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a b s t r a c t

Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed.
However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study,
we propose a set of computational photography techniques based on sparse signal representation to remove
optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary
advantage of the proposed method is that many prior point spread functions calibrated at different depths
are successfully used for restoring visual images in a short time, which can be generally applied to nonblind
deconvolution methods for solving the problem of the excessive processing time caused by the number of point
spread functions. The optical software CODE V is applied for examining the reliability of the proposed method
by simulation. The simulation results reveal that the suggested method outperforms the traditional methods.
Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually.
Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens
camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of
single-lens cameras.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Simple lenses with spherical surfaces are lightweight, inexpensive,
easy to process, yet highly flexible optical equipment that can be
used for numerous applications such as single-lens cameras. However,
simple lenses with spherical surfaces suffer from optical aberrations that
can seriously reduce image quality. Therefore, they cannot be directly
used in high-resolution and high-quality photography. To enhance the
performance of such imaging systems, different types of optical methods
are used for optimization and compensating for aberrations such as
increasing the number of lenses and using aspheric surfaces. Even
though these methods significantly enhance the performance of optical
imaging systems, they have high cost, structure complexity, volume, and
weight problems.

Photography has attracted the attention of researchers who have
been studying imaging sensors for a long time, not only to decrease
the requirements of the hardware but also to enhance the performance
of simple imaging systems. Recently, photography was transformed
by computational photography that combines digital image process-
ing with imaging systems for image restoration [1]. The basic meth-
ods of image restoration can be classified into two categories: blind
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deconvolution method [2–4] and nonblind deconvolution approach
[5–8] depending on whether the point spread function (PSF) is known.
Over the years, many deconvolution approaches have been developed,
varying considerably in their speed and sophistication. Blind deconvo-
lution algorithms can obtain superior images by employing the features
of degraded images to estimate PSFs. However, the minimum of the
resulting cost function does not correspond to a true sharp solution. This
is particularly true if there is no evident enhancement in the degraded
images when the optical aberrations are substantial. In contrast, non-
blind deconvolution algorithms can significantly enhance the quality of
images using the calibrated PSFs of imaging systems. These prior PSFs
are typically measured at a single depth, thereby leading to inadequate
results or even failures when the objects are outside the calibration
plane. Although nonblind deconvolution performed by calibrating PSFs
at different depths is the best method for recovering images, it requires
complex calibrations for estimating PSFs to guarantee the accuracy.
Moreover, the deblurring images obtained are time consuming. The
calibration problem can be solved by allocating sufficient time for
calibrations during the preparation step. However, all the prior PSFs
must be used for the recovery of the images, which is unsuitable for a
realistic implementation.
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Fig. 1. Single-lens camera developed by authors. Effective focal length (EFL) is 35 mm, f/2.4.

Recently, Schuler proposed a nonblind deconvolution method to
correct the aberrations in optical imaging systems by encoding the
errors of imaging systems on a reference plane [9]. The performance
of photographic single lenses was significantly improved. However, as
described by Schuler, the PSF is only measured on a single calibration
plane, which indicates that this method remains conventional in its
nature. Further, the images used for recovery must correspond to the
field of view of the reference plane; otherwise, the deblurred images
will not be effectively enhanced owing to the large matching error and
lack of prior PSFs. Heide suggested a robust deconvolution algorithm
with a cross-channel gradient prior that enforces sparsity of hue changes
across the image [10]. Although this method enhances the image quality
of single-lens cameras remarkably, the shortcomings of the nonblind
deconvolution methods remain. The quality of recovered images can
decrease or even become unacceptable because of a defocus and object
distance variance. Li designed a single-lens camera and obtained accept-
able images by combining the advantages of both nonblind deconvolu-
tion methods and blind deconvolution approaches [11]. However, this
method also experiences the same problems as the previous.

For image recovery, we considered other technologies that can effec-
tively solve the shortcomings of the conventional nonblind deconvolu-
tion methods. Sparse signal representations [12–15] were considerably
successful in achieving superior-image resolutions for several years. For
example, many image priors can be used for learning two overcomplete
dictionaries𝐷ℎ and𝐷𝑙,𝐷ℎ for high-resolution image patches, and𝐷𝑙 for
low-resolution patches. Each high-resolution and low-resolution image
patch pair is trained to exhibit the same sparse representations. In the
application, the sparse representation of a low-resolution image patch
in terms of 𝐷𝑙 can be used for determining the corresponding high-
resolution image patch from 𝐷ℎ rapidly and accurately. Moreover, the
prior PSFs can be trained to dictionaries in this manner. Therefore,
it is realistic to expect that a considerable number of prior PSFs can
be used for the rapid and accurate recovery of images using nonblind
deconvolution methods.

Inspired by this idea, we propose a set of computational photography
techniques based on sparse signal representation to correct optical aber-
rations. Moreover, we demonstrate the proposed methods by recovering
the images obtained by a single-lens camera, as indicated in Fig. 1.
Further, optical software CODE V is applied for examining the reliability
of the proposed method using a simulation.

In this study, the PSF of each degraded image is first accurately
calibrated using a high-quality image corresponding to the degraded
image, denoted as 𝑘𝑘. Algorithms based on hyper-Laplacian prior [16]
are used for estimating the PSF of the same scene, denoted as 𝑘𝑢𝑘. Many
PSFs of prior images are obtained using this approach. Then, PSFs 𝑘𝑢𝑘 are
used for training a coupled dictionary of sparse representations. Then,
the PSF of a single test image is estimated to be the same as 𝑘𝑢𝑘, denoted
as 𝑘𝑦. PSF 𝑘𝑦 is sparsely represented by the coupled dictionary to obtain
the most relative prior PSF 𝑘𝑢𝑘. The PSF 𝑘𝑘 that corresponds to the
dictionary PSF 𝑘𝑢𝑘 is used for deblurring [17] the test image. Finally, a
blind deconvolution method [16] is applied for reducing the algorithmic
noise and matching error to acquire a sharp image. The diagram of the
proposed method is displayed in Fig. 2.

Fig. 2. Diagram of proposed method.

The remainder of this paper is organized as follows. Section 2
provides the details of the theory and method. In Section 3, the per-
formance of the proposed method is verified using numerical tests and
experiments. The conclusions are presented in Section 4. To provide a
convenient and clear approach to restore the recovered images using the
proposed method, we present an comprehensively detailed description
of our research that includes knowledge of imaging sensors, applied
optics, and digital image processing.

