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Abstract Magnetic resonance imaging (MRI) reconstruc-
tion from the smallest possible set of Fourier samples has
been a difficult problem in medical imaging field. In our
paper, we present a new approach based on a guided fil-
ter for efficient MRI recovery algorithm. The guided filter
is an edge-preserving smoothing operator and has better
behaviors near edges than the bilateral filter. Our recon-
struction method is consist of two steps. First, we propose
two cost functions which could be computed efficiently and
thus obtain two different images. Second, the guided fil-
ter is used with these two obtained images for efficient
edge-preserving filtering, and one image is used as the guid-
ance image, the other one is used as a filtered image in the
guided filter. In our reconstruction algorithm, we can obtain
more details by introducing guided filter. We compare our
reconstruction algorithm with some competitive MRI recon-
struction techniques in terms of PSNR and visual quality.
Simulation results are given to show the performance of our
new method.
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1 Introduction

Medical image processing is routinely applied for assess-
ment and diagnosis of some diseases [1, 2], so the quality of
the imaging will affect the accuracy of the diagnosis. Recon-
struction of imagery from an incomplete set of samples from
a Fourier representation is an significant target to improve
scanning technologies, for instance, magnetic resonance
imaging (MRI), computed tomography (CT). Solutions to
such a problem would allow significant reductions in collec-
tion times and improve the quality of the images. One of the
major challenges is the ill-posed nature of the reconstruction
process due to insufficient measurements [3].

1.1 Problem description

Let u ∈ CR denote an image to be reconstructed, and
f ∈ Cm (m < R) denote the undersampled Fourier mea-
surements. They have the following relations PFu = f ,
here, F represents the Fourier transform matrix, P ∈ Cm×R

is a “row selector” matrix, which comprises a subset of the
rows of an identity matrix.

Compressed sensing (CS) could reconstruct the unknown
image u from the measurements f by solving the under-
determined equation PFu = f . Applying the sparsity
constraint, the CS obtains the reconstructed image by mini-
mizing theL0 quasi norm of the sparsified image�u, where
� ∈ CT ×R denotes a orthonormal sparsifying transform for
the image u. The corresponding optimization problem is

min
u

‖�u‖0 s.t. PFu = f (1)

It is well known that this L0 problem is a nondetermin-
istic polynomial-time hard (NP-hard) problem. However,
the greedy algorithms could solve this problem such as
orthogonal matching pursuit (OMP) [4].
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The typical formulation of the compressed sensing mag-
netic resonance imaging (CSMRI) reconstruction problem
uses the L1 norm instead of L0 quasi norm, and has the
following formulation

min
u

‖PFu − f ‖22 + λ‖�u‖1 (2)

This problem formulation contains a global sparsity mea-
sure and an analytical sparsifying transform �.

1.2 Related work

The theory of CS [3, 5–7] could recover images accurately
by using significantly fewer measurements than the num-
ber of unknowns. It demonstrates that the signal could be
reconstructed with high probability when utilize the sparsity
in some domain. Compared with the signal space dimen-
sion, the sparsity constraint significantly reduces the size of
the set of possible signals. With this sparsity constraint, the
CS reconstruction process is usually formulated as a con-
strained optimization problem, and it can be solved by the
nonlinear algorithms or greedy algorithms [3–5, 8]. A vari-
ety of MRI reconstruction algorithms have achieved good
results recently with the compressed sensing, such as static
dynamic MRI [9, 10], MRI [11–13], and diffusion tensor
imaging (DTI) [14]. In our paper, we mainly discuss the CS
for static MRI.

In these MRI reconstruction algorithms, the total vari-
ation (TV) regularization [3, 15–18] is commonly used
for image reconstruction. The TV regularization could
obtain high reconstruction images due to its well desirable
properties such as simplicity and edge-preserving ability.
However, the TV regularization finds solution with sparse
gradients, and may result in blocky effects when the mea-
surements are undersampled [19]. Patel et al. [13] developed
the algorithm called GradientRec to estimate the original
image by recovering the horizontal and vertical gradients
separately. This algorithm could obtain better recovery
image quality compared with the method (called RecPF)
proposed in [16]. In the RecPF method, the signals are
reconstructed as minimizers of the sum of three terms corre-
sponding to total variation, L1-norm of a certain transform,
and least squares data fitting. Recently, the extension of TV
regularization has attracted much attention [20–22].

