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Abstract: The grating lateral shearing interferometer may achieve ultra-high accuracy 
absolute testing after eliminating the systemic errors from the interferometer itself and the 
orthogonality problem between two shearing directions. Aiming at the interferometer, we 
proposed a two-step algorithm for removing the rotationally asymmetric systemic errors from 
our shearing setup. This rotation method provides a new approach for acquiring the 
wavefront aberration by choosing the rotation angles with the minimum decentration and to 
satisfy the immune of systemic errors at the same time. Simulation and experiment 
verified that it is more propitious to eliminate the systemic errors when it is applied to our 
shearing setup. 
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1. Introduction 

In surface measurements, absolute testing technique [1] is a common method for measuring 
the surface deviation, which can get the absolute surface information without the effect due to 
the reference surface. Concerning absolute testing, Jensen had proposed a two-sphere method 
[2] for optical spherical surface absolute testing. And then many novel approaches [3–14] 
about absolute testing have been presented, such as the single-rotation algorithm [4] and the 
rotation-averaging algorithm [5]. In addition, absolute testing can also be used to measure the 
wavefront aberration of lithographic lens. Lithographic lens, the core component of 
lithography machine, need to acquire its wavefront aberration by ultra-high accuracy 
measurement equipment. The major methods for testing the lithographic lens are Shark-
Hartmann Interferometry [15], Point Diffraction Interferometry [16], and Grating Shearing 
Interferometry [17–19]. For the lithographic lens in 193nm work wavelength, we usually 
utilize grating lateral shearing interferometry to measure the wavefront aberration of the lens, 
owing to the rigorous working condition and the costly expenses. For convenience, we 
usually use the ordinary projection lens in our experiment. However, the grating lateral 
shearing interferometer [17–19] may achieve ultra-high accuracy absolute testing after 
removing the systemic errors from our shearing setup and the orthogonality problem between 
two shearing directions. Then the latter problem had been solved by a new algorithm [20] that 
is able to compensate the rotational inaccuracy, so we aim of the former in this paper. 
According to the principle of absolute calibration, some algorithms doesn’t work on the 
grating lateral shearing interferometer, which is shown in Fig. 1, such as the cat’s eye method 
[1–3] and the shift method [10], and we can only use the rotation algorithms to ensure the 
systemic errors from the interferometer. 

At these series of rotation measurement methods, for the single-rotation algorithm [4], the 
accuracy is unstable because the rotation angle with minimum error is determined by the 
difference of variational errors and is very hard to predict; and for the rotation-averaging 
method [5], it has a quite high accuracy because it can average random errors, but it need 
more rotation measurements in order to get necessary information. By the contrastive study, 
error-immune algorithm [11] can characterize the wavefront aberration of the lens under test 
better. Based on least-square fitting of Zernike polynomials, it makes combinations of 
multiple evaluations of four angular components of a surface into a final calibration data. But 
for the sketch of shearing setup shown in Fig. 1, whose diameters of the rotating platform are 
0.65 m and over, the unsuitable rotation angles may bring about the large decentration, and 
then it may change the whole optical path because of grating shearing. 
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Fig. 1. The sketch of grating lateral shearing interferometer. 

In this paper, we proposed a two-step method based on error-immune algorithm [11]. The 
theoretical formulas are derived in Section 2, and the simulation and the experimental results 
about new algorithm are presented in Section 3. Finally, some conclusions are given in 
Section 4. 

2. Theoretical analysis 

The wavefront aberration of the lens under test acquired in original position can be expressed 
as: 

 ( , ) ( , ) ( , ) ( , )sW W T Vρ θ ρ θ ρ θ ρ θ= + +  (1) 

where ( , )sW ρ θ  is the constant systemic errors from interferometer; ( , )T ρ θ  is the wavefront 

aberration from the lens under test; ( , )V ρ θ  is the variable systemic errors including 

environmental disturbance, azimuthal errors, decentration errors, and so on. 
Then the lens under test is rotated about the optical axis by an angle ϕ , and the wavefront 

aberration can be expressed as 

 ( , ) ( , ) ( , ) '( , )sW W T Vρ θ ϕ ρ θ ρ θ ϕ ρ θ+ = + + +  (2) 

Subtracting Eq. (1) from Eq. (2), we get 

 ( , ) ( , ) ( , ) ( , )W T T Vρ θ ρ θ ϕ ρ θ ρ θΔ = + − + Δ  (3) 

By Zernike polynomials, the result in Eq. (3) can be written as: 
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where, , [cos( ) 1] sin( )m m m
n n na m a mφα φ φ−= − + ; , [cos( ) 1] sin( )m m m

n n na m a mφα φ φ− −= − − . 

