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Calcium fluoride is widely used in optical lithography lenses and causes retardation that cannot be ignored.
However, few studies have been conducted to compensate for the retardation caused by calcium fluoride in
optical lithography systems. In this Letter, a new index based on orientation Zernike polynomials is established
to describe the value of retardation. Then, a method of retardation compensation is described. The method is
implemented by clocking calcium fluoride lens elements, and the optimal rotation angles are calculated using a
population-based stochastic optimization algorithm. Finally, an example is provided to validate the method.
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Calcium fluoride is often used in the manufacture of
lithography lenses because of its excellent ultraviolet
transmittance, high laser durability, and achromatism.
However, Burnett et al. reported that the intrinsic
birefringence of calcium fluoride exceeds the tolerance
level in the deep ultraviolet (DUV) range[1]. Intrinsic
birefringence causes a phase shift (i.e., retardation)
between the s- and p-polarization components of rays
that pass through an optical interface and, therefore,
will reduce the imaging contrast of lithographic
projection.
As one type of polarization aberration (PA), retarda-

tion is a physical quantity that has both magnitude
and orientation. The magnitude reflects the size of the re-
tardation, and the orientation reflects the direction of the
fast axis; both can be obtained by singular-value decom-
position (SVD)[2]. On the basis of SVD, Ruoff and Totzeck
further used orientation Zernike polynomials (OZP) to de-
scribe the polarization effects of retardation[3]. The OZP
terms can reflect the rotation symmetry of retardation,
and the OZP coefficients represent the weights of various
rotation symmetries.
PA, including retardation, has a significant effect on

the imaging performance of optical lithography systems.
Therefore, a compensation for retardation caused by
calcium fluoride is considerably important. However,
few studies have been conducted with regard to this as-
pect. A general compensation method was proposed by
Serebriakov et al.[4]. The phase retardation caused by in-
trinsic birefringence in DUV lithography was corrected by
clocking several pairs of calcium fluoride lenses in different
and special angles. This method can compensate for the
retardation, but the rotation angles may not be optimal.
On the basis of Ref. [4], we proposed a new method to

compensate for the retardation caused by intrinsic bire-
fringence in lithography systems.

First, we establish a parameter that represents the
effective value of retardation.

PA can be represented by a Jones matrix[5], a 2 × 2
complex matrix that can be expressed as

J ¼
�
j11 j12
j21 j22

�
: (1)

By SVD, the polarization properties of lithography
lenses can be expressed by five optical elements, i.e., a
partial polarizer, a rotator, a retarder, a scalar phase, and
a scalar transmission; thus, the Jones matrix J can be
defined as[2]

J ¼ teiΦJpolðd;ψp; δÞJ rotðαÞJ retðϕ;ψ rÞ; (2)

where t represents the scalar transmission, and Φ repre-
sents the scalar phase; d, ψp, ϕ, and ψ r represent the dia-
ttenuation value, bright axis direction, retardation value,
and fast axis direction, respectively; δ represents the ellip-
ticity of the partial polarizer, and α represents the rotation
parameter. The retardation matrix J ret in Eq. (2) can be
expressed as

J retðϕ;βÞ ¼
�
cosϕ− i sinϕ cos 2β −i sinϕ sin 2β

−i sinϕ sin 2β cosϕþ i sinϕ cos 2β

�

¼ I cosϕ− i sinϕ
�
cos 2β sin 2β

sin 2β − cos 2β

�
; (3)

where I is the 2 × 2 unit matrix. However, for optical
lithography systems, sinϕ is quite small and can,
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therefore, be approximated to ϕ. Then, we use OZP to de-
compose the retardation further:

J retI cosϕ− iϕ
�
cos 2β sin 2β
sin 2β −cos2β

�

¼ I cosϕ− i
X∞
j¼1

Cj·OZj ; (4)

where Cj is the OZP coefficient, andOZj is the OZP term,
which is defined as

OZj ¼ OZm
n;ε ¼ Rm

n ðρÞOm
ε ðθÞ ðε ¼ 0; 1Þ; (5)

whereRm
n ðρÞ indicates the radial part, which is the same as

the radial part of fringe Zernike polynomials. The angular
part Om

ε ðθÞ is defined as

Om
0 ðθÞ ¼

�
cosmθ sinmθ

sinmθ − cosmθ

�
;

Om
1 ðθÞ ¼

�
sinmθ − cosmθ

− cosmθ − sinmθ

�
: (6)