On the other hand, images with a sparse representation
can be reconstructed from randomly undersampled data in
the sparse transform domain. In the paper [11], the prac-
tical incoherent undersampling schemes are presented and
analyzed by means of their aliasing interference. The MR
reconstruction algorithm (called SparseMRI) in paper [11]
is performed by minimizing the L1 norm of a transformed
image, subject to data fidelity constraints. The L1 wavelet-
based reconstruction algorithm tends to slightly shrink the
magnitude of the reconstructed sparse coefficients and may

appear small high-frequency oscillatory artifacts in the
reconstruction. These artifacts are mitigated by adding a
small TV penalty on top of the wavelet penalty in the
SparseMRI reconstruction algorithm. In recent years, the
adaptive transforms (dictionaries) based image reconstruc-
tion algorithms have become a research hotspot due to its
fine properties. In these studies, the patch-based dictionaries
[12, 23–26] could capture local image features effectively,
remove noise and aliasing artifacts effectively in compres-
sive sensing MRI (CSMRI) [27]. For a given fixed basis
(finite difference, wavelet, etc.), it might not be universally
optimal for all images [27]. The dictionary learning (DL)
strategy reduces this drawback, and it assumes that each
image patch is encoded with sparse coefficients utilizing an
over-complete dictionary. But, this problem may be compli-
cated due to the non-convexity and non-linearity [28]. One
of the state-of-the-art DL methods for MR image recovery
is the DLMRI algorithm [12], it learned the image-patch
dictionary from a small number of samples and was proven
to be very effective in reconstruction. The paper [29] pro-
posed the MRI recovery algorithm by exploiting sparsity
and low-rank structure to remove the noise artifacts while
significantly improve the recovery quality. The paper [30]
presented a new gradient based dictionary learning method
for image recovery. It effectively combined the total varia-
tion and dictionary learning technique to well maintain the
local features in the gradient images.

1.3 Guided filter

The guided filter [31] is a general linear translation-variant
filtering process, which includes a guidance image uI , an
filtering input image up, and an output image u. Both uI

and up are given beforehand, and they can be identical. The
key assumption of the guided filter is a local linear model
between the guidance image uI and the output image u.
Assuming that u is a linear transform of uI in a window ωk

centered at the pixel i:

u(i) = akuI (i) + bk (3)

where (ak, bk) are some linear coefficients assumed to be
constant in a window ωk , and they are given by

ak =
1

|ω|�i∈ωk
uI (i)up(i) − p̄k

σ 2
k + ε

(4)

bk = p̄k − akμk (5)

where, ωk is the kth kernel function window, |ω| is the num-
ber of pixels in ωk , ε is a regularization parameter, μk and
σ 2

k are the mean and variance of up in ωk .
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However, the pixel i is involved in all the overlapping
windows ωk that covers i, so the filtering output u(i) can be
given by

u(i) = āiuI (i) + b̄i (6)

where āi = 1
|ω|

∑
k∈ωk

ak and b̄i = 1
|ω|

∑
k∈ωk

bk are the
average coefficients of all windows overlapping i. More
details can be found in [31].

We denote the Eq. 6 as u = guidefilter(uI , up, ω, ε).