According to the error-immune algorithm [11], the influence of ( , )V ρ θΔ  can be reduced 

by optimal angles: When cos( ) 1mφ = − , the error sensitivity is the least and those rotation 

angles matching cos( ) 1mφ = − are called optimal angles. Optimal angles are completely 

decided by angular order m. When we characterize the variable systemic errors by a 36-term 
Zernike polynomials, it need to respectively rotate the lens by 0°, 90°, 135°, and 180°. And 
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we can get: 2θ Zernike coefficients by 90°; 4θ Zernike coefficients by 135°; odds θ Zernike 
coefficients by 180°. 

However,it is on the grating lateral shearing interferometer that the variable systemic 
errors cannot be simply reduced by optimal angles because the tiny decentration may change 
the whole optical path. The total wavefront aberration in X direction we measured from 
original position can expressed as 

 1 1( , ) ( / 2, ) ( / 2, )W x y W x s y W x s y− += + − −  (5) 

where 1( , )W x y−  and 1( , )W x y+  respectively are the wavefront aberrations of ± 1 order 

diffraction light. 
Then the lens is rotated by an angle φ, the center of lens and the position of interferograms 

will be shifted for the influence of decentration, and the phase of the corresponding position 
will be also changed in original light path because of grating shearing. The total wavefront 
aberration will become to 

 1 1'( , ) '( / 2 , ) '( / 2 , )W x y W x s x y y W x s x y y− += + + Δ + Δ − − + Δ + Δ  (6) 

 

Fig. 2. The interferograms in X orientation: (a) at the 0° position; (b) at the 180° position. 

Similarly, the position of interferograms in Y orientation will also be shifted by the 
rotation of the lens. The position of interferograms by rotating 180° is obviously different 
from the original position, as shown in Fig. 2. Then the size of wavefront aberration from the 
lens under test will be changed by the excursion, and the systemic errors from shearing setup 
may also be altered by the phase change. The calculation process will be complex to the 
variable systemic errors as shown in Eqs. (5) and (6). We need to pick out the appropriate 
angles to consider the decentration and to satisfy the immune of systemic errors at the same 
time. The theoretical analyses about new algorithm are shown as following: 

We rotate the lens under test about the optical axis by 8 equally spaced angles then 
acquire the wavefront aberrations at these positions. 

The sum of the 8 positions wavefront aberrations can be written as 

 
1 1 1
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j j s j
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where the sum of ( , )jV x y  can be neglected by the mean of 8 times measurement, because the 

variable systemic errors may be averaged by a periodic rotation, and the N is the times of 
rotation. 
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Then Eq. (7) will become to 
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where the superscript numbers in Eq. (8) represent the angular order m from the 36-term 
Zernike polynomials. 

We can get the wavefront aberration contains the variable systemic errors 
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Then the function used to confirm the original position (0°) with the least decentration is 
given by 
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where ( , )x ρ θ  represents the wavefront aberration contains the variable systemic errors at a 

random angular position we measured for the first time; φ  is the rotation angle relative to this 

random angular position. The original position is determined with the rotation angle 

0φ satisfying Eq. (10). 

The next step is to choose the angles with the minimum decentration near from the 
original position. For the error-immune algorithm [11], the 180° from the optimal angles, 
which satisfy cos( ) 1mφ = − , will have the maximum decentration in our algorithm, so we can 

replace 180° with 90° or 270° because these angles must be used to get other angular order m 
= 2 and have still less decentration. When φ = 90° or φ = 270°, for the odd angular order, Eq. 
(4) will become to 
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where, , /2 sin( / 2)m m m
n odd n na a mπα π± −= − + ± ; , / 2 sin( / 2)m m m

n odd n na a mπα π− ± −= − − ± . 