It is worth mentioning that three indices n, m, and ε
can correspond to a certain index j. This correspondence
was clearly discussed in a previous study[6]. Table 1 shows
the first 18 terms of OZP. In particular, when m ¼ 0,
the absolute value of the corresponding j is a square
number.
We can easily obtain the orthogonality relation of OZP,

which is given by

1
2πð1þδm0Þ

Z
2π

0

Z
1

0
ðOZi·OZjþOZj·OZiÞρ·dρ·dθ

¼ δij I ; (7)

where δm0 and δij are Kronecker delta functions.
When we use OZP to decompose the retardation ma-

trix, we can obtain a series of OZP coefficients Cj . We
wish to express the valid value of retardation by these
coefficients. Intuitively, we propose the root-mean-
square value fitted by OZP (RMSOZP). In statistics,
the RMS value of a two-dimensional function f ðθ; ρÞ is
defined as

R ¼
����������������������������������������������������ZZ

θ;ρ
f 2ðθ; ρÞ·ρ·dρ·dθ

s
: (8)

By this definition, we can obtain the RMSOZP of the
retardation, which is given by

ℜ ¼
������������������������������������������������������������������������������������������������
1
π

Z
2π

0

Z
1

0

�
ϕ

�
cos 2β sin 2β
sin 2β − cos 2β

��
2
ρ·dρ·dθ

s

¼
������������������������������������������������������������������������������
1
π

Z
2π

0

Z
1

0

�X
j
C j·OZj

�
2
ρ·dρ·dθ

s
: (9)

Using the orthogonality relation in Eq. (7), the
RMSOZP ℜ in Eq. (9) can be expressed as

ℜ ¼
����������������������������������X
j

ð2− δm0ÞC2
j

s
: (10)

Next, we will prove that the RMSOZP is equal to the
RMS value obtained from Zernike decomposition. From

Table 1. First 18 terms of OZP

j OZj j OZj j OZj

1
�
1 0
0 −1

�
4 ���

3
p ð2ρ2 − 1Þ

�
1 0
0 −1

�
7 ���

8
p ð3ρ3 − 2ρÞ

�
cos θ sin θ
sin θ − cos θ

�
−1

�
0 1
1 0

�
−4 ���

3
p ð2ρ2 − 1Þ

�
0 1
1 0

�
−7 ���

8
p ð3ρ3 − 2ρÞ

�
cos θ − sin θ
− sin θ − cos θ

�
2

2ρ
�
cos θ sin θ
sin θ − cos θ

�
5 ���

6
p

ρ2
�
cos 2θ sin 2θ
sin 2θ − cos 2θ

�
8 ���

8
p ð3ρ3 − 2ρÞ

�
sin θ − cos θ

− cos θ − sin θ

�
−2

2ρ
�

cos θ − sin θ
− sin θ − cos θ

�
−5 ���

6
p

ρ2
�

cos 2θ − sin 2θ
− sin 2θ − cos 2θ

�
−8 ���

8
p ð3ρ3 − 2ρÞ

�
sin θ cos θ
cos θ − sin θ

�
3

2ρ
�

sin θ − cos θ
− cos θ − sin θ

�
6 ���

6
p

ρ2
�

sin 2θ − cos 2θ
− cos 2θ − sin 2θ

�
9 ���

5
p ð6ρ4 − 6ρ2 þ 1Þ

�
1 0
0 −1

�
−3

2ρ
�
sin θ cos θ
cos θ − sin θ

�
−6 ���

6
p

ρ2
�
sin 2θ cos 2θ
cos 2θ − sin 2θ

�
−9 ���

5
p ð6ρ4 − 6ρ2 þ 1Þ

�
0 1
1 0

�

COL 16(3), 032201(2018) CHINESE OPTICS LETTERS March 10, 2018

032201-2



the correspondence between the OZP and the scalar
Zernike polynomials given by Ref. [6], we obtain

ϕ

�
cos 2β sin 2β

sin 2β − cos 2β

�

¼
X
j

C j·OZj

¼
X∞
k¼1

�
Ck2OZk2 þ C−k2OZ−k2

þ
Xk
t¼1

ðCk2þ2t−1OZk2þ2t−1 þ Ck2þ2tOZk2þ2t

þ C−ðk2þ2t−1ÞOZ−ðk2þ2t−1Þ þ C−ðk2þ2tÞOZ−ðk2þ2tÞÞ
�

¼
X∞
k¼1

�
Ck2

�
Zk2 0

0 −Zk2

�
þ C−k2

�
0 Zk2

Zk2 0

�

þ
Xk
t¼1

�
Ck2þ2t−1

�
Zk2þ2t−1 Zk2þ2t

Zk2þ2t −Zk2þ2t−1

�

þ Ck2þ2t

�
Zk2þ2t −Zk2þ2t−1

−Zk2þ2t−1 −Zk2þ2t

�

þ C−ðk2þ2t−1Þ

�
Zk2þ2t−1 −Zk2þ2t

−Zk2þ2t −Zk2þ2t−1

�

þ C−ðk2þ2tÞ

�
Zk2þ2t Zk2þ2t−1

Zk2þ2t−1 −Zk2þ2t

���
; (11)