1.4 Proposed algorithm

Most of conventional CS recovery approaches formulate the
problem of reconstruction of imagery from an incomplete
set of samples as a cost functional. And the cost functional
includes a constraint term which is imposed by the raw mea-
surement data and the L1 norm of a sparse representation of
the reconstructed image. However, the sparse representation
is usually exploited by virtue of a set of fixed bases (e.g.,
discrete cosine transform (DCT), wavelet and curvelet) for
the entirety of a signal, and can only work efficiently when
the signal is super sparse, sometimes without determinis-
tic performance guarantees, or may suffer from relatively
high recovery complexity. In this work, we adopt a differ-
ent approach to the problem of MR image reconstruction
by exploiting guided filter [31]. Derived from a local linear
model, guided filter generates the filtering output by con-
sidering the content of a guidance image. We first integrate
this filter into an iterative compressed sensing method. First,
two estimated images are obtained by the proposed two cost
functions. One of them contains more details information
and another contains less details. The former will be filtered
and the later will work as the guidance image respectively
in the second step. Second, the guided filter is applied to
the output of the first step to reduce ring and refine the
reconstruction result. Comparing with some state-of-the-
art methods, the experimental results demonstrate that this
algorithm can provide competitive and even better figures
of merit.

1.5 Paper organization

In Section 2, we discuss details about the proposed recon-
struction algorithm. Simulation results are presented in
Section 3. The discussion and concluding remarks are pre-
sented in Sections 4 and 5 respectively.

2 Methods

In this work, we propose an iterative compressed sensing
MR reconstruction algorithm via guided filter. The guided
filter is a novel explicit edge-preserving image filter. In

guided filter, the filtering output is locally a linear trans-
form of the guidance image. So the guided filter does not
suffer from the gradient reversal artifacts and has good
edge-preserving smoothing properties like the bilateral fil-
ter. We adopt it to reconstruct more details and suppress
artifacts effectively in our method.

Our algorithm is based on the following two steps in the
reconstruction process. In the first step, we propose two cost
functions:

uI = argmin
u

{λ‖∇u − ∇uE‖22 + ‖PFu − f ‖22} (7)

up = argmin
u

{β‖u − uE‖22 + ‖PFu − f ‖22} (8)

where uE is a pre-estimated image,“∇” represents a gra-
dient operator, and λ > 0, β > 0 are the regularization
parameters.

Alternatively, we diagonalize derivative operators after
Fast Fourier Transform(FFT) for speedup. These yield solu-
tions in the Fourier domain (the relevant derivations are
provided in the Appendix)

FuI = P T f − λF�FuE

|P |2 − λF�F−1
(9)

Fup = P T f + βFuE

|P |2 + β
(10)

where P T represents the complex conjugate of P , � =
−∇T ∇, F−1 represents the inverse Fourier transform
matrix . The plus, multiplication, and division are all
component-wise operators.

After the Fourier shrinkage steps (see Eqs. 9 and 10),
the image up contains the more details and more amplified
artifacts than uI . So, we choose up as the filtering image
and uI as the guidance image in the second step. In this
way, we could recover some details and reduce the ampli-
fied artifacts. We integrated this filter into the reconstruction
problem. It leads to a powerful reconstruction algorithm that
produces high-quality results.

Moreover, the guided filter is a fast and non-approximate
linear-time algorithm, whose computational complexity is
independent of the filtering kernel size. It has an O(N2)

time (N2 is the number of pixels in the image) exact
algorithm for both grayscale and color images.

Fig. 1 Flowchart of our method
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Fig. 2 Intermediate images
uI , up and the filtered output
uE with different iterations. The
three rows denote the images uI ,
up , and uE with the number of
iterations are 10, 20, 30, 40, 50,
respectively

t=10 t=20 t=30 t=40 t=50

Figure 1 shows the flowchart of our proposed method.
We summarize the proposed algorithm as follows:

Step 1: Set t = 0, pre-estimated image ut
E = 0, choose

guided filter parameters ω and ε.
Step 2: Use ut

E to obtain the guidance image ut
I and the

filtering input image ut
p with the Eqs. 7 and 8,

respectively.
Step 3: Apply the guided filter to ut

p with the guidance

image ut
I , and obtain a filtered output ut+1 =

guidefilter(ut
I , u

t
p, ω, ε).