2. Deblurring model

In this section, we analyze the deblurring model. Image deblurring is
a longstanding method that attempts to recover a sharp image from its
blurred observation. The blurred image is modeled as the convolution
of the sharp image with a PSF as

𝑦 = 𝑘 ⊗ 𝑥 + 𝑛. (1)

Here, y is the blurred image, x is the sharp image, k is the PSF, ⊗ is the
2D convolution operator, and n is the noise operator. In this study, the
unknown sharp image x is recovered by 𝑦 = 𝑘 ⊗ 𝑥. The overall process
of the proposed approach is introduced in Algorithm 1.

Undoubtedly, degraded images can be effectively restored using
prior PSFs corresponding to their own calibration planes, which is
the most important advantage of nonblind deconvolution methods. For
the process of recovering images, the primary idea of Algorithm 1
is to solve the problem of excessive processing time caused by the
number of PSFs rather than outperform the performance of nonblind
deconvolution methods. That is, the runtime of nonblind deconvolution
can be significantly reduced using the proposed method when more than
one prior PSF is used for restoring images. In practical applications,
nonblind deconvolution methods can be suitably used for the recovery
of images.

Note that every calibrated PSF has a limited depth of field because
the optical aberrations vary in a nonlinear and complicated manner
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in different spaces, which makes traditional nonblind deconvolution
methods unsuitable for realistic implementation. The proposed method
employs numerous prior PSFs in variant planes to solve this problem.
The algorithms used for obtaining the prior PSFs are described in detail
in Section 2.1. In Section 2.2, the sparse representation method applied
in this study is introduced. The process of image recovery is presented
in Section 2.3.

2.1. Prior PSFs

We investigate prior PSFs of degraded images in Section 2.1.1. Then,
the theory of depth of field is described in Section 2.1.2. This is used
to demonstrate that the prior PSFs calibrated at a single depth are not
sufficient for restoring images. In practice, we provide an alternative
approach to determine the number of prior PSFs in the vertical direction
of an object space.

2.1.1. Investigate prior PSFs
In previous studies, image alpha-matte extraction [18], gradient

distribution [19], and edge feature [20] were typically used as the
image prior for deconvolution methods. Although the illumination
intensity for the recovery of visible images exhibits no effect on the
optical aberrations, it can affect the image quality based on several
factors including nonuniform illumination, environmental change, and
different shooting angles. The proposed method suggests extracting the
high frequencies of images as image priors to eliminate the difference
caused by the variation of the illumination intensity. Discrete filters that
are used for generating the high-frequency versions are represented as
follows:

𝑓1 = [−1, 1], 𝑓2 = [−1, 1]𝑇 , (2)

where the superscript ‘‘T ’’ indicates a transposition. Both filters are
applied for yielding two feature vectors for each image, which are
concatenated into one vector as the final high-frequency versions:

𝑒𝑦𝑖 = 𝑦 ⊗ 𝑓𝑖, 𝑒𝑥𝑖 = 𝑥 ⊗ 𝑓𝑖, 𝑖 = 1, 2,

𝑇𝑦 = {𝑒𝑦1, 𝑒𝑦2}, 𝑇𝑥 = {𝑒𝑥1, 𝑒𝑥2}. (3)

In Eq. (3), 𝑇𝑥 and 𝑇𝑦 are the sharp image and degraded image in high-
frequency space, respectively. Then, the PSFs of the degraded images
are calibrated using the original high-quality images, denoted as 𝑘𝑘. The
cost function for calculating PSF 𝑘𝑘 is

min
𝑘𝑘

𝜆‖‖
‖

𝑇𝑥 ⊗ 𝑘𝑘 − 𝑇𝑦
‖

‖

‖

2

2
+ 𝜓 ‖

‖

𝑘𝑘‖‖1 . (4)

The elements 𝑘𝑘𝑖 of 𝑘𝑘 are subject to constraints: 𝑘𝑘𝑖 ≥ 0, ∑𝑖𝑘𝑘𝑖 = 1.
Eq. (4) consists of two terms. The first term is applied for considering
the formation model equation (1) in the high-frequency space. To reduce
noise in the kernel, 𝓁1 regularization is added to 𝑘𝑘. The weights 𝜆 and
𝜓 control the relative strength of 𝑘𝑘 and the image regularization terms,
respectively.

Moreover, the method in this study relies on calibrating PSFs of
degraded images without high-quality images, denoted as 𝑘𝑢𝑘. The cost
function for estimating PSF 𝑘𝑢𝑘 is

min
𝑘𝑢𝑘

𝜆‖‖
‖

𝑇𝑢𝑘 ⊗ 𝑘𝑢𝑘 − 𝑇𝑦
‖

‖

‖

2

2
+

‖

‖

𝑇𝑢𝑘‖‖1
‖

‖

𝑇𝑢𝑘‖‖2
+ 𝜓 ‖

‖

𝑘𝑢𝑘‖‖1 . (5)

Elements 𝑘𝑢𝑘𝑖 of 𝑘𝑢𝑘 are subject to the constraints that 𝑘𝑢𝑘𝑖 ≥ 0, ∑𝑖𝑘𝑢𝑘𝑖 =
1. Here, 𝑇𝑢𝑘 is an unknown sharp image in the high-frequency space,
𝑘𝑢𝑘 is an unknown blurring kernel. Eq. (5) comprises three terms. The
operational principle of the first and the third terms are the same as
those of Eq. (4). The second term is a normalized sparsity measure to
encourage scale-invariant sparsity in the reconstruction [16]. Then, we
can easily obtain the corresponding relation between 𝑘𝑘 and 𝑘𝑢𝑘 using
Eqs. (4) and (5), denoted as prior PSFs {𝑘𝑘, 𝑘𝑢𝑘}. The nonconvex function
Eq. (5) can be optimized with an initialization on 𝑇𝑥 and 𝑘𝑘, and then
alternately updated between 𝑇𝑥 and 𝑘𝑘. The optimization problems of
Eq. (4) and (5) were solved well in [16,17].

2.1.2. Number of prior PSFs
Nonblind deconvolution methods are closely related to the depth of

field of optical imaging systems. Depth of field is the distance between
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Fig. 3. Depth of field of optical imaging system.

the closest and the farthest objects in a photoappear acceptably sharp,
as indicated in Fig. 3.

