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For the task of image restoration, an accurate estimation of degrading PSF/kernel is the premise of recov-
ering a visually superior image. The imaging process of range-gated imaging system in atmosphere asso-
ciates with lots of factors, such as back scattering, background radiation, diffraction limit and the
vibration of the platform. On one hand, due to the difficulty of constructing models for all factors, the ker-
nels from physical-model based methods are not strictly accurate and practical. On the other hand, there
are few strong edges in images, which brings significant errors to most of image-feature-based methods.
Since different methods focus on different formation factors of the kernel, their results often complement
each other. Therefore, we propose an approach which combines physical model with image features.
With an fusion strategy using GCRF (Gaussian Conditional Random Fields) framework, we get a final ker-
nel which is closer to the actual one. Aiming at the problem that ground-truth image is difficult to obtain,
we then propose a semi data-driven fusion method in which different data sets are used to train fusion
parameters. Finally, a semi blind restoration strategy based on EM (Expectation Maximization) and RL
(Richardson-Lucy) algorithm is proposed. Our methods not only models how the lasers transfer in the
atmosphere and imaging in the ICCD (Intensified CCD) plane, but also quantifies other unknown degraded
factors using image-based methods, revealing how multiple kernel elements interact with each other.
The experimental results demonstrate that our method achieves better performance than state-of-the-
art restoration approaches.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Range-gated imaging system has a wide range of applications in
conditions lack of illumination, such as imaging and monitoring at
night, remote surveillance and so on. Due to relative motions,
backscattering, speckle noise and many other adverse factors, the
image is seriously degraded, which leads to inevitable information
loss. Updating hardware may be the most direct way to improve
the performance of imaging system, while also maybe expensive.
Another feasible way is to use image restoration technology to
recover sharp images from the collected degraded images.

Image restoration is an important and challenging research
topic. Although lots of techniques have been proposed to deal with
this problem, they cannot be directly applied to range-gated imag-
ing system due to the difficulty of estimating the PSF (Point Spread
Function) of the system. Our research focuses on this topic. Shan
et al. [1]’s work indicates that the more accurate the kernel is esti-
mated, the better current restoration methods perform. Therefore,
a more explicit handling of degraded PSF estimation error is critical
for better restoration results. Once we get an accurate PSF, we can
recover an sharp image by non-blind deconvolution methods,
which are relatively mature.

Over the past decades, remarkable research efforts have been
devoted to developing degraded kernel estimation methods. Cho
and Lee [2] predict strong image structures from an estimated
latent image, and use them instead of gray values to formulate
the optimization function. With GPU implementation facilitates,
their method is fast enough for practical application. Cho et al.
[3] propose an approach to estimate the Random Transform of
the degraded kernel using edges of the blurry image, and get the
degraded kernel by Inverse Random Transform. In Fergus et al.
[4]’s approach, a manual-specified process is required to supply
an image region without saturation effects, and the kernel is esti-
mated using a prior on image gradients in a coarse-to-fine frame-
work. In this framework, the spatial domain prior on natural
images leads to a capability to handle seriously blurred image.
Instead of performing a MAP (Maximum A Posteriori) estimation,
Goldstein and Fattal [5] try to estimate the power spectrum of
the degraded kernel by a power-law of the natural image along
with an spectral whitening formula, then recover the kernel by a
phase retrieval method. Pan et al. [6] develop a L0-regularized
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intensity based method to obtain salient properties of the
degraded image without any complex filtering strategies or addi-
tional selection processes, and use them to obtain a reliable
degraded kernel. Shan et al. [1] introduce a unified probabilistic
model which contains several novel terms of image prior. While
each approach above has achieved significant success in their par-
ticular experiment dataset, none of them can get satisfying result
in all cases. For our application, these approaches still have follow-
ing defects:

(1) Most approaches are designed to deal with motion blur by
camera shake, while image degradation in our range gated
imaging system contains many other factors.

(2) A large part of these algorithms are based on strong edges,
which may be difficult to extract in low-light condition.

(3) The priors for natural image are not suitable for illumination
image.

