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Summary Contamination of peanut oil is a great concern in the industry. FTIR spectroscopy combined with chemo-

metrics could develop a rapid and nondestructive method to screen aflatoxin-contaminated peanut oil.

Aflatoxin B1 (AFB1)- and aflatoxin (AFT)-positive peanut oils were screened by mid-IR (MIR) with clas-

sification models established by a novel multivariate decision tree (MDT) method. Two discriminant func-

tions were developed in the fingerprint region based on absorbance ratio and moving window Fisher

discrimination analysis methods for the two complex nodes in each MDT model. Window adjustment

reduced the total different spectral data points in modelling to 23. The true-positive and true-negative rate

of calibration and validation could both reach up to 100%. These results would render the possibility of

efficient and economical design of a portable high-speed multitasking MIR instrument for screening

AFB1- and AFT-contaminated peanut oil.
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Introduction

Global peanut oil production was in ascending trend
over the last few years and achieved 5.89 million tons
in 2016. China, European Union and the United States
were the major importers and exporters, contributing
to around 90% of the world’s trade in 2016. Among
which China was the largest importer and exporter,
accounting for over half of the global market (United
States Department of Agriculture, 2017).

Aflatoxins (AFTs), produced naturally by Aspergil-
lus flavus and Aspergillus parasiticus (Ayres et al.,
1971), are a notorious hazard in peanut oil, nuts,
maize, etc. (Liu et al., 2011; Lee et al., 2015). AFTs
are well-known carcinogenic, teratogenic, mutagenic

and immunosuppressive agent. They are sequential of
derivatives of coumarin and dihydrofuran with similar
chemical structures (Clifford & Rees, 1967). The dou-
ble furan ring in their molecule contributes to their
toxicity (Ayres et al., 1971). There are fourteen differ-
ent types of AFTs (AFB1, AFB2, AFG1 and AFG2
are the major ones), and AFB1 is the most toxic one
and accounts for most of the AFTs (Boutrif, 1998).
Different countries have established different regula-
tions on the maximum content of AFTs, AFB1 or
both in food and feed. China sets the regulation limit
at 20 ppb for AFB1 in peanut oil (National Health
and Family Planning Commission of the People’s
Republic of China & China Food and Drug Adminis-
tration, 2017). Peanut oil containing less than 20 ppb
AFTs is also considered safe by the U.S. Food and
Drug Administration (Korani et al., 2017).
High-performance liquid chromatography (HPLC)

(Daradimos et al., 2000), liquid chromatography–tan-
dem mass spectrometry (LC-MS/MS) (De Santis et al.,
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2017), MALDI TOF mass spectrometry (Ramos Cath-
arino et al., 2005), FRET-based fluorescence immu-
noassay (Zekavati et al., 2013), electrokinetic capillary
chromatography (Holland & Sepaniak, 1993) and
enzyme-linked immunosorbent assay (Yang et al.,
2009) have been used to determine AFB and AFG
contents. Extraction and isolation of AFTs in these
methods are labour-intensive, time-consuming, invasive
to samples, usually performed in the laboratory and
require large amount of organic solvents (Tripathi &
Mishra, 2009; Zhang et al., 2014).

Near IR (NIR) spectroscopy and mid-IR (MIR)
spectroscopy have been combined with chemometrics
to detect AFB1 and AFTs in samples through the
developed models in quantitative and qualitative anal-
ysis. These methods required less detection time and
preparation time, which could save solvents, samples
and cost. In quantitative analysis, partial least-squares
(PLS) regression has usually been combined with IR
to evaluate the content of AFB1 in paddy rice (Zhang
et al., 2014), red chilli powder (Tripathi & Mishra,
2009), etc., and the content of AFTs in maize (Lee
et al., 2015), peanut paste (Kaya-Celiker et al., 2014),
etc., through the developed regression models. How-
ever, PLS regression could bring false-negative and
false-positive results in prediction intervals of AFB1/
AFTs content, which is not a risk in qualitative analy-
sis (Montgomery, 2013; Brereton, 2015).

In qualitative analysis, NIR spectra have been com-
bined with forward feature selection (FFS)-linear dis-
criminant classifier, FFS-quadratic discriminant
classifier (Durmus� et al., 2017), PLS-DA (Fern�andez-
Iba~nez et al., 2009), etc., to diagnose AFB1-/AFT-
positive figs, maize and barley through the developed
classification models. More than 1000 spectral data
points in NIR spectra were employed to extract princi-
pal features in the above studies for AFB1/AFTs.
Broader, weaker and more overlapped absorption
bands were presented by NIR spectra compared with
MIR spectra. In MIR spectra, around 350–520 data
points in fingerprint regions could also achieve it,
when combined with principal component analysis
(PCA)-DA (Kaya-Celiker et al., 2014), linear discrimi-
nant analysis (Lee et al., 2015), PCA-k nearest neigh-
bour analysis (Shen et al., 2016), etc.