In Fig. 3, the depth of field 𝛥 is the distance between 𝑝1 and 𝑝3, which
can be calculated by the formula:

𝛥 =
−2𝑝𝑍𝐷
𝐷2 −𝑍2

. (6)

Here, 𝐴′, 𝐵′
1, and 𝐵′

2 are the image of object 𝐴, 𝐵1, and 𝐵2, respectively.
p is the distance between the focus point p2 and the entrance pupil p4,
D is the diameter of p4, and Z is the minimum diameter of an object
that can be distinguished by the imaging system. The smaller the Z,
the higher the image quality. Theoretically, the purpose of nonblind
deconvolution algorithms for imaging sensors is to reduce Z, which
further corrects the optical aberrations for optical imaging systems using
the prior PSFs of the calibration planes. In this case, the depth of field is
denoted as 𝛥𝑐 , which is obtained by combining the optical systems with
prior PSFs. Further, until now, there are no nonblind algorithms that
can ideally calculate optical aberrations such that the depth of field 𝛥𝑐
is less than 𝛥 when their p, Z, and D are the same. Therefore, the vertical
direction of the maximal sampling interval of the calibration planes can
be obtained by Eq. (6). Note that we do not consider the effect of the
size of sensitization devices because the elements of the charge-coupled-
device (CCD) and complementary metal-oxide semiconductor (CMOS)
are frequently considerably smaller than the airy disks of simple optical
systems for visible imaging.

In practice, for a simple optical system, objects are typically near its
objective lens to obtain sufficient detailed texture, which indicates that
Z should be small. For example, Z should be less than 0.1 mm if we want
to distinguish human hairs. Therefore, according to Eq. (6), each depth
of field 𝛥 will be narrow. The relation graph of Z, p, and 𝛥 is displayed
in Fig. 4.

Fig. 4 indicates that the depth of field 𝛥 will be greater with a
decrease in entrance pupil D. According to the information in Fig. 4, 𝛥𝑐
is not more than 800 mm in the worst case:.𝑍 = 3 mm, 𝐷 = 23.03 mm,
and 𝑝 = 3000 mm. If we want to distinguish objects less than 1 mm,
the maximum value of 𝛥𝑐 is only a few tens of millimeters. The images
recovered by incorrect prior PSFs will introduce a considerable number
of artifacts because of the optical aberrations that are mistakenly
corrected. Therefore, in real applications, numerous prior PSFs must
be used for recovering images to ensure there are suitable prior PSFs
of the calibration planes that can accurately and effectively enhance
the quality of the images. We further demonstrate this opinion through
experiments.

2.2. Training the coupled dictionary

In this section, we extend the conventional deconvolution methods
using the key idea from coupled sparse coding [21]. The prior PSFs
are used for training the coupled dictionary of sparse representation.
Feature transformation filters are used for extracting the characteristics
of prior PSFs to ensure that the computed coefficients fit the most
relevant of the coupled dictionary and enhance the prediction accuracy
of the sparse representation for image reconstruction.

2.2.1. Feature representation
Typically, high-pass filters are selected for extracting the features of

prior images to boost the prediction accuracy of sparse representation,
such as the edge information [22], contours [23], and first and second-
order gradients [24]. In this study, the first and second-order derivatives
are considered as the features for 𝑃𝑆𝐹 owing to their effectiveness and
simplicity. 𝑃𝑆𝐹 is a PSF in a matrix representation. The 1-D filters used
for extracting the derivatives are as follows:

𝑓1 = [−1, 0, 1], 𝑓3 = [1, 0,−2, 0, 1], 𝑓2 = 𝑓𝑇1 , 𝑓4 = 𝑓𝑇3 . (7)

Here, T indicates transpose. Discrete filters are used for generating four
feature vectors for each 𝑃𝑆𝐹 ; these are concatenated into one vector as
the final representation:

𝑒𝑢𝑘𝑖 = 𝑘𝑢𝑘 ⊗ 𝑓𝑖, (8)
𝐹𝑢𝑘 = {𝑒𝑢𝑘1, 𝑒𝑢𝑘2, 𝑒𝑢𝑘3, 𝑒𝑢𝑘4}. (9)

Here, 𝐹𝑢𝑘 is a vector that includes the data of four feature vectors. Using
Eqs. (7)–(9), the corresponding relation between 𝑘𝑢𝑘 and 𝐹𝑢𝑘 can be
obtained, denoted as {𝑘𝑢𝑘, 𝐹𝑢𝑘}. Then, the information 𝑘𝑘, 𝑘𝑢𝑘, and 𝐹𝑢𝑘
of the same scene can be obtained by tracing {𝑘𝑘, 𝑘𝑢𝑘} and {𝑘𝑢𝑘, 𝐹𝑢𝑘},
denoted as {𝑘𝑘, 𝑘𝑢𝑘, 𝐹𝑢𝑘}.

2.2.2. Training the coupled dictionary
The primary task of sparse coding is to determine a sparse repre-

sentation of signals using an over-complete dictionary. In general, the
dictionary is learned from a set of training examples.

In this section, our objective is to obtain the dictionaries for PSFs
𝑘𝑢𝑘 and their feature 𝐹𝑢𝑘 from sampled training pairs {𝑘𝑢𝑘, 𝐹𝑢𝑘}, where
𝑘𝑢𝑘 = {𝑘𝑢𝑘1, 𝑘𝑢𝑘2, 𝑘𝑢𝑘3,… , 𝑘𝑢𝑘𝑛} are the set of PSFs estimated using Eq. (5)
and 𝐹𝑢𝑘 = {𝐹𝑢𝑘1, 𝐹𝑢𝑘2, 𝐹𝑢𝑘3,… , 𝐹𝑢𝑘𝑛} are the corresponding features
calculated from Eqs. (7)–(9). The sparse coding problems are

min
𝐷ℎ ,𝐷𝑙 ,𝑍

‖

‖

𝑋𝑐 −𝐷𝑐𝑍‖

‖

2
2 + 𝜆𝐷(

1
𝑁

+ 1
𝑀

) ‖𝑍‖1 , (10)

where

𝑋𝑐 =
⎡

⎢

⎢

⎣

1
𝑁
𝑘𝑢𝑘

1
𝑀
𝐹𝑢𝑘

⎤

⎥

⎥

⎦

, 𝐷𝑐 =
⎡

⎢

⎢

⎣

1
𝑁
𝐷ℎ

1
𝑀
𝐷𝑙

⎤

⎥

⎥

⎦

, (11)

𝐷ℎ = arg min
𝐷ℎ ,𝑍

‖

‖

𝑘𝑢𝑘 −𝐷ℎ𝑍‖

‖

2
2 + 𝜆𝐷 ‖𝑍‖1 , (12)