Therefore, the existing PSF estimation method cannot be
directly applied in our system. The PSFs estimated by different
approaches sometimes differ widely, as they incorporate different
priors in each individual frameworks. The bad news is that it’s dif-
ficult to determine which one is optimal and there does not exist a
generic solution for all degraded images. Mai and Liu [7] address
that the PSFs from different approaches often complement each
other and with a proper fusing strategy, combining multiple PSFs
may lead to a more accurate one. Inspired by their work, we are
eager to knowwhether making use of different priors of the system
with appropriate merging strategies may bring an outstanding
result. The answer is yes.

The basic clue in our approach is to merge various individual
PSFs into a more accurate one. We construct an imaging model
and make use of imaging procedure instead of images to obtain a
SPSF (system-based PSF). Then by using state-of-art kernel estima-
tion methods based on different image features, we get some
FeaPSFs (feature-based PSFs). These PSFs respectively contain dif-
ferent part of features in the imaging system, which are comple-
mentary and redundant with each other. With a fusion strategy
based on GCRF framework, we joint these individual efforts into
mutual work and get a final FuPSF (fusion PSF).

We develop a semi-data-driven training method using RTF
(Regression Tree Field) framework to train the fusion parameters.
The probability distribution models of inlier and outlier pixels
are established. With EM and RL method we iteratively estimate
latent image and update the FuPSF.
2. Imaging model

In range-gated imaging system, illumination and echo beam
may be disturbed by factors such as atmospheric attenuation,
background radiation and atmospheric aerosol backscattering,
which dramatically degrade the performance of system. The model
of range-gated image system is shown in Fig. 1.

Considering the factors in laser beam propagation path, the
imaging model of the system is established to estimate SPSF. In
gate opening time, factors affecting the imaging quality involve
those following parts: target reflection, scattering, background
radiation, speckle, atmospheric turbulence, diffraction limit and
so on. Some factors carry the target information, while others cover
the target information [8,9].
2.1. Reflected energy

Reflected energy is the part of laser energy that reaches the
camera imaging surface through outbound atmospheric transmis-
sion, target reflection and inbound atmospheric transmission,
which can be expressed as:

Pr ¼ Pt
AD

R2Xl

Ar

R2 T
2
aðRÞgtgr ð1Þ

where Pr donates reflected energy, Pt donates emitting energy, gt
donates the efficiency of emitting system, gr donates the efficiency
of receiving system, Ar donates the entrance pupil area of the receiv-
ing optical system, AD donates effective covered area on target, Xl

donates solid angle of laser beam.

2.2. Backscatter energy

The forward transmission light is scattered by the atmosphere,
and a part of it enters the observation system against the optical
axis, which masks the true image information, resulting in a
decrease in contrast and resolution. This phenomenon is called
backscattering, which is related to factors such as atmospheric
scattering coefficient, scattering angle distribution, the distance
between receiving optical system and laser, the divergence angle
and the FOV (Field of Vision) of the optical system.

Let lo donate the distance between imaging system and the
intersection of laser divergence angle and optical system angle,
lm donate imaging distance, Ep donate single pulse laser energy,
then the backscattered energy can be expressed as:

Ebackscatter ¼ EpgtgrAr
re

8p

Z lm

lo

expð�2relÞ
l2

dl ð2Þ
2.3. Background radiant energy

Background radiation energy means the energy of natural radi-
ation light entering the optical system. In the gating opening time,
the background radiation energy Eb can be calculated as:

Eb ¼ qb

p
LkDkgrXrArDs ð3Þ

where Lk donates background spectral radiation, Dk donates the
bandwidth of the receiving optical system (which can be regarded
as a bandpass filter), qb donates the average reflection coefficient
of the background, Ds donates single opening time of camera.