Step 4: Set ut
E = ut+1, and t = t + 1.

back to Step 2.
As we claimed that up contains more details and arti-

facts than uI , we choose up as the filtering image and uI

as the guidance image. To substantiate this statement and

better understand the benefit of using the guided filter, we
provide the intermediate images ut

I , u
t
p and the filtered out-

put ut+1
E in Fig. 2, and the corresponding errors ut+1

E − ut
I

and ut+1
E − ut

p in Fig. 3 with different iterations. From
Fig. 2, we can see that the image texture of intermediate
images uI , up, and the filtered output uE are becoming
more and more rich with the iteration increases. Under the
same number of iterations, up and uE contains more details
and artifacts than uI . Figure 3 presents a better comparison
between uI and up. From this figure, we can see that the
errors ut+1

E − ut
I and ut+1

E − ut
p are becoming smaller and

smaller with the iteration increases, and the errors ut+1
E −ut

I

contains more details and artifacts than ut+1
E −ut

p under the
same iteration. That is to say, up contains more details and
artifacts than uI .

Fig. 3 The two rows represent
the error images ut+1

E − ut
I and

ut+1
E − ut

p with the number of
iterations are 10, 20, 30, 40, 50,
respectively

t=10 t=20 t=30 t=40 t=50
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Fig. 4 Tested MR images

3 Results

In order to test the effectiveness of our algorithm, we
have done several groups of experiments by a number of
sampling schemes with different undersampling ratios. We
implement our method in MATLAB on an Intel Core i5
CPU with 8 GB of RAM. Sampling schemes used in our
experiments are produced in DLMRI toolbox, and they
include 2D random sampling, cartesian sampling, pseudo
radial sampling and low resolution sampling. The simulated
data is obtained by undersampling the 2D DFT (discrete
Fourier transform) of the MR images. In this section, we
compare our method with the SparseMRI [11], TV+Waelet
based RecPF [16] method, and the patch-based DLMRI [12]
method. The MRI reconstruction quality is measured by the
Peak Signal-to-Noise Ratio (PSNR). It is defined as

PSNR = 20 log10
255

RMSE
(11)

where RMSE is the root-mean-square error between the
original image and the reconstructed image.

We consider different sampling schemes. In these exper-
iments, the original images are Brain of size 512 × 512,
Leg of size 512 × 512 and Head of size 512 × 512 (see
Fig. 4). Table 1 summaries the different sampling schemes
and sampling ratios.

In order to fairly compare the results, the regularization para-
meters (λ1, λ2) in RecPF and SparseMRI in each of the given
experiment were hand tuned to show the best performance

Table 1 Description of the sampling schemes and sampling ratio for
the eight experiments

Sampling schemes Sampling ratio

Exp.1 Random sampling pattern 5%

Exp.2 Random sampling pattern 10%

Exp.3 Pseudo radial sampling pattern 13.91%

Exp.4 Random sampling pattern 14.06%

Exp.5 Low resolution sampling pattern 14.06%

Exp.6 Pseudo radial pattern 16.41%

Exp.7 Cartesian sampling pattern 19.14%

Exp.8 Cartesian sampling pattern 25%

according to PSNR. The parameters of DLMRI method
were set according to the default values [12].

The parameters in our proposed method were hand tuned
to get the best performance according to PSNR. For the
parameter λ, we found that a larger value of it would result
in a smooth image, whereas some details may lost. We have
empirically found that λ ∈ [10−4, 10−5], β ∈ [10−4, 10−5]
generally yields good results and we used 6×10−5, 8×10−5

for the results in the experiments, respectively. Parameters ε

and ω of guided filter should be set carefully. For this work,
we have just tried to evaluate how robust the algorithm
behaves for two different images and a wide range of image
compression. We have empirically found that large ε and
ω would obtain better recovery result for the low sampling
ratio, and smaller ε and ω are suitable for the high sampling
ratio. We have hand-optimized the two parameters with dif-
ferent sampling schemes and three different images for good
results, obtaining ε ∈ [0.001, 0.01] and ω ∈ [2, 10].

In order to validate the effectiveness of our algorithm, we
have compared the proposed method with three state-of-the-
art algorithms: SparseMRI [11], RecPF [16], DLMRI [12]
in different sampling schemes settings and different images.
Tables 2, 3, and 4 display the PSNRs of reconstructed image
by four methods with different sampling schemes for brain
image, leg image, and head image respectively. From these
numerical performances, we can see that our method clearly
outperforms the other methods.