Therefore, for the first 36 terms in the Zernike polynomial, we may get: 2θ Zernike 
coefficients by 90° or 270°; 4θ Zernike coefficients by 45° or 315°; and odds θ Zernike 
coefficients by 90° or 270°. Then we verify the choices of angles in the Section 3. 

3. Simulation and experiment 

The new proposed method has been tested to verify its advantages and accuracy through 
computer simulation. At the original position, the real wavefront aberrations we simulate is 
shown in Fig. 3(a), and the wavefront aberrations contains the systemic errors is shown in 
Fig. 3(b). Then we appropriately mix in variable systemic errors in different rotational angles. 
The results acquired by error-immune algorithm [11] and the new algorithm, which are 
expressed by the 36-term Zernike polynomials, are respectively shown in Figs. 3(c) and 3(d). 
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Fig. 3. Immunization capabilities of variable systemic errors about two algorithms: (a) The real 
wavefront aberrations generated for simulation with random Zernike coefficients for m = 1-5 
(PV: 6.2757λ; RMS: 0.9758λ); (b) The wavefront aberrations contains the systemic errors (PV: 
16.182λ; RMS: 2.6038λ); (c) The wavefront aberrations acquired by error-immune algorithm 
with the angles being 0°, 90°, 135°, and 180° (PV: 4.0146λ; RMS: 0.73895λ); (d) The 
wavefront aberrations acquired by new algorithm with the angles being 0°, 90°, and 315° (PV: 
3.784λ; RMS: 0.73364λ). 

The residuals between the real wavefront aberrations and the wavefront aberrations 
acquired by these two algorithms are shown in Fig. 4. According to the PV and RMS value of 
residuals, we can obtain that the wavefront aberrations by new algorithm is more close to the 
real wavefront aberrations. It is thus clear that the accuracy of new algorithm may higher 
while the variable systemic errors are inevitable. 

In the experiment, we verify this new algorithm on grating lateral shearing interferometer 
as shown in Fig. 1, the wavelength of optical source is 632.8 nm. Then through the grating, 
we realize the shearing interferometry by the ± 1 order diffraction light which are acquired by 
spatial filter. In order to ensure the original position with the least decentration, we 
respectively measure the shearing interferograms of two orthogonal directions at 8 equally 
spaced angular positions rotating about the optical axis. The wavefront aberrations at eight 
angular positions are acquired by wavefront reconstruction and the algorithm [20] that is able 
to compensate the rotational inaccuracy. And then the original position is ascertained by Eq. 
(10). The PV and RMS values of wavefront aberrations at eight angular positions are shown 
in Fig. 5 before systemic errors elimination and after systemic errors elimination. 
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Fig. 4. Comparison of two algorithms: The residuals between the original wavefront 
aberrations and (a) the wavefront aberrations acquired by error-immune algorithm (PV: 
3.9117λ; RMS: 0.68021λ); (b) the wavefront aberrations acquired by new algorithm (PV: 
3.3947λ; RMS: 0.64313λ). 

We can see that the PVs near 180° position are different from other angular positions in 
the Fig. 5, and it means the volume of excursion will impact the experimental result at some 
angular positions. For testifying the influence about the excursion and the accuracy, we try to 
make a comparison of several different single-rotation algorithms [4]. 

 

Fig. 5. The PV and RMS values of the wavefront aberrations at eight angular positions before 
systemic errors eliminated and after systemic errors eliminated by average-rotation algorithm. 
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Fig. 6. The wavefront aberrations acquired by different single-rotation algorithms: (a) 45° (b) 
135° (c) 225° (d) 315°. 

From Figs. 6, it can be clearly seen that there are large difference to the results that are 
calculated by different single-rotation algorithms, and it also verified the instability about 
single-rotation algorithm on our shearing setup. To contrast the accuracy of these, we 
calculate the residuals of wavefront aberrations at two angular positions in different single-
rotation algorithms, which are shown in Table 1. These data show that the accuracy of the 
single-rotation methods varying with the rotation angles, and we can see the change of the 
decentration and the RMS values by different single-rotation algorithms, which is shown in 
Fig. 7. 