2.4. MTF of the atmospheric transmission

Since reflected and forward-scattered light contain useful target
information, while back-scattered light overwhelms the informa-
tion, we define the MTF (Modulation Transfer Function) of the
atmospheric transmission as:

MTFatmosphere ¼ p
4
F

Ed þ Ef

Ed þ Ef þ Eb

� �
ð4Þ
2.5. Diffraction limit

Due to the optical system aperture limitation, the diffraction
limit of the imaging system [10] needs to be considered as a factor
of image degradation. The MTF of diffraction is calculated as:

MTFdiffraction ¼ 2
p

arccos
f
f co

� f
f co

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f

f co

� �2
s2

4
3
5; 0 < f < f co ð5Þ

where f donates the spatial frequency, and fco donates the cutoff
frequency of the imaging plane.



Fig. 1. Model of range-gated imaging system.
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2.6. Sensor distortion

The projection of the object on the camera plane is distorted,
which is mainly determined by the pixel size. The MTF is expressed
as:

MTFdistorted ¼
sinðpfdpÞ
pfdp

ð6Þ

where f and dp donates the spatial frequency and the pixel size of
the camera, respectively.

3. PSF estimation

3.1. SPSF estimation

Considering the degraded factors described in Section 2, the
MTF of the imaging system can be calculated as:

SMTF ¼ MTFatmosphere �MTFdiffraction �MTFdistorted ð7Þ
Due to the circular symmetry of the optical device, the SPSF of

the system can be calculated by one-dimensional integral [11],
which is described as:

SPSFðhÞ ¼ 2p
Z

J0ð2phf sÞMTFðf sÞf sdfs ð8Þ

where J0 donates the Bessel function, fs donates the spatial fre-
quency in cycles per radian, and h donates the offset with respect
to the optical axis.

3.2. FeaPSF estimation

In recent years lots of restoration frameworks have been pro-
posed which are mostly based on image features. Here we simply
list some state-of-the-art works. Cai et al. [12] use a tight-wavelet
framework to regularize the sparsity of blur kernel and improve
the Split-Bregman method to solve the energy function without
any prior information. GoldStein et al. [5] present a model based
on a natural-image-power law, which better accounts for biases
arising from large and strong edge. Combine the model with a
whitening spectrum formula, the spectrum distribution of the ker-
nel can be estimated. Tai et al. [13] propose an iterative framework
in which the estimated camera motion is used to constrain the
noise features of the image. Cho et al. [2] use strong edges pre-
dicted from the estimated latent image with derivatives to formu-
late the optimization function. Fergus et al. [4] use an manually-
specified image region without saturation effects to estimate the
blur kernel, then construct a joint posterior probability function
between the latent and degraded image.

In this article we make use of some of state-of-art approaches
[1,2,4,5,13] with our system-based strategy to obtain a fused ker-
nel, then we will compare the performance of our approach with
each single method.

4. Multi-PSF fusion

In [7] Mai and Liu demonstrated that fusing multiple kernels
from different methods may outperform each individual one. They
developed a data-driven method based on GCRF which can effec-
tively learn a good kernel fusion model from abundant training
images. In their approach, the model parameters are updated by
minimizing an energy function:

PðkjfkigÞ / expð�EðkjfkigÞÞ ð9Þ

EðkjfkigÞ ¼
X
p2k

EuðkðpÞjfkiðpÞgÞ

þ
X

p2k;q2NðpÞ
EsðkðpÞ; kðqÞjfkiðpÞ; kiðqÞgÞ ð10Þ

where ki donates the individual kernel obtained by ith estimation
method, k donates the fused kernel, E donates the energy function
composed of two energy terms Eu and Es, Eu donates local energy
at each node, Es donates local energy at each pair of neighboring
nodes, N(p) donates nodes neighboring to p.

Unfortunately, in our imaging system neither latent images nor
ground-truth kernels are available, which makes the training pro-
cess impossible to implement. To deal with this problem, we
develop a semi-data-based training method to determine different
parameters separately. Our training process is based on the frame-
work of EM algorithm and separated into two steps: updating the
parameters of FeaPSF and updating the parameters of SPSF.

4.1. Updating the coefficients of FeaPSF

In this step we fix SPSF as a constant. Considering the fact that
FeaPSF is only concerned with image characteristics, we acquire
non-active-imaging images in low light condition which is similar
in imaging characteristics as training data. These images can be
considered as images from active illumination after removing the
PSFPM effects. In this step with the absence of other factors, we
can approximately treat them as the ground truth image. We blur
each image with eight different kernels which are shown in Fig. 2
and used GCRF framework to train the fusion weight, just as men-
tioned in Mai and Liu [7]’s approach.