𝐷𝑙 = arg min
𝐷𝑙 ,𝑍

‖

‖

𝐹𝑢𝑘 −𝐷𝑙𝑍‖

‖

2
2 + 𝜆𝐷 ‖𝑍‖1 . (13)

Here, 𝐷ℎ and 𝐷𝑙 are dictionaries of sparse representations, which are
trained using prior PSFs 𝑘𝑢𝑘 and their gradient feature 𝐹𝑢𝑘, respectively.
To train the coupled dictionary 𝐷𝑐 , Eq. (10) forces PSF priors and
their feature representations to share the same codes Z by combining
Eqs. (11)–(13). The parameter 𝜆𝐷 is a weight for the sparsity regular-
ization. N and M are the dimensions of 𝑘𝑢𝑘 and 𝐹𝑢𝑘 in the vector form,
respectively. 1∕𝑁 and 1∕𝑀 are balance terms.

The optimization is performed in an alternative manner over Z and
𝐷𝑐 :

(1) Select 𝑋𝑐 using the formula:

‖

‖

‖

𝑋𝑐𝑖 −𝑋𝑐𝑗
‖

‖

‖

2

2
+ 𝜆𝐷

‖

‖

‖

𝑋𝑐𝑖 −𝑋𝑐𝑗
‖

‖

‖1
+ 𝜆𝐸

‖

‖

‖

𝑋𝑐𝑖 −𝑋𝑐𝑗
‖

‖

‖0
≥ 𝑄, (14)

s.t. 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, 2,… , 𝑛.
Here, Q is a threshold value used for controlling the difference

between the elements of 𝑋𝑐 ⋅ 𝜆𝐸 is a weight.
(2) Initialize 𝐷𝑐 with a Gaussian random matrix with each column

unit normalized.
(3) Fix 𝐷𝑐 , update Z using the following formula:

𝑍 = argmin
𝑍

‖

‖

𝑋𝑐 −𝐷𝐶𝑍‖

‖

2
2 + 𝜆𝐷 ‖𝑍‖1 . (15)

(4) Fix Z, update 𝐷𝑐 using the following formula:

𝐷𝑐 = argmin
𝐷𝑐

‖

‖

𝑋𝑐 −𝐷𝑐𝑍‖

‖

2
2, 𝑠.𝑡.‖‖𝐷𝑐

‖

‖

2
2 ≤ 1. (16)

204



J. Cui, W. Huang Optics Communications 412 (2018) 201–213

Fig. 4. Relation graph of 𝑍, 𝑝, and 𝛥. Real camera in this study: D = 23.03 mm.

Fig. 5. Distance between R1 and R3 is the depth of field corresponding to calibration plane
R2,𝑅 ∈ {𝐴,𝐵, 𝐶, 𝐸, 𝐹 ,𝐺}. (a) Original prior PSFs; (b) prior PSFs selected by proposed
method.

(5) Update {𝑋𝑐 , 𝐷𝑐𝑍}.
(6) Iterate between (2), (3), and (4) until convergence.
In practice, different PSFs probably recover a degraded image well if

the image is obtained at the overlapping part of their depth of fields. This
case should be avoided because the size of the dictionaries is limited.
However, there is no discipline that can be used for selecting PSFs in
different depth of fields because of the optical aberrations of imaging
systems that vary in a nonlinear and complicated manner. The first step
of the optimization method provides a simple and effective method to
solve this problem. The unusable prior PSFs are significantly removed
when the volume of data is large. The schematic is displayed in Fig. 5.
Moreover, 𝑘𝑘, 𝑘𝑢𝑘, 𝐹𝑢𝑘, and𝐷𝑐𝑍 of the same scene can be easily obtained
by tracing the relationship {𝑋𝑐 , 𝐷𝑐𝑍}, denoted as {𝑘𝑘, 𝑘𝑢𝑘, 𝐹𝑢𝑘, 𝐷𝑐𝑍}.

The prior PSFs displayed in Fig. 5 are calibrated at A2, B2, and C2,
and denoted as PSF1, PSF2, and PSF3, respectively. The degraded images
obtained in the overlapping part d can be recovered well by any one of
the three prior PSFs. Moreover, all the degraded images corresponding
to PSF2 can be restored using PSF1 and PSF3. A part of the volume of
coupled dictionary 𝐷𝑐 is unused by PSF2. Although degraded images
obtained in the overlapping part d1 and d2 can be restored by two
prior PSFs, the length between E1 and G3 is markedly enlarged and the
unusable PSF2 is removed. Therefore, more degraded images obtained

at different depths can be recovered using suitable prior PSFs owing to
the increase in the useful PSFs of the coupled dictionary.

2.3. Image recovery

In this section, Eq. (5) is used for estimating the PSF of a single test
image without any high-quality images. Then, the feature of the PSF
is represented by the dictionary 𝐷𝑙 to obtain the coefficients of sparse
coding. The following formula is used:

𝑍 = argmin
𝑍

‖

‖

‖

𝐹𝑦 −𝐷𝑙𝑍
‖

‖

‖

2

2
+ 𝜆𝐷 ‖𝑍‖1 . (17)

Here, 𝐹𝑦 is the feature of the PSF corresponding to the test image. Z
represents the vector of the coefficients. For the model of training dic-
tionaries, dictionaries𝐷ℎ and𝐷𝑙 exhibit the same sparse representations
for the sampled training pairs {𝑘𝑢𝑘, 𝐹𝑢𝑘}. We can obtain a PSF as follows:

𝑘𝐷ℎ = 𝐷ℎ𝑍. (18)

Here, 𝑘𝐷ℎ is the PSF predicted by dictionary 𝐷ℎ. Typically, we cannot
determine a prior PSF 𝑘𝑢𝑘 the same as 𝑘𝐷ℎ because the predicted PSF
does not exist in the coupled dictionary. It is not realistic to train a
dictionary to include all PSFs of an imaging system. As each calibrated
PSF exhibits a depth of field, we proposed a method to solve this problem
by predicting the most relevant 𝑘𝑢𝑘 to 𝑘𝐷ℎ. The function is expressed as
follows:

𝑘𝑢𝑘 = argmin
𝑘𝑢𝑘

‖

‖

𝑘𝑢𝑘 −𝐷ℎ𝑍‖

‖

2
2 + 𝛿 ‖𝑍‖1 , 𝑘𝑢𝑘 ∈ {𝑘𝑘, 𝑘𝑢𝑘, 𝐹𝑢𝑘}. (19)

Here, the parameter 𝛿 balances the sparsity of the solution and the
fidelity of the approximation to 𝑘𝑢𝑘. Following this approach, the
inference PSF 𝑘𝑘 can be determined from the relationship {𝑘𝑘, 𝑘𝑢𝑘, 𝐹𝑢𝑘}.
Then, PSF 𝑘𝑘 is used for deblurring the blurred image to obtain image
u [17]:

min
𝑢
𝜆‖
‖

𝑢 ⊗ 𝑘𝑘 − 𝑦‖‖
2
2 + ‖

‖

∇𝑣𝑦‖‖𝜂 + ‖

‖

∇ℎ𝑦‖‖𝜂 . (20)

Here, 𝜂 is a constant. Finally, the blind deconvolution algorithm of [16]
is used for further enhancing the quality of image u to acquire a sharp
image x.

