 1, laser; 2,
beam splitter; 3, beam bender; 4, interferometer A; 5, interferometer
B; 6, receptor A; 7, receptor B; 8, mirror A; 9, mirror B; 10, insider
carriage.

Fig. 2. Measurement of yaw error.

Fig. 3. Cosine error angles of the two beams. 1, beam splitter; 2,
beam bender; 3, interferometer A; 4, interferometer B; 5, mirror A; 6,
mirror B.
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A. If α1� α2

From Eq. (4), if α1 � α2, then occurrence of the cosine error
will only lead to changes in the grating constant. Given that the
grating constant is the reciprocal of the grating’s groove density,
the change in the groove density can be given by

Δρ � 1

d − δ
−
1

d
� 1

d − d · α
2

2

−
1

d

� 1

d
·

 
α2

2

1 − α2

2

!
� ρ ·

 
α2

2

1 − α2

2

!
, (5)

where Δρ is the change in the groove density, and ρ is the
grating groove density.

It can be determined from Eq. (5) that the change in the
groove density is proportional to the grating groove density
when the cosine error angle remains constant.

The carriage travel is 680 mm, and the laser spot diameter is
3 mm. Consider the following bad situation, where we assume
that the deviation of the spot’s center during a 680 mm traverse
is found to be 1.5 mm after beam adjustment, which means
that the cosine error angle can be written as

α � arcsin

�
1.5
680

�
� 0.1264°: (6)

Combining Eqs. (5) and (6) allows the change in the groove
density to be given as

Δρ � ρ ·

 
α2

2

1 − α2

2

!
� 2.433 × 10−6 · ρ: (7)

As Eq. (7) shows, the cosine error has a very small effect on the
changes in the groove density, and its influence on the grating
performance can thus be neglected.

B. If α1≠ α2

From Eq. (4) and Fig. 4, if α1 ≠ α2, the cosine error will then
cause the grating groove density to vary at different positions in
the groove.

It can be deduced from Eq. (4) that the groove error at
different positions within the same two adjacent grooves can
be written as

ζ�j� � ζ1 − ζ2
m − 1

· j� ζ2, �j � 0, 1, 2,…,m − 1�, (8)

where m is the number of sampling points.
For a monolithic grating, the groove error can be

expressed as

δnm �

2
666664

δ11 δ21 � � � δn1

δ12 δ22 � � � δn2

..

. ..
. ..

. ..
.

δ1m δ2m � � � δnm

3
777775, (9)

where n is the total number of grooves in the grating.
Equations (8) and (9) can be combined so that the groove

error matrix can be written as

δnm�

2
6666666666664

0 ζ2 � � � �n−1� ·ζ2
0 ζ2� ζ1−ζ2

m−1 � � � ζ2��n−1� · ζ1−ζ2m−1

..

. ..
. � � � ..

.

0 ζ2� ζ1−ζ2
m−1 · �j−1� � � � ζ2��n−1� · ζ1−ζ2m−1 · �j−1�

..

. ..
. � � � ..

.

0 ζ2� ζ1−ζ2
m−1 · �m−1� � � � ζ2��n−1� · ζ1−ζ2m−1 · �m−1�

3
7777777777775
:

(10)

As shown in Fig. 5, the sign conventions for the angles and
diffraction orders are as follows:

(1) For incident light and diffracted light, if the wave vector
has a positive component of x in the coordinate system, its
corresponding angle is positive; otherwise, it is negative.

(2) The diffraction order on the right side of the zero order
is positive and the left is negative.

The optical path difference (OPD) produced by the groove
error is given as

ξ � δnm · �sin θi − sin θk�, (11)

Fig. 4. Schematic diagram of groove error caused by cosine error.

Fig. 5. Schematic diagram of sign conventions for the angles and
diffraction orders.
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where θi is the angle of incidence and θk is the diffraction angle
of the kth diffraction order.

The grating diffraction equation is given as follows:

d · �sin θi − sin θk� � −k · λ, (12)

where k is the diffraction order and λ is the wavelength of the
incident light.

Equations (10)–(12) can be combined such that the diffrac-
tion wavefront of the grating, which is caused by the cosine
error, can be written as

Δ�k� � δnm ·
−kλ
d

: (13)

From Eq. (4), the difference between the cosine errors at the
two measuring beam positions can be given as

Δζ � ζ1 − ζ2 �
2 · Δα · α2 � �Δα�2

2
· d , (14)

where Δα (Δα � α1 − α2) is the difference between the two
cosine error angles at the two measurement beam positions.

Using a combination of Eqs. (13) and (14), the diffraction
wavefront of the grating that is caused by the cosine error can
be written as

Δ�k��−kλ
d

·δnm

�−kλ
d

·

2
66666666666664

0 ζ2 ��� �n−1� ·ζ2
0 ζ2� Δζ

m−1 ��� ζ2��n−1� · Δζm−1

..

. ..
. ..

. ..
.

0 ζ2� Δζ
m−1 ·�j−1� ��� ζ2��n−1� · Δζm−1 ·�j−1�

..

. ..
. ..

. ..
.

0 ζ2� Δζ
m−1 ·�m−1� ��� ζ2��n−1� · Δζm−1 ·�m−1�

3
77777777777775
:

(15)

From Eqs. (14) and (15), we obtain the following conclusions:

(1) If Δα � 0, the cosine error does not affect the grating’s
diffraction wavefront;

(2) if Δα ≠ 0 and α2 is a constant, the change in the
diffraction wavefront is the same as the trend in Δα.

The type of the interference fringe of a grating with a groove
error is given as follows:

I � A ·
�
1� cos

�
2π

λ
· Δ
��

, (16)

where A is the light intensity coefficient.