where Z represents the scalar fringe Zernike polynomials.
Using the relationship between the corresponding matrix
elements in Eq. (11), we can directly get

ϕ cos 2β ¼
X∞
k¼1

�
Ck2Zk2

þ
Xk
t¼1

½ðCk2þ2t−1 þ C−ðk2þ2t−1ÞÞZk2þ2t−1
þðCk2þ2t þ C−ðk2þ2tÞÞZk2þ2t �

�
;

(12)

ϕ sin 2β ¼
X∞
k¼1

�
C−k2Zk2

þ
Xk
t¼1

½ðCk2þ2t−1 − C−ðk2þ2t−1ÞÞZk2þ2t
þðC−ðk2þ2tÞ − Ck2þ2tÞZk2þ2t−1�

�
: (13)

According to the definition of RMS, the RMS values of
ϕ cos 2β and ϕ sin 2β can be expressed as

Rϕ cos 2β ¼
����������������������������������������������������������������
1
π

Z
2π

0

Z
1

0
ðϕ cos 2βÞ2ρ·dρ·dθ

s

¼
����������������������������������������������������������������������������������������������X∞
k¼1

�
Ck2

2 þ
Xk
t¼1

½ðCk2þ2t−1 þ C−ðk2þ2t−1ÞÞ2
þðCk2þ2t þ C−ðk2þ2tÞÞ2�

�vuut ;

(14)

Rϕ sin2β ¼
���������������������������������������������������������������
1
π

Z
2π

0

Z
1

0
ðϕ sin2βÞ2ρ·dρ·dθ

s

¼
������������������������������������������������������������������������������������������������X∞
k¼1

�
C−k2

2 þ
Xk
t¼1

½ðCk2þ2t−1 −C−ðk2þ2t−1ÞÞ2
þðC−ðk2þ2tÞ −Ck2þ2tÞ2�

�vuut ;

(15)
then,

Rϕ
2 ¼ 1

π

Z
2π

0

Z
1

0
ϕ2ρ·dρ·dθ

¼ 1
π

Z
2π

0

Z
1

0
½ðϕ cos 2βÞ2 þ ðϕ sin 2βÞ2�ρ·dρ·dθ

¼ ðRϕ cos 2βÞ2 þ ðRϕ sin 2βÞ2

¼
X∞
k¼1

�
Ck2

2 þ C−k2
2

þ
Xk
t¼1

ð2Ck2þ2t−1
2 þ 2Ck2þ2t

2

þ2C−ðk2þ2t−1Þ2 þ 2C−ðk2þ2tÞ2Þ
�

¼
����������������������������������X
j

ð2− δm0ÞC2
j

s
: (16)

Comparing Eq. (10) and Eq. (16), we find that

Rϕ ¼ ℜ: (17)

Thus, the RMSOZP depends on the OZP coefficients
and represents the effective value of the retardation.
Moreover, the OZP terms correspond to the rotation sym-
metry properties of the system. Figure 1 shows the first 18
OZP terms arranged according to their symmetry proper-
ties. The colors are based on the radial dependence, and
the short lines represent the direction of the eigen polari-
zation state. The number M means M-fold rotation
symmetry.

Assume that the retardation of an arbitrary lithography
objective system is given by a series of OZj with coeffi-
cients Cj . We rotate several lenses, and the rotation angles
are α1; α2;…; αk . After rotation, even though the RMSOZP
of each single lens remains unchanged, the RMSOZP of
the entire system is a function of these rotation angles:

ℜ ¼ Fðα1; α2;…; αkÞ:

Therefore, we can optimize the retardation by adjusting
these rotation angles.