3. Experiments

In this section, we describe the numerical experiments performed
using optical software CODE V to provide prior RGB images and
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Fig. 6. (a) Sketch map of the optical imaging system; (b) 3D view of the system; (c) prior images obtained on different planes. The term ‘‘defocus’’ indicates that an image is obtained
outside the image plane of the best focus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

demonstrate the reliability of the proposed method. Then, we discuss
whether the dictionaries provided by simulations can be used for real
tests. It should be noted that CODE V is one of the most popular and
reliable optical software packages used for designing optical imaging
systems; it is similar to ZEMAX. The quality of images obtained using
CODE V is accredited in the field of precision optics.

We do not consider algorithms that are time consuming for deblur-
ring images in our experiments, even though they can obtain clearer
images than the rapid algorithms. In addition, the field of view of
the camera is not divided. Single-lens cameras with spherical surfaces
typically exhibit a small field of view because their optical aberrations
cannot be corrected efficiently. The images can be recovered well by
PSFs of the full field of view, even though the PSFs in the center of the
small field of view are different from the ones around the corners.

In practice, we observe that the upsampled version of a prior PSF
is better than its original PSF for feature extraction. In this study,
the original PSFs are upsampled by a factor of two using bicubic
interpolation before extracting the gradient features. The parameter
𝜓 depends on the user-specified kernel size ℎ(𝑛 × 𝑛) according to the
formula: 𝜓 = 3𝑛∕13. The other parameters are 𝜆 = 3000, 𝜆𝐷 = 0.1,
𝜆𝐸 = 0.01, 𝜂 = 1, 𝑛 = 19, 𝑄 = 1, and 𝛿 = 0.1.

Although root-mean-square error (RMSE) and structural similarity
(SSIM) are common and reliable choices for image quality metrics
when the reference images are provided, they are not fully reliable
for evaluating the visual image quality, particularly for natural images
recovered using nonblind deconvolution methods [25,26]. Prior PSFs
are the most important part of nonblind deconvolution. However, it
is unacceptable to calibrate different ambient brightness of a same
depth of field, which leads to a significant difference between the
recovered image and the original image. In the literature, it is difficult to
locate studies that use the reference image assessment metric to assess
visible deblurred images. In fact, currently, there is no suitable refer-
ence image assessment metric for single-lens cameras with spherical
surfaces because spherical aberration, coma, astigmatism, curvature of
the field, distortion, and chromatic aberration cannot be optimized well.
Fortunately, no-reference image assessment metric BRISQUE [26] can
effectively function for evaluating the quality of visual images.

BRISQUE operates in a special domain, which proposes a natu-
ral scene statistic-based distortion-generic blind/no-reference image-
quality assessment model. The scene statistics of locally normalized
luminance coefficients are used for holistically measuring the quality of
the visual images, which quantifies the possible losses of ‘‘naturalness’’
instead of computing the distortion-specific features such as blocking
and ringing. Further, a previous study [26] demonstrated that BRISQUE
is statistically superior to the full-reference structural similarity index
and is highly competitive with respect to all present-day distortion-
generic, no-reference image-quality assessment algorithms.

BRISQUE is applied for rating the blurred and recovered images to
quantify the performance of the proposed method. The score typically
exhibits a value between zero and 100 (zero represents the best quality,
100 the worst). The smaller the value of BRISQUE, the higher the image
quality. We also provide the value obtained using RMSE and SSIM [27].

All simulations were conducted on a 4.0 GHz Intel Core-i7 6700 K
workstation with 32 GB RAM and Ubuntu 14.04 operating system. The
algorithms were compiled by MATLAB R2011b.

3.1. Numerical experiments

3.1.1. Prior images
The simulation model used for obtaining prior images is displayed in

Fig. 6. The shape of the field of view of a single-lens camera is circular.
Moreover, the target size is the same as the size of the largest square
within the circular area. In practice, optical defocus must be considered
because the majority of the images obtained by cameras are outside the
scene plane. The object distance was selected from 100 mm to 6000 mm
with a sample interval of 10 mm to obtain sufficient experimental data.
The range of the defocus value was from 0 mm to 60 mm with an interval
of 1 mm. The number of prior images was approximately 36,000. Notice
that there is no limitation on the number of prior images used for the
experiments when the useful prior PSFs cover the region of interest.
Further, a problem that should be noted is that the smaller the sampling
interval, the higher the accuracy of prediction. We further describe this
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Fig. 7. (a) Dictionary 𝐷ℎ , 𝐷𝑙 — 1024 dictionary atoms are learned with each atom size
equal to 19; (b) PSFs of the same image are obtained by Eqs. (4) and (5), respectively. The
PSFs calculated using Eq. (5) are applied for training the coupled dictionary. The PSFs
estimated by Eq. (4) are used for recovering images.

Fig. 8. Experimental example: the real dictionary size 380 is smaller than the target value
1024. The blank positions along the horizontal axis are invalid data.

in a later section. In the previous case, more prior PSFs will be required
for training dictionaries if the area of interest is enlarged.

The single-lens camera displayed in Fig. 6 corresponds to the camera
displayed in Fig. 1. The wavelength of the red line, forest green line,
and blue line is 656.27250 nm, 587.56180 nm, and 486.13270 nm,
respectively.

3.1.2. Coupled dictionary
The coupled dictionary was trained using 36,000 PSF pairs sampled

from the prior images as indicated in Fig. 7. The maximum size of
the dictionaries was determined by the threshold value Q and number
of prior PSFs. The value of Q was applied to preliminarily control
the difference between the elements of the dictionaries, as previously
described. It can be set to zero if prior PSFs are insufficient. The
maximum number of elements of each dictionary should not exceed
the number of prior PSFs; otherwise, the dictionaries will become
invalid.

