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Multiscale Fully Convolutional Network for
Foreground Object Detection in Infrared Videos

Dongdong Zeng and Ming Zhu

Abstract— Accurate and fast infrared (IR) foreground object
detection is one of the most significant issues to be solved due
to its important meaning for IR target recognition, IR precise
guidance, IR video surveillance, and so on. A common approach
for such tasks is “background subtraction,” which aims to
detect foreground object through background modeling. Thus
far, many background subtraction methods have been proposed
and have achieved good performance. However, due to the
special characteristics of IR images, a few algorithms are suitable
for IR foreground object detection. Recently, features learned
from convolutional neural networks (CNNs) have demonstrated
great success in many vision tasks, such as classification and
recognition. In this letter, we propose a novel multiscale fully
convolutional network architecture for IR foreground object
detection. Given a CNN model pretrained on a large-scale image
data set, our method takes output features from different layers
of the network. With features from multiple scales, our feature
representation contains both category-level semantics and fine-
grain details. The experimental results on IR image sequences
show that the proposed method achieves the state-of-the-art
performance while operating in real time.

Index Terms— Background subtraction, infrared (IR) object
detection, IR video surveillance, multiscale fully convolutional
network (MFCN).

I. INTRODUCTION

INFRARED (IR) foreground object detection is important
due to its wide range of applications, such as IR tar-

get recognition, IR precise guidance, and IR video surveil-
lance [1], [2]. Compared with visible images, foreground
object detection in IR images can be more complex because
of many special characteristics, such as low signal-to-noise
ratios, low contrast, lack of structure, such as shape and
texture information, high uncertainty, and high ambiguity of
pixel values [3]. All these factors make the detection of IR
foreground object more difficult and challenging.

Current IR foreground object detection methods are
primarily based on state-of-the-art background subtraction
algorithms. In the past few decades, a multitude of background
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subtraction methods for visible images has been proposed and
has achieved good performance [4]. Most of these methods pri-
marily manifest in the following two aspects: more advanced
background models [5]–[8] and more complex feature repre-
sentations [9]–[12]. However, due to the special characteristics
of IR images and the differences between the features of IR
and visible objects, a few background subtraction algorithms
are suitable for IR foreground object detection.

Interestingly, deep neural networks have recently drawn
much attention in the computer vision community, and deep
features obtained from convolutional neural networks (CNNs)
have been shown to be effective for many computer vision
tasks, such as classification and recognition [13], [14]. Despite
their popularity, only a few attempts have been made to
employ CNNs for background subtraction. The first novel
background subtraction method with the use of a CNN was
proposed in [15]. In this method, a fixed background model
image is first generated through a temporal median opera-
tion over several initialization frames. Then, for each pixel,
small patches around the pixel extracted from the background
image and the input frame combined with its ground-truth
label are used to train the CNN model. After the network
model is trained, to detect foreground object in a new frame,
patches around a pixel are fed through the network and the
foreground probability for that pixel is obtained. An improved
CNN-based background subtraction was proposed in [16] with
a cascade CNN architecture that achieves the state-of-the-
art performance. However, these CNN-based methods have
several drawbacks. First, all of them are patch-wise-based
methods. Extracting the patches is not only time consuming
but also results in very rough foreground masks. Second,
to classify the foreground or background, only the output of the
last layer features is considered in the network. Third, current
methods using highly redundant data to train the network cause
overfitting problems.

The fully convolutional network (FCN) architecture was
first proposed in [17] for image segmentation. Compared with
patch-wise methods, FCN-based models can capture more
local and global context information, which produces more
accurate and detailed segmentations. Recent research shows
that considering features from different convolutional layers
can improve results for different vision tasks [14], [18]. The
lower layers contain low-level semantic information but retain
a higher spatial resolution, while the deep layers capture more
high-level semantic information but with less spatial detail.

With these considerations in mind, we propose a novel
multiscale FCN (MFCN) architecture that takes advantage of
different layer features for IR foreground object detection.
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Fig. 1. Process of the proposed MFCN-based IR foreground object detection
method.