So far, none of the IR analytical techniques has
been explored to detect AFB1-/AFT-positive peanut
oil. MIR spectra could record more recognisable char-
acteristic bands of the contaminated peanut oil. Multi-
variate decision tree (MDT) classification method
could work well in generating important insights based
on these characteristic bands and interpreting those
(Kami�nski et al., 2018). Reduction of data points in
classification models would facilitate the design of por-
table high-speed MIR instruments more efficiently and
economically. Therefore, the objectives of this study

were to assess the feasibility of MIR technique to
screen AFB1- and AFT-positive peanut oil develop
efficient classification models using a novel MDT
algorithm with less data points involved and evaluate
their efficiency and predictive accuracy for unknown
samples. Findings of this study will build models that
can be incorporated in the design of portable high-
speed multitasking MIR instruments for a real-time
monitoring and high-throughput screening with cost
advantage.

Materials and methods

Preparation of the contaminated peanut oil samples

The AFT-contaminated samples were produced using
the general AFTs induction methods (Fern�andez-Iba~nez
et al., 2009; Kaya-Celiker et al., 2014). About 5 kg pea-
nuts, purchased from a local retailer, were placed in a
humidity chamber and the humidity was set to 85% at
27 °C to induce the growth of AFTs. About 35 g incu-
bated peanuts were picked randomly, pressed and fil-
tered through a cotton sieve to obtain a peanut oil
sample of about 10 mL (Suihua automatic oil press,
ZY-70, Guangdong, CN). Three samples were produced
in alternate days, and 90 AFT-contaminated oil samples
were collected within 60 days. In this study, samples
were classified as AFB1-/AFTs (AFB1, AFB2, AFG1
and AFG2)-positive when the content of AFB1/AFTs
was higher than 20 ppb and AFB1-/AFT-negative if the
content of AFB1/AFTs was less than 20 ppb.

Determination of AFB1 and AFTs contents

The chemical contents of AFB1 and AFTs in the sam-
ples were provided by China national analytical centre
(Guangdong Institute of analysis). They were deter-
mined using LC-MS/MS (Agilent 1200 SL Series
RRLC/6410B Triple Quard MS, USA), following GB
5009.22-2016 (National Health and Family Planning
Commission of the People’s Republic of China &
China Food and Drug Administration, 2016).

MIR spectra acquisition

A FTIR spectrometer (Nicolet iS50, Thermo Fisher
Scientific, Guangdong, CN) equipped with an all-
reflection diamond attenuated total reflectance (ATR)
crystal accessory and a proprietary DL-a-alanine
doped triglycine sulphate (DLaTGS) detector was used
to obtain the spectra of the oil samples. MIR spectra
were collected in the range of 4000 to 650 cm�1 at a
resolution of 4 cm�1 with 32 scans for each sample at
room temperature. A background spectrum was
obtained against air before each measurement. All the
measurements were done in triplicate and the average
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spectrum was reported. The cleaning of ATR crystal
was done before each measurement.

Statistical methods

The chemical content of each sample in calibration set
was used to classify positive or negative group, which

was categorical dependent variable. Calculated statistics
from the corresponding spectra were used as indepen-
dent variables. Both dependent and independent
variables were used to develop AFB1-MDT and AFTs-
MDT classification models. Each node in a MDT model
represents a class label denoted as a positive-node, nega-
tive-node or complex-node (C1 or C2) (Fig. 1). The
branches of a complex-node were formed based on the
discriminant function (DF). Absorbances at multiple
wavenumbers in the selected spectral region were used
in the DF establishment. DF1 was generated by absor-
bance ratio (AR) and DF2 was generated by moving
window Fisher discriminant analysis (MWFDA) meth-
ods in MDT model as shown in Fig. 1. Each sample in
validation set could be assigned to either positive or neg-
ative by plugging its spectra into established MDT
model. True-positive rate (TPR) measures the propor-
tion of positives that are correctly identified as such.
True-negative rate (TNR) measures the proportion of
negatives that are correctly identified as such (Zweig &
Campbell, 1993). TPR and TNR were used to evaluate
the performance of MDT model. Two MDT models
were both established on MATLAB R2016b software
(The MathWorks, Inc., MA, USA) for AFB1 and
AFTs. Eighteen out of ninenty oil samples were ran-
domly chosen as the validation set and not subjected to
the modelling process. The remaining seventy two oil
samples were used as the calibration set. For AFB1-
MDT modelling, AFB1 contents were 2–635 ppb (seven
AFB1-negative and eleven AFB1-positive) in validation
set and 2–2497 ppb (twenty AFB1-negative and fifty-
two AFB1-positive) in calibration set. For AFTs-
MDT modelling, AFTs contents were 2–982 ppb (five

Figure 1 Multivariate decision tree for screening of peanut oil sam-

ples. P-positive; N-negative.