4.2. Updating the coefficient of SPSF

According to formula (8), the expression of SPSF contains some
system related parameters. In this case, its fusion parameter
should also be dynamic [14]. We model the parameter as a func-
tion of imaging distance L and the single pulse energy of laser Ep.



Fig. 2. Kernels used to generate synthetically blurred dataset.
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We fix the coefficients of FeaPSF, and select different targets at dif-
ferent distances (100 m–1 km) with a step length of 50 m. The
laser pulse power changes from 5 mJ to 50 mJ with a step length
of 1 mJ, at each step the range gated images are collected. We
adopt the x-step in [15] to get deblur image:

f FðFÞ ¼
X
D�

x�jjKD�F � D�Gjj þ l1jjDhFjj2 þ l1jjDvFjj2

þ l2
jMj

X
i2M

qðPiF � qiÞ þ c
X
i2M

ðri � F�1
ref ðFr;xðriÞÞÞ2 ð11Þ

where K, G and F respectively represent the degraded kernel,
degraded image and latent image, D⁄ donates partial derivative
operator in different directions, x⁄ donates the corresponding
weight of D⁄, Dh are the first order differentiation operators along
the horizontal axes and Dv the vertical. Pi donates an operator which
extracts a patch at location i in latent image F, Zi is a vector repre-
senting the example patch assigned to location i, qi is defined as
qi = riZi + mi. By optimizing fF(F) we can get the estimation of latent
image F.

The best fusion coefficient of SPSF is determined according to
the following formula

x̂sPSFðl; EpÞ ¼ max
F̂

ðLCðF̂ÞÞ ð12Þ

where LC(�) represents local contrast operator. The restored image
with maximal LC value is considered to be with best image quality,
which means that, the fusion PSF is closest to the real one. After
finding the corresponding x̂sPSFðl; EpÞ at different l and Ep, a nonlin-
ear regression process is needed to determine the parameters ap
and al according to formula (13).

xsPSF ¼ apEp expð�allÞ
l2

ð13Þ
5. Deconvolution

Image deconvolution is a severely ill-posed problem, a small
deviation of PSF may lead to a large decline in image quality
[16]. In this case we proposed an iterative semi blind-
deconvolution strategy. Firstly we take system model and image
features into account and execute the fusion strategy described
above to estimate a coarse PSF, and use it as the initial value of
the iteration. During the recovery, the PSF and recovered image
are updated alternately. Since the semi blind-restoration is more
specific than blind restoration, it can generally achieve better
restoration result.

Since the images in our system contain lots of outliers such as
the saturated pixels, light veins [17] and speckle noise, deconvolu-
tion without proper outliers handling may bring severe ringing
artifacts. We combine the EM method with RL deconvolution. The
deconvolution is considered as a MAP estimation problem. In E-
step, we compute the weights of each pixels as:

Wt ¼ PðGjK � FÞPi

PðGjK � FÞPi þ GaðGjK � FÞð1� PiÞ ð14Þ

where P(G|K ⁄ F) is a Poisson distribution, Ga(G|K ⁄ F) is a Gaussian
distribution, Pi(x) is the probability that pixel x belongs to the
inliers. The way to calculate Pi refers to Cho et al. [2].

In M-step, the latent image is updated as:

Ftþ1 ¼ Ft

1þ ðj@hF
t ja þ j@vFtjaÞ � K � G �Wt

Ft � K þ 1�Wt
� �

ð15Þ

where a is a constant. Once we get the updated latent image, the
PSF can also be corrected by their cooperation. Instead of using
intensity values, we update K in the gradient space:

ktþ1 ¼ min
k

ðjjrf � k�rgjj22 þ cjjkjj22Þ ð16Þ

The computation of formula (16) is mainly consisted of FFTs and
can be executed efficiently. The negative elements of Kt+1 is set to 0.