With the features gained from multiple scales, our feature
representation contains both category-level semantics and fine-
grain details. The experimental results on IR image sequences
show that our method achieves both the state-of-the-art and
the real-time performance during the detection process.

The remainder of this letter is organized as follows.
Section II describes the framework of the proposed
MFCN-based IR foreground object detection algorithm.
Section III presents the results of the experiments conducted
on various IR image sequences compared with other state-of-
the-art methods. Finally, conclusions are given in Section IV.

II. MFCN-BASED BACKGROUND SUBTRACTION

In this section, we give a detailed description of the frame-
work for the MFCN-based IR foreground object detection
method. Fig. 1 shows the process of the proposed method.

A. Training Data Preparation

To train the network, for each IR image sequence, we take
a random subset of 150 input frames with their corresponding
ground-truth frames as the training data. After all training
input frames and label masks have been collected, a pre-
processing operation is performed. As shown in Section II-B,
since our network is based on the VGG-16 [14] network,
the inputs have a size of 224×224×3; thus, we must preresize
all the training frames to the fixed size of 224 × 224 × 3.
Then, a mean subtraction is performed on each pixel. Since we
regard the foreground object detection as a binary classification
problem in our method, therefore, the corresponding training
label frames are of the size of 224 × 224 × 2. The pixel label
value is given by the following:

y(p) =
{

1, if class(p) = foreground

0, otherwise
(1)

where p denotes the pixel in the ground truth.

B. Network Architecture

The architecture of the proposed network is shown in Fig. 2.
In contrast to previous work [15], the proposed method does
not need to extract the background images. The input of this
network is frames from different sequences, and the output is
a probability map (one channel, the size of which is the same
as the input).

Because a limited amount of training data is available; thus,
a transfer learning method is adopted by pretraining a deep
CNN on a large-scale image data set and then fine tuning the
learned features for our task. In this letter, the model is fine-
tuned on the VGG-16 [14] network (the dashed box in Fig. 2).
We split the VGG-16 network into five blocks (V1, V2, V3,
V4, and V5), with each block containing some convolution
and max pooling operations. The sizes of the corresponding
output feature maps are shown in Fig. 2. We can see that the
lower blocks have a higher spatial resolution but contain more
low-level local features, while the deeper blocks contain more
high-level global features at a lower resolution.

Afterward, to gain multiscale features from the different
layers, 3 × 3 convolution kernels are applied to the pretrained
blocks. As shown in the second row of Fig. 2, the generated
convolutional layers (C1, C2, C3, C4, and C5) are connected
to the upper VGG blocks. The output feature maps main-
tain the same spatial resolution as the upper blocks with
128 channels.

Since foreground object detection is treated as a binary
classification problem in this letter, the output masks show
a great contrast between the foreground and the background,
which means that the features of the foreground and the back-
ground in the input frames should also have a large difference.
To extract this kind of contrast information, a contrast layer
is added behind the output feature layer. The contrast layer is
calculated as follows:

Pi = Ci − AvgPool(Ci ). (2)

Here, AvgPool is the average pooling operation with a kernel
size of 3 × 3. In Fig. 3, we compare the detection results
obtained by FCN architecture which without multiscale fea-
tures and a new architecture (MFCN_) which without contrast
layers. We can see that FCN results contain many holes and
unconnected regions, results obtained by MFCN_ are also very
coarse, and the boundaries of the foreground object are not
well preserved, which makes the final segmented foreground
masks much thinner and less accurate.