Figure 5 shows the visual comparison of brain recon-
structions employing 2D variable density random sampling

Table 2 PSNR (in dB) of different methods for brain image

Experiments RecPF SparseMRI DLMRI Our method

Exp.1 36.72 30.01 35.72 38.76

Exp.2 41.36 32.79 40.59 43.44

Exp.3 38.04 33.36 37.52 39.49

Exp.4 39.60 32.64 39.27 42.65

Exp.5 33.08 31.92 34.73 34.83

Exp.6 39.31 33.62 38.88 41.70

Exp.7 40.98 34.28 41.26 43.19

Exp.8 42.92 35.93 42.53 45.22

Data in italics present the highest PSNR results with each experiment
in the four methods
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Table 3 PSNR (in dB) of different methods for leg image

Experiments RecPF SparseMRI DLMRI Our method

Exp.1 34.13 21.59 30.88 35.75

Exp.2 42.48 30.45 43.54 48.23

Exp.3 38.31 28.05 39.01 41.07

Exp.4 38.55 27.04 35.69 43.08

Exp.5 35.38 29.81 37.01 37.27

Exp.6 40.01 29.30 40.48 43.20

Exp.7 42.35 31.98 45.04 46.31

Exp.8 44.74 33.06 46.94 49.23

Data in italics present the highest PSNR results with each experiment
in the four methods

with the sampling ration is 5% (Exp.1). The PSNRs of
the reconstructions using zero-filled, RecPF, SparseMRI,
DLMRI, and our method are 22.24 dB, 36.71 dB, 30.01 dB,
35.71 dB and 38.76 dB, respectively. Subfigures Fig. 5b,
c, and g show the performance of zero-filled, RecPF and
SparseMRI methods. We can see that some of the arti-
facts are maintained in the zero-filled reconstruction, and
the results of RecPF and SparseMRI could not suppress
undesirable artifacts and loses many details. That is the
RecPF and SparseMRI only exploits the sparsity in wavelet
domain and finite difference domain instead of adaptable
domain, which is sufficient to represent the complex compo-
nents inherent in the image. Instead, the dictionary learning
(DLMRI) (Fig. 5h) obtain better reconstruction, and the
results are seen to have lesser artifacts. Compared to zero-
filled, SparseMRI, RecPF, and DLMRI methods, the recon-
struction result and errors in subfigures Fig. 5i, l show that
our method have succeeded in removing most of artifacts
without sacrificing resolution. The error images of zero-
filled, DLMRI, RecPF, and SparseMRI in Fig. 5e, f, j, k are
seen to have more visible structures than our method.

Table 4 PSNR (in dB) of different methods for head image

Experiments RecPF SparseMRI DLMRI Our method

Exp.1 31.86 24.32 28.18 33.18

Exp.2 37.08 28.73 36.06 38.45

Exp.3 36.49 31.86 36.17 38.15

Exp.4 34.22 27.19 29.63 35.46

Exp.5 33.63 31.88 34.52 34.60

Exp.6 38.22 33.07 37.22 39.46

Exp.7 38.03 34.48 38.96 39.91

Exp.8 39.68 35.80 40.00 41.56

Data in italics present the highest PSNR results with each experiment
in the four methods

Figure 6 shows the brain (512 × 512) image reconstruc-
tion results of our method with 2D Cartesian sampling
(Exp.7). The sampling scheme showing in Fig. 6d can be
found in [12]. The k-space was undersampled by randomly
choosing phase-encode lines [12]. Subfigures Fig. 6b, c,
g, h are the zero-filled, RecPF, SparseMRI, and DLMRI
reconstructions, respectively, and subfigures Fig. 6e, f, j, k,
l are the magnitude of reconstruction errors for zero-filled,
RecPF, SparseMRI, DLMRI, and our methods. By look-
ing reconstruction and error results carefully, we can see
that our method reconstruction in Fig. 6i preserves image
features better, and it clearer than other methods.