Importantly, the threshold value of Eq. (14) and the iteration ac-
curacy of Eqs. (15) and (16) must be carefully selected. The real size
of the trained dictionary will be smaller than the target value if the
threshold and iteration accuracy are selected incorrectly, as indicated
in Fig. 8. The simulation result for a dictionary is used for explaining
this statement, where the real size 380 is smaller than the expected size
1024. In this case, we could use a smaller dictionary for the proposed
method if its atoms have covered the area of interest.

3.1.3. Simulation results
3.1.3.1. Recover images using proposed method at different depths. In
this subsection, many experiments were performed for evaluating the
performance of the proposed method. The images obtained at different
depths were restored using the proposed method, as displayed in Fig. 9.
Each test image was recovered by two PSFs. One was the prior PSF
calibrated using an original high-quality image of the same scene, which
was used for the recovery of primary images. The other was the PSF

Table 1
RMSE, SSIM, and BRISQUE test results.

Image Original Blur Recovery

Building

RMSE 30.6157(a1) 34.0414(a4)
33.8568(a2) 37.3102(a5)
35.8223(a3) 37.6692(a6)

SSIM 0.21560(a1) 0.21660(a4)
0.16730(a2) 0.13710(a5)
0.14530(a3) 0.11820(a6)

BRISQUE 19.6802(a) 52.1378(a1) 36.2165(a4)
59.4542(a2) 32.9700(a5)
65.4440(a3) 39.6778(a6)

Bear

RMSE 16.6205(d1) 15.5276(d4)
17.9957(d2) 16.7491(d5)
18.5261(d3) 18.6848(d6)

SSIM 0.49860(d1) 0.53030(d4)
0.47890(d2) 0.49470(d5)
0.47240(d3) 0.42280(d6)

BRISQUE 17.6020(d) 67.0404(d1) 48.0821(d4)
73.5847(d2) 37.9411(d5)
73.7535(d3) 46.3678(d6)

provided by the blind deconvolution method [16], which was applied
to remove the effect of algorithm noise and matching error. The RMSE,
SSIM, and BRISQUE test results are listed in Table 1.

Fig. 9 indicates that the images obtained at different depths can be
significantly enhanced by the proposed method using different prior
PSFs. In these results, the minimum BRISQUE value of the test images
was approximately 52, which indicates that the texture of the images
was difficult to identify. Although the single-lens camera suffers from
heavy aberrations, the texture of the restored images can be observed
more clearly. The experimental results demonstrate that the proposed
method can significantly enhance the quality of images.

Further, the Table 1 results indicate that RMSE and SSIM are
inadequate to evaluate the quality of recovered images because all
the images restored are certainly enhanced. BRISQUE can effectively
provide details regarding the quality of images according to subjective
sensation and objective evaluation.

3.1.3.2. Recover images of the same scene using different methods. Exper-
imental results obtained using different methods are compared on the
same plane, as displayed in Fig. 10. The RMSE, SSIM, and BRISQUE test
results are listed in Table 2.

The images recovered using blind deconvolution method [16] are
noticeably smooth and lack detailed texture. Their reduced quality is
particularly visible at the profile of the magnified part, which is no-
ticeably jagged. According to the BRISQUE values, the images restored
using the nonblind deconvolution approach [17] exhibited superior
quality. However, the detailed texture cannot be observed clearly. Both
the subjective feeling and objective evaluation demonstrate that the
proposed method outperformed the others.

3.1.3.3. Recover images of different depths using several methods. Every
calibrated PSF exhibits a limited depth of field because the optical
aberrations vary in a nonlinear and complicated manner in different
spaces. Although nonblind deconvolution algorithms can remarkably
enhance the quality of images, the prior PSFs are typically measured
at a single depth, which leads to inadequate results or even failures
when the objects are outside the depth of field of the calibration plane.
This problem of nonblind deconvolution methods can be easily solved
using the proposed method. Compared with the methods provided by
Schuler [9] and Heide [10], the operating time cost by Li [11] was the
shortest and with practical application values. For a better comparison,
the results of nonblind deconvolution algorithms [17], Li [11], and
the proposed method are displayed in Fig. 11. The RMSE, SSIM, and
BRISQUE test results are listed in Table 3.
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Fig. 9. (a) and (d) Original image of a building and a bear, respectively; (a1), (a2), (a3), (d1), (d2), and (d3) blurred images and their blurred kernels obtained using Eq. (4); (a4), (a5),
(a6), (d4), (d5), and (d6) images deblurred by proposed method. Each deblurred image was directly under the respective blurred image; (b) and (e) PSFs obtained using Eq. (4); (c) and
(f) PSFs calculated using Eq. (5). In each image, the inset in the corner corresponds to the magnified image on the right.

Fig. 10. (a) and (b) Original image of a lion and a bear, respectively; (a1) and (b1) blurred images; (a2) and (b2) images restored by blind deconvolution method [16]; (a3) and (b3)
images deblurred by nonblind deconvolution method [17]; (a4) and (b4) images recovered by proposed method. In each image, the inset corresponds to the black rectangle.

In this section, for the images of the lion, the second and third blurred
images were obtained near the reference plane that corresponds to the
first image. To demonstrate that every calibrated PSF exhibits a limited

depth of field and one prior PSF used to recover images is not sufficient,
only the first and second images were covered by the depth of field
of the prior PSF using the method of [11]. The experiments with the
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Table 2
RMSE, SSIM, and BRISQUE test results.