For this purpose, we use a population-based stochastic
optimization (PSO) algorithm to seek the optimal rota-
tion angles. PSO is originally attributed to Kennedy
and Eberhart[7]. Each possible solution is expressed as a
particle, and each particle has its own position, velocity,
and fitness. All the particles move around in the search
space and arrive at the global optimum by updating cur-
rent best known positions repeatedly. In addition, PSO
has an uncomplicated structure, good convergence, and
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good stability. We call this method “PSO rotation” by ap-
plying PSO to the optimization of the lens rotation angles.
In PSO rotation, a set of rotation angles is treated as a

particle’s position, and the corresponding RMSOZP of the
retardation represents the particle’s fitness. The velocity
of each particle is given by a mathematical formula.
The flow chart of PSO rotation is shown in Fig. 2.
To verify the effectiveness of PSO rotation, a patent

lithographic lens was used to carry out this simulation ex-
periment[8]. Figure 3 shows the layout of the litho-
graphic lens.
The numerical aperture (NA) is 0.75. The material of

the 4th, 5th, 6th, 7th, 12th, 13th, 15th, and 16th lens

elements is calcium fluoride, and the material of the re-
maining lens elements is silica. It should be noted that only
the eight calcium fluoride lens elements are rotated, and
all the crystal axis orientations are along <111> . The
birefringence of calcium fluoride is −3.4 nm∕cm[9]. The
central field was chosen for observation.

We choose all eight calcium fluoride lenses as rotation
elements. PSO rotation can obtain the optimal eight ro-
tation angles for the minimum RMSOZP of retardation
by iteration. Figure 4 shows the convergence curve of
the simulation.

The convergence curve shows that PSO rotation suc-
cessfully reduces the retardation from 2.99 to 0.74 nm.
The optimal rotation angles are shown in Table 2.

The comparison of the pupil maps of retardation before
and after PSO rotation is shown in Fig. 5.

It is evident that the retardation at the edge of the pupil
has been effectively compensated. Moreover, the retarda-
tion before and after the compensation has a three-fold
rotation symmetry. This is consistent with the properties
of calcium fluoride material in the <111> crystal

Fig. 1. OZP terms arranged according to the M-symmetry properties.

MATLAB start

Code V start

PSO start
Define the 
variables

Load lens

Set rotation 
angles

Rotate lens 
elements with 
rotation angles

Retardation 
evaluation

Optimize 
rotation angles

Exit conditions 
accepted?

End

No

Yes

Fig. 2. Flow chart of PSO rotation.

Fig. 4. Convergence curve of PSO rotation.Fig. 3. Layout of a patent lithographic lens.
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orientation. To illustrate the rotation symmetry further,
we compare the OZP coefficients before and after PSO ro-
tation, as shown in Fig. 6.
It can be clearly seen from Fig. 6 that there are mainly

four terms before PSO rotation: OZ5, OZ12, OZ−3, and
OZ−8. After PSO rotation, the coefficients of OZ5 and
OZ12 are almost invariable, but the coefficients of
OZ−3 and OZ−8 are nearly zero. It means that the
OZ−3 term and the OZ−8 term of retardation are greatly
compensated for by PSO rotation. However, theOZ5 term
and the OZ12 term of retardation are rotation symmetric
terms, so they remain unchanged after rotation.
It is worth pointing out that we can take one step

further by considering the full field-of-view. We choose
N fields-of-view (N is a positive integer). For each field-
of-view, we can obtain an RMSOZP value. The RMS
value of these RMSOZP values can be expressed as

ℜRMS ¼
�������������������PN

i¼1 ℜ
2
i

N

r
: (18)

Then, we set ℜRMS as the fitness in the PSO algorithm.
In this way, PSO rotation can compensate for the retar-
dation from the central field to the edge field.
In conclusion, we propose a method called “PSO rota-

tion,” which can effectively compensate for the retarda-
tion caused by the intrinsic birefringence of calcium
fluoride in lithography systems. A simulated NA 0.75
lithographic lens was used to verify the PSO rotation.
It is remarkable that we use the RMSOZP as an optimi-
zation objective. The RMSOZP can reveal both the effec-
tive value and rotation symmetry properties of the
retardation. It should be stressed that in practical

engineering the rotation elements could be those lenses
made from other materials, and retardation caused by
stress birefringence can be taken into consideration.
Hence, PSO rotation can be applied extensively in lithog-
raphy systems.
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Table 2. Optimal Rotation Angles

Lens 4 5 6 7

Rotation angles (°) 344.8 311.8 40.8 97.8

Lens 12 13 15 16

Rotation angles (°) 36.2 213.5 0.8 271.5

Fig. 5. Retardation pupil maps (a) before and (b) after PSO
rotation.

Fig. 6. OZP coefficients of retardation before and after PSO
rotation.
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