6. Computer simulation results

We implement our approach in MATLAB and conduct experi-
ments on a PC with 3.4 GHZ Core i7 CPU and 16 GB RAM.We estab-
lished two datasets consist of a large amount of images. Dataset A
is composed of low light images with variety of scene content from
real life and online sources, including Flickr, Facebook, and Google
Plus. These images span a wide variety of scene content such as
natural scenes, buildings, indoor objects and so on. Dataset B is
composed of images with changing lighting parameters from our
range-gated imaging system. We change the laser power, imaging
distance, and the solid angle of laser beam and capture a series of
pictures. Then we select eight kernels from [7], which are shown in
Fig. 2, implement them to dataset A to generate our synthetically
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blurred image dataset. For each blurred image in dataset A, we
have got its ground-truth image and blur kernel, so that we can
use them to train the fusion coefficients of FeaPSFs and test the
performance of the restoration methods. To make use of dataset
B, we changing xsPSF in Section 4 to regress the best fusion coeffi-
cient of SPSF. In each iteration we randomly select 100 images
from dataset A and B as the train sets, and 10 images from datasets
B as the test set, and calculate the average results.

We compare our approach with the state-of-art methods
[1,2,4,5,13]. Once a method fails in one blurred image (due to the
program crash), the image is discarded, so that each valid image
should have 6 estimated PSFs including the fusion one.

6.1. Fusion performance

Firstly we evaluate the effectiveness of our fusion method to
find out whether it performs better than other single-kernel meth-
ods in dataset A. All the parameters for state-of-the-art methods
are kept as the authors suggest in the implementations. To deter-
mine the precision and the mean of the local Gaussian model, we
adopt the RTF framework. In dataset A, the ground-truth image is
easy to get. So that we use the average MAE (mean absolute error)
between each estimated kernel and ground-truth kernel to evalu-
ate the kernel estimation accuracy of the methods. Also we evalu-
ate the recover performance according to the visual quality of the
restored image by different kernels using two metrics [18,19]:
PSNR (the peak-signal-to-noise ratio) and SSIM (the structure sim-
ilarity index). PSNR and SSIM directly measure the gray-level and
structure similarity between the reconstruction results and
ground-truth images. The average results are shown in Table 1.

It can be observed that the PSFs from our proposed method are
the most similar to the ground-truth PSF, which indicates that the
fusion strategy effectively combine different PSF features, thus rep-
resents the actual degradation process more closely. Also the high-
est PSNR and SSIM indicate that our proposed fusion method
supplies better kernel estimation than other individual methods,
which leads to visually better deconvolution results.

6.2. Restoration results in range-gated imaging system

6.2.1. Restoration results
In this step we use our method to deal with images from real

range-gated imaging systems, to check if the method works for real
images. As the ground truth images are impossible to obtain, we
choose Information Capacity(IC) [15] as the metric of the restora-
tion methods, which is defined as:

Cinf oðd; hÞ ¼ log2 1þ
X
w

log½pði; j;d; hÞ�
log½maxðpði; j; d; hÞÞ�

( )
ð17Þ

where i, j = 1, 2, . . ., L is the gray level, d and h donates the distance
and angle between pixels. While d and h is determined, p(i,j) is
called gray co-occurrence matrix. w donates restrain area in matrix
p. In images with higher quality, the distribution of frequence has
Table 1
Average PSNR and SSIM of different restoration methods. The best performance is
shown in bold.

Method MAE
(�10�3)

PSNR SSIM

Fergus [4] 8.03 21.45 0.623
Shan [1] 4.75 24.18 0.726
Cho [2] 4.92 23.67 0.701
Goldstein [5] 5.84 23.25 0.748
Tai [13] 3.84 25.75 0.802
Our’s 3.25 27.13 0.869
larger density in the area besides i = j, which leads to higher Cinfo.
That’s why we use IC to measure the image quality with no refer-
ence images. In this article, we choose d = 1 and h = 0�, 45� and
90�, so Cinfo is described as:

Cinf o ¼ aCinf oð1;0�Þ þ bCinf oð1;45�Þ þ cCinf oð1;90�Þ ð18Þ

where a, b, c are constant and a + b + c = 1.
We select a white number on the wall at distance of 2.5 km and

a tower at distance of 3.0 km as our observation target. Illuminate
them with laser beam and the images are cropped to 150 � 150
pixels, which are shown in Fig. 3. We compared our approach with
state-of-art restoration methods. The results are shown in Figs. 4
(a)–(f), 5(a)–(f) and Table 2.