Method Original Blur Blind [16] Non-blind [17] Proposed

Lion

RMSE 6.7562(a1) 6.7564(a2) 6.0860(a3) 8.1847(a4)
SSIM 0.6983(a1) 0.6411(a2) 0.7102(a3) 0.5889(a4)
BRISQUE 17.8475(a) 52.6462(a1) 35.9561(a2) 26.6553(a3) 25.9909(a4)

Bear

RMSE 17.9957(b1) 15.5122(b2) 18.1587(b3) 16.7491(b4)
SSIM 0.4789(b1) 0.4988(b2) 0.4734(b3) 0.4947(b4)
BRISQUE 17.6020(b) 73.5847(b1) 60.0156(b2) 53.0156(b3) 37.9411(b4)

Fig. 11. (a) and (b) Original images of a lion and flowers, respectively; (a1), (a2), (a3), (b1), (b2), and (b3) blurred images and their blurred PSFs; (a11), (a21), and (a31) images
recovered with the calibrated prior PSF of image (a11); (b11), (b21), and (b31) images recovered with the calibrated prior PSF of image (b11); (a12), (a22), (a32), (b12), (b22), and
(b32) images recovered using the method of Li [11]. The prior PSF was calibrated at the depth of 600 mm (object distance); (a13), (a23), (a33), (b13), (b23), and (b33) images recovered
using proposed method; (c) and (e) Blurred PSFs estimated using Eq. (4) are used to recover images; (d) and (f) PSFs calculated by the blind deconvolution method [16] are applied to
further enhance the quality of the test images. In each image, the inset corresponds to the rectangle.

images of flowers were used to further demonstrate that different depth
of fields can remarkably affect the quality of deblurred images, although
the difference of the calibrated PSFs is considerably small.

For the images of the lion, the simulation results reveal that the
nonblind deconvolution method [17] leads to a lower quality recovery
for the second blurred image and to an apparent recovery failure for the
third. Although, the first and second images are visibly enhanced using
Li [11], the third image was unsuccessfully restored. For the images of
flowers, only the first image recovered by the nonblind deconvolution
method [17] is enhanced. The images recovered by Li [11] and the
proposed method are certainly enhanced.

However, all the images recovered by Li [11] exhibit considerable
visual artifacts because of the lack of proper prior PSFs. The images
deblurred by the proposed method indicate considerable enhancement,
particularly for the subjective feeling because the proposed method can

recover images using suitable and accurate prior PSFs corresponding to
their calibration planes.

3.1.3.4. Runtime. Although nonblind deconvolution methods are the
best methods for recovering images, their time requirement is unaccept-
able. This problem can be easily solved by combining them with the
proposed method, which moves this problem to the preparation step.
Therefore, nonblind deconvolution methods can be effectively used for
recovering images. The runtimes for the proposed method and others
obtained in the same computing environment are listed in Table 4. The
number of calibrated PSFs was 1024 in all cases.

It requires 1024 runs for the image processing using the nonblind
deconvolution method to obtain images recovered by all the PSFs, which
makes it impractical in realistic applications. Although all the prior PSFs
are used by the proposed method, the running time is significantly less
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Fig. 12. (a) Original image; (b), (c), and (d) blurred images and their blurred kernels obtained using Eq. (5); (b1), (c1), and (d1) deblurred with proposed method. PSFs 𝑘[16] calculated
using Eq. (6) were applied to eliminate the influence of the algorithm noise and matching error.

Table 3
RMSE, SSIM, and BRISQUE test results.

Method Original Blur Non-blind [17] Li [11] Proposed

Lion

RMSE 7.96030(a1) 8.41000(a11) 9.04730(a12) 9.56840(a13)
8.29660(a2) 8.59610(a21) 9.04620(a22) 10.6684(a23)
9.14700(a3) 9.14440(a31) 9.90140(a32) 8.28470(a33)

SSIM 0.59950(a1) 0.57210(a11) 0.62530(a12) 0.55730(a13)
0.58910(a2) 0.60080(a21) 0.60710(a22) 0.51510(a23)
0.57110(a3) 0.60650(a31) 0.56300(a32) 0.55580(a33)

BRISQUE 19.7489(a) 65.0576(a1) 43.7874(a11) 44.9771(a12) 44.5731(a13)
66.6472(a2) 50.8924(a21) 50.2016(a22) 47.9862(a23)
70.7585(a3) 58.7096(a31) 61.7998(a32) 49.6250(a33)

Flowers

RMSE 9.47470(b1) 10.0534(b11) 13.5670(b12) 12.8915(b13)
11.4273(b2) 11.7468(b21) 14.5177(b22) 15.2672(b23)
12.5117(b3) 11.7468(b31) 14.7770(b32) 15.2683(b33)

SSIM 0.86660(b1) 0.86760(b11) 0.89480(b12) 0.87120(b13)
0.82250(b2) 0.82250(b21) 0.83310(b22) 0.84390(b23)
0.79430(b3) 0.82230(b31) 0.79590(b32) 0.84390(b33)

BRISQUE 34.2611(b) 56.5977(b1) 54.9123(b11) 27.0388(b12) 31.5485(b13)
66.8050(b2) 66.4969(b21) 30.0944(b22) 38.1314(b23)
71.4165(b3) 67.3193(b31) 39.0598(b32) 39.0254(b33)

than that of method [17]: 20471.10 s are decreased to 38.85 s. The
results reveal that the proposed method is rapid and the processing
speed is acceptable, even though the runtime is twice that of the blind
deconvolution method.

3.1.3.5. Analyze prediction. Not only can the nonblind deconvolution
methods use many prior PSFs by employing the proposed method but
they can also considerably match the precision. The prior PSFs used for
recovering images were predicted using PSFs 𝑘𝑢𝑘 rather than PSFs 𝑘𝑘.
Therefore, the prediction accuracy rapidly increased. To demonstrate
this statement, images obtained in the same depth of field are displayed
in Fig. 12. The RMSE, SSIM, and BRISQUE test results are listed in
Table 5.

Table 4
Runtimes (s).

Method Blind [16] Non-blind [17] Li [11] proposed

Building 19.76 20471.10 39.12 38.85
Lion 21.13 23747.59 40.95 41.20
Bear 22.78 24308.64 41.13 42.33

Fig. 12 indicates that the prior PSFs 𝑘𝑘 corresponding to the images
can be accurately predicted using PSFs 𝑘𝑢𝑘, their difference is small. For
a detail comparison, PSFs of the first image (b) are the reference. The
differential chart is displayed in Fig. 13. In this case, Fig. 13 indicates
that PSFs 𝑘𝑢𝑘 are easier to be distinguished than PSFs 𝑘𝑘.

210



J. Cui, W. Huang Optics Communications 412 (2018) 201–213

Fig. 13. (a) D-value1: Difference of PSFs 𝑘𝑢𝑘 corresponding to images (b) and (c) displayed in Fig. 10. D-value2: Difference of PSFs 𝑘𝑘 corresponding to images (b) and (c) displayed in
Fig. 10; (b) D-value3: Difference of PSFs 𝑘𝑢𝑘 corresponding to images (b) and (d) displayed in Fig. 10. D-value4: Difference of PSFs 𝑘𝑘 corresponding to images (b) and (d) displayed in
Fig. 12.