Finally, to exploit multiscale features from multiple layers,
a set of deconvolution operations is used to upsample these
features, creating an output probability map the same size
as the input, as shown in the last rows of Fig. 2. The
deconvolution kernels have the size of 3 × 3 and the stride
is 2. Instead of upsampling the feature maps with a fixed
ratio of {8, 16, 32}, as done in [17] for semantic segmentation,
we adopt a stepwise upsampling strategy that produces more
refined feature maps. First, the feature layer C5 is concatenated
with its contrast feature layer P5 in the last dimension.
Then, the concatenated feature is upsampled by 2 with the
deconvolution operation. After the new deconvolution layer D5
is obtained, it is concatenated with the feature layer C4 and its
contrast feature layer P4. Then, we upsample the concatenated
feature as before and get the new deconvolution layer D4.
After five stages of deconvolution operations, the feature maps
with different scales are integrated and upsampled to the input
size. This process can be expressed as follows:

Di−1 = Deconv(Concat(Ci , Pi , Di )). (3)
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Fig. 2. Architecture of the proposed MFCN for IR foreground object detection. A FCN architecture covering multiscale convolution and deconvolution
operations. With CNN features learned from multiple scales, the feature representation contains both category-level semantics and fine-grain details, which
lead to more accurate foreground detection results.

Fig. 3. Visual comparison of IR foreground object detection results obtained
by different architectures. (a) Input frame. (b) Ground truth. (c) Detection
results of FCN. (d) Detection results of MFCN_. (e) Detection results
of MFCN.

In the end, a convolution kernel with a size of 1×1 is applied
to the final deconvolution layer D1, and a score layer that
contains two channels is obtained. Then, a softmax operation
is used to produce the final foreground probability map.

For the loss function, we use the cross-entropy loss, which
is defined as follows:

Loss = − 1

N

N∑
p=1

[yp log(ŷp) + (1 − yp) log(1 − ŷp)]. (4)

Here, N is the number of training image pixels, yp ∈ {0, 1}
is the label of pixel p, and ŷp is the predicted label.

C. Training Details

The proposed MFCN model is implemented in
TensorFlow [19]. The layers from VGG-16 are initialized
with pretrained weights [14], while other weights are
randomly initialized with a truncated normal distribution
N (0, 0.01). The AdamOptimizer method is used for updating
the model parameters with a learning rate of 10−4. During the

Fig. 4. FM scores of the proposed method evaluated with different threshold
values.

training stage, the training data are augmented with horizontal
flipping. Each sequence is trained for 20 epochs with a batch
size of 5 frames.

D. Foreground Object Detection

During the foreground object detection stage, the foreground
probability map is obtained with a softmax operation on the
score layer. Then, a threshold is applied to the map and gets
the final binary mask. Fig. 4 shows how the F-Measure (FM)
scores vary for different threshold values. We can see that the
value of 0.05 gives the best performance. Finally, a median
filter with a size of 3 × 3 is applied to enhance the spatial
coherency and to reduce the noise.

III. EXPERIMENTAL RESULTS

A. Data Set and Evaluation Metrics

We evaluate the proposed MFCN-based IR foreground
object detection method using image sequences from the
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TABLE I

OVERALL FM SCORES ON ALL IR IMAGE SEQUENCES FOR DIFFERENT METHODS

Fig. 5. Qualitative performance comparison for various sequences. (From top to bottom) Corridor, dinningRoom, lakeSide, library, and park. First column
to the last column: input frame, ground truth, our result, CascadeCNN [16], IUTIS-5 [20], SubSENSE [12], ViBe [8], and GMM [5] detection results.

change detection challenge [22] thermal category data set,
which contains five IR sequences, namely, “corridor (size:
320 × 240 and length: 5400 frames),” “diningRoom (size:
320×240 and length: 3700 frames),” “lakeSide (size: 320×240
and length: 6500 frames),” “library (size: 320 × 240 and
length: 4900 frames),” and “park (size: 352 × 288 and length:
600 frames).” All sequences were obtained from realistic
scenarios, and accurate human-constructed ground truths are
available.