Figure 2 MIR spectra of peanut oil sam-

ples; the inset plot shows an enlarged version

of the spectra in the region of 1760–
1680 cm�1.
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AFT-negative and thirteen AFT-positive) in validation
set and 2–3699 ppb (twelve AFT-negative and sixty
AFT-positive) in calibration set.

Generation of discrimination function 1

Absorbance ratio method has been used to detect com-
positional differences in order to identify waste cook-
ing oil, determinate degree of deacetylation in chitin
and distinguish AFTs contamination higher than
100 ppb in single corn kernel (Shigemasa et al., 1996;
Pearson et al., 2001; Huang et al., 2016). ARDF was
expressed as follows:

fðai; ajÞ ¼ P; ai
aj
\ARthreshold

C2; otherwise;

�
ð1Þ

where ai and aj were absorbances at selected represen-
tative wavenumber i and j, respectively. P was positive,
and ARthreshold was the decision threshold of the
ARDF. Averages of each pair of adjacent AR values

were plotted to find the ARthreshold maximising TPR
with no negative miscarriage. ARDF was used to be
the DF1 for the C1-node in MDT to screen highly
contaminated AFB1-/AFT-positive samples (Fig. 1).

Generation of discrimination function 2

Fisher discriminant analysis method could classify
samples based on a linear discriminant function (LDF)
of spectral features in selected spectral wavebands (Li
et al., 2003). It was an effective tool used in spectral
pattern recognition (Diniz et al., 2014; Durmus� et al.,
2017). The LDF was expressed as follows:

fðAÞ ¼ P;
Pn
i¼1

xiai\xthreshold

N; otherwise;

8<
: ð2Þ

where data set A = [a1, a2, . . ., an], n was the number of
spectral data points, xi was weight factor of ai (i = 1,
2, . . ., n), xthreshold was the decision threshold of the

Figure 3 DF1 and DF2 classification results of MDT model in calibration (a and b) and validation (c and d) for AFB1. Positive samples

denoted by open circles; negative samples denoted by filled circles.

© 2018 Institute of Food Science and Technology International Journal of Food Science and Technology 2018

Screen aflatoxins using FTIR with MDT Y. Yang et al. 2389



LDF, P was positive, N was negative. xi and xthreshold

were determined based on the principle of maximising
the ratio of between-class variance and minimising the
ratio of within-class variance (Li et al., 2003).

Moving window (MW) technique was combined
with FDA method to develop the LDFs in all win-
dows of selected spectral wavebands. Windows of vari-
ous sizes moved over the region with the moving
distance as one wavenumber. The optimal LDF
(OLDF) was obtained when its corresponding window
contained minimum spectral data points, and its TPR
and TNR were closest to 1. OLDF was used to be the
DF2 in MDT model for the C2-node to screen the rest
of AFB1-/AFT-positive samples (Fig. 1).

Results and discussion

Interpretation of MIR spectra

Mid-IR spectrum reflected the molecular structure
information of peanut oil, AFTs and their source fungi
in oil samples. All spectra looked very similar (Fig. 2).
Bands around 3475 cm�1, at 3008, 2922 and 2853
cm�1, at 1743 cm�1 and 1710 cm�1, at 1465 cm�1 and
1377 cm�1, around 1237–1033 cm�1, at approximately
1237–1033 cm�1, at around 965 and 915 cm�1, at
722 cm�1 were observed in all the spectra. The oil
samples were mainly glycerol esters of different fatty
acids, and the highly unsaturated molecules in the
complex might lead to characteristic bands in the same
regions (Fennema, 1997; Kaya-Celiker et al., 2014).
The above bands could be contributed to the overtone
of the glyceride ester carbonyl absorption, C=C-H cis-
stretching, asymmetric and symmetric C-H stretching
modes of the methylene groups, the C=O group of
triglycerides and dicarboxylic monoesters in oxidation
products, the scissoring band of the bending vibration
of the methylene group and symmetrical bending
vibration of the methyl groups, asymmetric coupled
vibrations of C-C (=O)-O and O-C-C, C=C-H out
of plane bending vibration of trans- and cis-disubsti-
tuted olefins, the combination of rocking and the
out of plane bending vibrations of cis-disubstituted
olefin (Sinclair et al., 1952; Fennema, 1997; Guill�en &
Cabo, 1997; Pinto et al., 2010; Karunathilaka et al.,
2017).