Fig. 14. Hardware setup employed to perform the test. Number of recording pixels:
1920 (H) × 1080 (V) approx. 2.07 M. Unit cell size: 3.75 μm (H) × 3.75 μm (V).

Table 5
RMSE, SSIM, and BRISQUE test results.

Image Original Blur Recovery

RMSE 9.47470(b) 12.8915(b1)
11.4273(c) 15.2672(c1)
12.5117(d) 15.2683(d1)

SSIM 0.86660(b) 0.87120(b1)
0.82250(c) 0.84390(c1)
0.79430(d) 0.84390(d1)

BRISQUE 34.0681(a) 56.5977(b) 35.5485(b1)
66.8050(c) 38.1314(c1)
71.4165(d) 39.0254(d1)

3.2. Real camera test results

Clearly, nonblind deconvolution methods are no longer limited by
the number of prior PSFs in the proposed method. However, we require
considerable time to calibrate sufficient PSFs to guarantee the accuracy.
For single-lens cameras, an alternative approach to conveniently obtain
valid prior PSFs is provided and demonstrated in this section.

Fig. 14 displays the experimental setup including a CMOS
(IMX185LQ-C) camera and a laptop with a VideoLAN Client (VLC)
media player. The camera uses a diagonal 8.58 mm (Type 1/1.9) CMOS
active pixel-type solid-state image sensor with a square pixel array and
2.38 M effective pixels. The real single-lens camera corresponds to the
simulation model.

In the real application, the difference between the single lens de-
signed by CODE V and the real lens is minimal. Line spread functions
of the real camera and the simulation model are used for demonstrating
this statement. The line spread functions measured by the line spread
function measuring equipment and CODE V are displayed in Fig. 15,
which includes the radial and tangential Line Spread Function (LSF).
However, there is no reference image assessment metric for the LSF of
optical lenses. In practice, we can be satisfied if the variation trend of
the real lens is the same as the designed lens. The results reveal that
the LSFs of the single-lens camera are in accord with the designed LSFs.
Therefore, we can attempt to restore real images using the information
obtained from the simulation model.

Previous studies indicate the fact that blind deconvolution methods
are seldom used for restoring the images of imaging systems suffered
from heavy aberrations. Nonblind deconvolution methods can effec-
tively enhance the quality of blurred images owing to the use of accurate
solutions to reversely obtain sharp images. The primary purpose of the
proposed method is to solve the problem of excessive processing time
caused by the number of PSFs rather than outperform the performance
of nonblind deconvolution methods, as indicated in Table 4. Evidently,
the operating time of nonblind deconvolution methods can be reduced
significantly using the proposed method when more than one prior
PSF is used for restoring the images. Still, for single-lens cameras, the
proposed method is the first one that makes nonblind deconvolution
methods suitable for realistic implementations. To demonstrate that the
prior information obtained by CODE V can also be used for addressing
real images of single-lens cameras, the performance of the proposed
method was compared with that of the method of Li [11].

In a real application, it is difficult to obtain a clear image of a small
target using single-lens cameras owing to heavy aberrations. Typical
results are displayed in Fig. 16. The object distance of the real tests
is arbitrarily selected near 600 mm. The first and second objects are
obtained at the same object distance. The length and width of the first
and second objects are as follows: 80 mm × 65 mm and 30 mm × 20 mm.
The prior PSF of the method of Li [11] is accurately calibrated at a depth
of 600 mm, which corresponds to the same distance of the simulation
experiment. The BRISQUE test results are listed in Table 6.

The quality of the images recovered using the method of Li [11] is
less than the quality of images recovered using the proposed method;
the quality of images is even less than image (c1) recovered using
the method of [16]. This demonstrates that prior PSFs calibrated at a
single depth are insufficient for image recovering. The results of the
proposed method reveal that the quality of the images is remarkably
enhanced. Both the subjective feeling and the objective evaluation
demonstrate that the prior PSFs provided by CODE V can be used for the
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(a) Line spread function measuring equipment. (b) Line spread functions.

Fig. 15. (a) Line spread function measuring equipment; (b) line spread functions of the radial and tangential measured by line spread function measuring equipment and CODE V. Line
spread function measuring equipment (LPFME). Line spread function CODE V (LPFCOEV).

Fig. 16. (a)–(c) Blurred images; (a1)–(c1) image restored by blind deconvolution method [16]; (a2)–(c2) image restored by Li [11]; (a3)–(c3) images restored by proposed method.

Table 6
BRISQUE test results.

Method Blur Recovery

[16] 47.3460(a) 46.5053(a1)
52.4438(b) 45.1133(b1)
42.5599(c) 30.5672(c1)

Li [11] 47.3460(a) 41.6049(a2)
52.4438(b) 42.1358(b2)
42.5599(c) 34.0324(c2)

Proposed 47.3460(a) 39.5236(a3)
52.4438(b) 39.6658(b3)
42.5599(c) 28.9692(c3)

implementation of a realistic single-lens camera, thereby providing an
alternative approach to conveniently obtain valid PSFs of a single-lens
camera.

4. Conclusion

The primary objective of our study was to provide an alternative
method for capturing high-quality photographs for single-lens cameras,
which is suitable for a realistic implementation. This paper presented an
approach of image deblurring based on sparse representations in terms

of coupled dictionaries jointly trained from PSF pairs, which clearly
enhanced the quality of the images obtained using a single-lens camera.

In more detail, both the numerical and experimental results demon-
strated the effectiveness of the sparsity prior for recovering images. In
particular, the blurred images of the single-lens camera were effectively
restored using prior PSFs obtained by simulations, thus suggesting a
valid and convenient approach to obtain the PSFs of single-lens cameras.
Moreover, the concept of sparse representations can be generally used
in deconvolution methods and optical imaging systems for further
enhancing the quality of recovered images.

In real application, the prior PSF and space position corresponding to
any imaging object can be accurately found. Then, the imaging quality
of the imperfect optical system can be improved by using non-blind
deconvolution methods. In addition, the proposed method is particularly
important for non-blind deconvolution methods, because it offers a
solution for challenges such as excessive processing time and field of
view problems, which indicates that these methods will no longer be
restricted by the number of prior PSFs. The PSF size can affect the
quality of a recovered image because of several factors such as the field
of view of the optical imaging systems, size of the images, and quality
of the blurred images. We are investigating this problem in terms of the
characteristic analysis of the PSFs and automatic seamless image mosaic
based on feature points.
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