Using a combination of Eqs. (15) and (16), the relationship between the cosine error and the interference fringes can be obtained
in the form of the following matrix:

I � A ·

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1� cos

0
BBBBBBBBBBBB@

2πk
d

·

2
6666666666664

0 ζ2 � � � �n − 1� · ζ2
0 ζ2 � Δζ

m−1 � � � ζ2 � �n − 1� · Δζm
..
. ..

. � � � ..
.

0 ζ2 � Δζ
m−1 · �j − 1� � � � ζ2 � �n − 1� · Δζm · �j − 1�

..

. ..
. � � � ..

.

0 ζ2 � Δζ
m−1 · �m − 1� � � � ζ2 � �n − 1� · Δζm · �m − 1�

3
7777777777775

1
CCCCCCCCCCCCA

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: (17)

If we assume that α1 � 0, then the deviation of the center of
the beam 2 spot during a 680 mm traverse is found to be
1.5 mm, and the cosine error angle can then be calculated
to be 0.1264°. If an echelle grating with dimensions of
400 mm × 500 mm, a blazed order of −36, and a groove den-
sity of 79 grooves/mm is ruled in this case, then the peak-to-
valley (PV) value of the diffraction wavefront difference caused
by the cosine error according to Eq. (15) is calculated to be
3.46λ (where λ � 632.8 nm). The results of simulation of
the interference fringe caused by the cosine error based on
Eq. (17) are shown in Fig. 6.

From the analysis above, the beam path of the existing mea-
surement system is prone to production of different cosine
errors; this means that it will be easy to cause a new fan error

Fig. 6. Results of simulation of the interference fringe caused by the
cosine error before cosine error correction.
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when the cosine errors of the two measurement beams are
different, and we must therefore reduce the effects of the
different cosine errors.

4. CORRECTION OF THE COSINE ERROR

Ideally, we would expect the cosine error angles of both mea-
surement beams to be zero, but this scenario is actually impos-
sible to achieve. According to the analysis given in Section 3, if
the cosine error angle of the two measuring beams is not zero,
we can then reduce the influence of the cosine error on grating
performance by making the difference between the two cosine
error angles zero. Based on these ideas, we replaced the two
measuring mirrors that were located in the original beam path
with a single measuring mirror; the resulting improved beam
path structure for the measurement system is shown in Fig. 7.

The flatness of the measurement plane of the 450 mm ×
100 mm × 50 mm measuring mirror, which was formed using
a microcrystalline material with low thermal expansion, is bet-
ter than 1∕8λ (at 632.8 nm). Considering the following bad
situation, in which we assume that α1 � 0, the slope at the
beam 2 spot position on the plane mirror is the highest, and
the angle between the cosine angles of the two beams can then
be written as

Δα � α1 − α2 � 0 − arctan

�
λ

8
·

1

3 × 106

�
� −0.00151°:

(18)

If an echelle grating with dimensions of 400 mm × 500 mm, a
blazed order of −36, and a groove density of 79 grooves/mm is
ruled in this case, the PV value of the diffraction wavefront
difference caused by the cosine error based on Eq. (15) is
calculated to be 4.938 × 10−4λ (where λ � 632.8 nm); the
interference fringe simulation results that were caused by the
cosine error in accordance with Eq. (17) are shown in Fig. 8.

From the analysis above, the PV value of the diffraction
wavefront of an echelle with dimensions of 400 mm×
500 mm, a blazed order of −36, and a groove density of
79 grooves/mm was reduced from 3.46λ to 4 :938 × 10−4λ

Fig. 7. Improved beam path structure for the measurement system.
1, laser; 2, beam splitter; 3, beam bender; 4, interferometer A; 5, inter-
ferometer B; 6, receptor A; 7, receptor B; 8, mirror; 9, insider carriage.

Fig. 8. Results of simulation of the interference fringe caused by the
cosine error after cosine error correction.

Fig. 9. Wavefront quality of echelle gratings with density of 79
grooves/mm for comparison experiment as measured using Zygo inter-
ferometer. (a) Without cosine error correction and (b) with cosine
error correction.
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(where λ � 632.8 nm). Comparison of Fig. 6 with Fig. 8
shows that the fan error of the grating interference fringe that
was caused by the cosine error improved significantly after
cosine error correction.

5. GRATING RULING EXPERIMENT

Before correction of the beam path structure, the grating wave-
front constantly contains interference fringes similar to the
fan pattern shown in Fig. 9(a). The echelle grating shown in
Fig. 9(a) with the density of 79 grooves/mm has dimensions
of 90 mm × 140 mm × 30 mm. The PV value of the wavefront
difference of the blazed order (−36 th) is 0.31λ.

As shown in Fig. 9(b), after correction of the beam path
structure, the interference fringe fan of the grating with density
of 79 grooves/mm and dimensions of 150 mm × 240 mm has
improved significantly. The PV value of the wavefront differ-
ence of the blazed order (−36th) is 0.19λ, except at the left end,
where the diamond was both dropping and accelerating.

Comparison of Fig. 9(a) with Fig. 9(b) demonstrates that
the proposed method reduces the effect of the cosine error
on the grating performance quite effectively.

6. CONCLUSIONS

Using the beam path structure of the CIOMP-6 ruling engine,
we analyzed the effects of the cosine error on grating perfor-
mance, and the following conclusions were obtained.

(1) If the cosine error angles α1 � α2, the cosine error does
not affect the diffraction wavefront of the grating and only
affects the grating density, thus having little effect on grating
performance.

(2) If α1 ≠ α2, the beam path structure before correction is
prone to different cosine errors, and these cosine errors will
cause a fan error in the interference fringes, which means that
the wavefront quality of the grating will deteriorate.

We therefore proposed a suitable correction method for the
cosine error and verified the effectiveness of the proposed
method through simulations and experiments.
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