Table 1. The PV and RMS residuals of wavefront aberrations at two angular positions in 
different single-rotation algorithms. 

 Decentration(pixel) PV(λ) RMS(λ) 

45° 13.45 0.012809 0.0017594 

135° 29.00 0.012854 0.0038338 

225° 30.27 0.017451 0.0029670 

315° 12.08 0.006013 0.0011555 
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Fig. 7. The decentration and the RMS value of residuals of two wavefronts errors acquired by 
different single-rotation algorithms. 

 

Fig. 8. The result acquired by error-immune algorithm: (a) The wavefront aberrations of the 
lens on 0° position. The residuals between 0° position and: (b) 90° position (PV: 0.029128λ; 
RMS: 0.0031796λ); (c) 135° position (PV: 0.042076λ; RMS: 0.0077323λ); (d) 180° position 
(PV: 0.056729λ; RMS: 0.01229λ). 

As we all know, the error-immune algorithm has quite stability and accuracy comparing 
with the single-rotation algorithm. But this method needs a limiting condition for rotation 
angles, which may cause a large decentration of the shearing interferograms. For the error-
immune algorithm, the wavefront aberrations of the lens at 0° position are shown in Fig. 8(a), 
and then the residuals of wavefront aberrations between 0° position and other three positions 
are respectively shown in Figs. 8(b)-8(d). Obviously, the PV and RMS of the residuals largely 
varied with the rotation angles, and it means the imperfect accuracy of error-immune 
algorithm on the grating lateral shearing interferometer. 
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Fig. 9. The result acquired by new algorithm: (a) The systemic errors of the lens on original 
position. The residuals between 0° position and: (b) 315° position (PV: 0.016595λ; RMS: 
0.0023007λ); (c) 90° position (PV: 0.046724λ; RMS: 0.0065709λ); (d) the difference of 
wavefront aberrations at 0° position between new algorithm and error-immune algorithm (PV: 
0.024148λ; RMS: 0.0025226λ). 

According to the decentration of the shearing interferograms, new algorithm chooses the 
three angles, which are 0°, 90° and 315°, to calculate the wavefront aberrations of the lens 
under test. The wavefront aberrations at 0° position are shown in Fig. 9(a), and then the 
residuals between 0° position and other positions are shown in Figs. 9(b) and 9(c). The 
difference of wavefront aberrations between error-immune algorithm and new algorithm at 0° 
position are shown in Fig. 9(d). 

Comparing with the results from error-immune algorithm and new algorithm, the residuals 
PV and RMS of the latter are entirely less than the former, and then we find new algorithm 
has a higher accuracy on grating lateral shearing interferometer. Meanwhile, it illustrates that 
appropriate rotation angles may decrease the variable systemic errors caused by large 
decentration in optical system. The residual figure in Fig. 9(d) reflects the difference of 
wavefront aberrations between new algorithm and error-immune algorithm, it also prove 
verity of the result we simulated at the fore. Then Fig. 10 shows the difference of the 36-term 
Zernike polynomials acquired by these two methods. From which, we can see that the 
absolute result of the new method is very close to that of the error-immune algorithm which 
meets well with above theoretical analysis. 
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Fig. 10. Comparison of the first 36 terms in the Zernike polynomial between error-immune 
algorithm and new algorithm. 

4. Conclusions 

The algorithm we proposed can remove the rotationally asymmetric systemic errors on our 
shearing setup by these two steps: we confirm the original position (0°) with the least 
decentration; and then we choose the angles with the minimum decentration and to satisfy the 
immune of systemic errors at the same time. This method based on error-immune algorithm, 
and it can decrease the influence of variable systemic errors by choosing the best rotation 
angles. Comparing with traditional rotation algorithms, new algorithm has less times rotation 
and more suitable angles to process the large decentration of the lens. Therefore, it can be 
more propitious to remove the systemic errors on grating lateral shearing interferometer. 
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