With the increase in AFTs (AFB1) contamination,
decrease in the absorbance around 1743 cm�1 and
increase in the absorbance around 1710 cm�1 were
observed (Inset in Fig. 2). Fungi could break lipids
down into FFA and partial glycerides. Absorption
around 1743 cm�1 and 1710 cm�1 were due to ester
linkage in oil and dicarboxylic monoesters produced
from cleavage and oxidation of free fatty acids (FFA)
following oil hydrolysis, respectively. These wavebands
could be used to represent the fungal deterioration

(Sinclair et al., 1952; Fennema, 1997; Kaya-Celiker
et al., 2014).
Bands belonging to absorption of the functional

groups of AFTs were not observed. Absorbance bands
of the relative small amount of AFTs might have been
overlapped by those of the oil, as suggested by Kaya-
Celiker et al. (2014).
The spectral absorption at waveband of 1760–

1680 cm�1 was obviously different from those at other
spectral sections and changed with contamination
intensity. Therefore this waveband was selected as the
fingerprint region to develop classification models.

AFB1-MDT model calibration and validation

Absorbances of 1743 cm�1 and 1710 cm�1 in the fin-
gerprint region were selected as ai and aj in (1), respec-
tively. AR was reversely proportional to AFB1
content corresponding to the increasing absorbance at

Figure 4 The number of spectral data points in LDFs developed in

165 windows for AFB1 (a) and LDFs developed in 126 windows for

AFTs (b).
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1710 cm�1 and the decreasing absorbance at
1743 cm�1 (Fig. 3a). ARthreshold value of 13.05 was
used in DF1 to screen forty AFB1-positive samples.

MWFDA was applied in the fingerprint region
(forty-one data points in total). A total of 861 win-
dows with size varying from 1 to 41 were used. LDFs
developed in 165 windows could give 100% TPR and
TNR (Fig. 4a). The OLDF developed in the narrowest
window of 1707–1685 cm�1 (twelve data points) was
used to be the DF2 for C2-node (Fig. 3b). With the
setup of both DFs, the AFB1-MDT model could com-
pletely classify the contaminated oil samples. The cali-
bration model applied to the validation set yielded
100% TPR and TNR (Fig. 3c, d).

AFTs-MDT model calibration and validation

The AFTs-MDT modelling and the resultant trend were
very similar to those of AFB1. ARthreshold was set to
13.05 in DF1, forty AFT-positive samples could be

screened (Fig. 5a). LDFs for AFTs developed in 126
windows could give 100% TPR and TNR (Fig. 4b).
The OLDF developed in the window of 1732–
1697 cm�1 (nineteen data points) was the DF2
(Fig. 5b). With the setup of the both DFs, the AFTs-
MDT model could completely classify the contaminated
oil samples. The calibration model applied to the valida-
tion set also yielded 100% TPR and TNR (Fig. 5c, d).

Modification of discrimination function 2

The AFB1-MDT model was developed using fourteen
different data points including two data points in DF1
and twelve data points in DF2. The AFTs-MDT model
was developed using twenty different data points includ-
ing two data points in DF1 and nineteen data points in
DF2. The two models were optimal for the design of
AFB1- and AFT-screening instruments, respectively.
The number of the total different data points in the

two models was 30. Optimising the number of the total

Figure 5 DF1 and DF2 classification results of MDT model in calibration (a and b) and validation (c and d) for AFTs. Positive samples

denoted by open circles; negative samples denoted by filled circles.
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different data points in the two models was necessary in
the design of a multitasking instrument capable of
simultaneously identifying AFB1- and AFT-positive
samples. Further reduction in the total different data
points was achieved by window adjustment on two
DF2s in both models. The different data points in each
of the 20 790 window combinations (126 9 165) of the
two DF2s and the two different data points in DF1s
were combined and compared to get the minimum num-
ber. The minimum number was twenty-three, including
nineteen data points in DF2 in adjusted window for
AFB1 (Fig. 6a, b), the nineteen data points in DF2 in
adjusted window for AFTs (Fig. 6c, d) and four data
points in both DF1s. The two DF2s modelled data
points in adjusted windows 1726–1691 cm�1 and 1732–
1697 cm�1 for AFB1 and AFTs, respectively.

Conclusions

A new analytical procedure, MIR spectra combined
with a novel MDT method, successfully screened the

contaminated peanut oil. AR and MWFDA methods
were used to form DFs for complex nodes in the
MDT models. TPR and TNR of two MDT models
could both reach 100% in calibration and validation.
Moving window and window adjustment techniques
could reduce the total different data points to only
twenty-three in two models. The MDT models with
reduced number of data points in this study can be
incorporated in the design of portable high-speed mul-
titasking MIR instruments for screening AFT- and
AFB1-positive peanut oil. The further studies of the
applicability of models should be considered on a lar-
ger sample size to improve robustness.
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