In range-gated imaging system the image quality changes with
laser power. Typically, larger laser energy leads to higher image
quality while the camera is not overexposed. In order to verify
the adaptability of our algorithm, the laser power ranges from
10 mJ to 40 mJ and the restoration results are evaluated, as is
shown in Fig. 6.
6.2.2. Discussion
As is shown in Figs. 4(a) and 5(a), the restoration results by Fer-

gus [4] are not satisfactory with severe over-smoothing, which
may be ascribed to the error of the gradient distribution model
in condition of low light and severe noise. Figs. 4(b) and 5(b) illus-
trate that due to the imposed contrast constraint in fuzzy parts, the
restoration results by Shan [1] are with severe ringing artifacts. In
Cho [2], as is shown in Figs. 4(c) and 5(c), the ringing artifacts are
effectively suppressed, but the results suffer from inaccurate edge
estimation, which leads to fuzzy edge. Because of the extremely
high sensitivity of noise, in Goldstein [5] the results suffer from
both severe ringing artifacts and fuzzy edges, as is shown in Figs. 4
(d) and 5(d). In Tai [13]’s results, each iteration is divided into two
steps consisted of denoising and kernel estimation, better kernel
estimation leads to fewer ringing artifacts, but fuzzy edges still
exist, as is shown in Figs. 5(e) and 6(e). Comparatively speaking,
our approach provide a more accurate kernel which fuses
system-based kernel with image-feature-based kernels, and the
restoration results are with fewer ringing artifacts, better details
and higher contrast. From Table 2 we can draw the same conclu-
sion, the IC values of our method are higher than others, which
means that our restoration results are with better image quality.

From Fig. 6 we can observe that the image qualities from all
approaches increase as the laser power increases. Randomly sam-
pled in the cross coordinates, the results of our algorithm are the
best, which proves that our algorithm has good environment
adaptability.
Fig. 3. Degraded image of (a) number at distance of 2.5 km and (b) tower at
distance of 3.0 km. Scenes in illustrated area are blurred and noisy with unsatis-
factory visual effects.



Fig. 4. Restored results of number picture by (a) Fergus’s method, (b) Shan’s method, (c) Cho’s method, (d) Goldstein’s method, (e) Tai’s method and (f) proposed method.

Fig. 5. Restored results of tower picture by (a) Fergus’s method, (b) Shan’s method, (c) Cho’s method, (d) Goldstein’s method, (e) Tai’s method and (f) proposed method.

Table 2
IC values of restored results. The best performance is shown in bold.

Degraded image Fergus’s Shan’s Cho’s Goldstein’s Tai’s Our’s

Number 0.3458 0.4925 0.6715 0.5218 0.6256 0.7615 0.8125
Tower 0.4172 0.4832 0.7136 0.5417 0.7534 0.8132 0.8972
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Fig. 6. IC values of (a) number (b) tower pictures in different laser power. Our approach outperforms others regardless of laser power.
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7. Conclusion

Range-gated imaging system is a challenging situation for
image restoration. Due to low contrast, high noise and fuzzy edges,
traditional edge/gradient-based restoration methods cannot
achieve satisfactory performance. In this article, a new kernel esti-
mation method based on fusion strategy is proposed. We model
the imaging procedure to calculate a SPSF, and then get some
FeaPSFs by using state-of-art kernel estimation methods based
on different image features. These kernel are fused into a final
FuPSF based on GCRF framework. Then a semi-data-driven training
method using RTF framework is used to train the fusion parame-
ters. The experimental results indicate that our method provide a
more accurate kernel, which results in better restoration quality.
By changing some model parameters, the proposed algorithm can
also be extended to underwater laser imaging system.
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