In order to make an exhaustive competitive comparison
between different foreground object detection methods, seven
different metrics were defined in [22]: recall (Re), speci-
ficity (Sp), false positive rate (FPR), false negative rate (FNR),
percentage of wrong classifications (PWC), precision (Pr),
and FM. Among these metrics, we are especially interested in
the FM metric, which is commonly accepted as a good indi-
cator of the overall performance of a background subtraction
method. This metric is defined as follows:

FM = 2 · Re · Pr

Re + Pr
. (5)

The FM metric represents a balance between recall and
precision. As shown in [22], most state-of-the-art foreground

object detection methods typically exhibit higher FM scores
than these worse performing methods.

B. Performance Evaluation

1) Quantitative Evaluation: We compare the proposed
method with some other classical and state-of-the-art IR
foreground object detection methods, including the following:
CascadeCNN [16], IUTIS-5 [20], SubSENSE [12], KDE [7],
SOBS [21], ViBe [8], and GMM [5]. In Table I, we present
a detailed performance comparison. For a specific metric, if a
method obtains the best scores, the corresponding value is
highlighted in bold. Using the standardized evaluation tool
provided in [22], seven metric scores are reported. For the
PWC, FNR, and FPR metrics, lower values indicate higher
accuracy, while for the recall, recall, specificity, and FM
metrics, higher values indicate a better performance. The
results of other methods are from the website.1 We can
see that the proposed method obtains the best performance
in all metrics, especially with its FM score of 0.9870, and
outperforms the second best method with a considerable
margin. As demonstrated in [16], a method with an FM score

1www.changedetection.net.
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above 0.94 and a PWC score below 0.9, the detection results
may be considered almost as good as the ground truth, since
a simple dilation (or erosion) of one or two pixels of the
ground truth may result in an FM score drops from 1.0 to
about 0.94. This again shows the efficiency of the proposed
method.

2) Qualitative Evaluation: To make a better visual compari-
son of the detection results under different scenarios, we select
the following frames: the 1959th frame from the corridor
sequence, the 3166th frame from the diningRoom sequence,
the 6067th frame from the lakeSide sequence, the 4470th frame
from the library sequence, and the 362th frame from the park
sequence. As shown in Fig. 5, the first column displays the
input frames and the second column shows the corresponding
ground truth. From the third column to the eighth column,
the foreground object detection results are given for the follow-
ing methods: our method (MFCN), CascadeCNN, IUTIS-5,
SubSENSE, ViBe, and GMM. Visually, we can see that our
results appear superior to those of the other methods and are
closest to the ground truth, which is in good agreement with
the quantitative evaluation results.

3) Generalization to Other Spectra: The input of our net-
work architecture is about the size of 224 × 224 × 3, which
inspires us to consider whether the proposed method can be
generalized to visible videos. We also evaluated the MFCN
network on various RGB sequences from the change detection
challenge data set [22]. We achieved an average FM score
of 0.96, which is slightly worse than the results for the
IR images, but better than many other foreground detection
algorithms. So we can see that the proposed method has a
strong universality. It can be applied not only to IR images
but also to other visible spectral images.

4) Real-Time Performance: Processing speed is a critical
factor to be considered before selecting an IR foreground
object detection method. During the detection stage, the pro-
posed MFCN model is run on a 4.0-GHz Intel Core-i7
7700 CPU with an NVIDIA GTX 1060 GPU and an
Ubuntu 16.04 operating system. The average processing time
per frame is 0.0372 s (nearly 27 frames/s), which shows real-
time potential.

IV. CONCLUSION

In this letter, an MFCN architecture for IR foreground object
detection is presented. Benefitting from the hierarchical con-
volutional features learned from multiple scales, the proposed
method achieves a much higher foreground detection accuracy,
which shows the effectiveness of deep features compared
with conventional hand-crafted features. Experiments were
performed on various IR image sequences, showing that this
method outperforms recent state-of-the-art methods and has
the potential for real-time applications. Currently, the main
limitation of the MFCN is that it is a supervised method
and human-constructed ground truths are needed to train the
model. However, the MFCN can also be trained with the
results produced by other unsupervised methods, but it may
reduce the accuracy. As a future work, we plan to combine

traditional unsupervised methods and the proposed
CNN-based method to compensate each other for better
performance.
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