Figure 7 shows the reconstruction and error results of
different methods for leg image with pseudo radial sam-
pling and the sampling ratio is 13.91% of the k-space data
(Exp.3). By examining these figures, we can see that the cor-
responding regions in our proposed method reconstruction
are clearer and sharper than other methods (Fig. 7i). The
magnitude image of the reconstruction error indicates that
our method obtains lower magnitude and less structure than
DLMRI and RecPF methods (Fig. 7l). The PSNR of our
method (41.07dB) was 2.76 dB higher than that of RecPF
and 2.06 dB higher than that of DLMRI.

Figure 8 shows the reconstructed results of the leg image
with Exp.6, and subfigures Fig. 8b, c, g, h, i represent the
reconstruction results by zero-filled, RecPF, SparseMRI,
DLMRI, and our method, respectively. The corresponding
PSNRs are 31.99 dB, 40.00 dB, 29.30 dB , 40.48 dB, and
43.19 dB respectively. By looking carefully at the recon-
structions, we can see that our method effectively suppress
the artifacts. Subfigures Fig. 8e, f, j, k demonstrate that
larger reconstruction errors are exhibited by zero-filled,
RecPF, SparseMRI, and DLMRI methods but not our pro-
posed method (Fig. 8l). Our method could provide better
reconstruction results in generally, and can recover more
fine details than DLMRI and RecPF methods.

MR image reconstruction results for head image with
2D random sampling and 5% sampling ration (Exp.1) are
shown in Fig. 9, with images in Fig. 9b, c, g, h, i indicating
the reconstruction results of zero-filled, RecPF, SparseMRI,
DLMRI, and our method respectively. The corresponding
PSNRs are 20.46 dB, 31.86 dB, 24.32 dB, 28.18 dB, and
33.18 dB respectively. From these figures, we can see that
our method effectively suppresses the artifacts but not zero-
filled, SparseMRI and DLMRI. Figure 9e, f, j, k, l demon-
strate that our proposed method exhibits less reconstruction
errors than other four methods.

In Fig. 10, we show some experimental results of Exp.1
for brain image to demonstrate the convergence behavior of
the proposed algorithm. We plot the cost value as a function
of iteration for the cost functions Eqs. 7 and 8 in the left
side of the Fig. 10. From the left curves, we can see that the
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Fig. 5 Visual comparison of brain reconstructions using different
methods with 20% undersampling (Exp.1). a Reference image, b
zero-filled reconstruction, c RecPF reconstruction, d sampling mask
in k-space with 20% undersampling, e magnitude of reconstruction
error for (b), f magnitude of reconstruction error for (c), g SparseMRI

reconstruction, h DLMRI reconstruction, i reconstruction using our
proposed method, jmagnitude of reconstruction error for (g), kmagni-
tude of reconstruction error for (h), lmagnitude of reconstruction error
for (i)

cost values of Eqs. 7 and 8 decrease as the number of iter-
ation increases. In order to better explain the convergence
of our method, we plot the curve in the right of Fig. 10,
which denotes the ratio of L2-norm of the errors between

the reconstructed image ut+1 and the original image u at
each iteration with the original image (that is, the value

of ‖ut+1−u‖2‖u‖2 ). With the increase of iterations, we can see
that the ration is getting smaller and smaller compared with
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Fig. 6 Visual comparison of brain reconstructions using different
methods with 19.14% undersampling (Exp.7). a Reference image,
b zero-filled reconstruction, c RecPF reconstruction, d sampling
mask in k-space with 19.14% undersampling, e magnitude of recon-
struction error for (b), f magnitude of reconstruction error for (c),

g SparseMRI reconstruction, h DLMRI reconstruction, i reconstruc-
tion using our proposed method, j magnitude of reconstruction error
for (g), k magnitude of reconstruction error for (h), l magnitude of
reconstruction error for (i)

the original image, that is to say the reconstructed image
approaches the original image as the number of iteration
increases. So whenever this ratio achieves a certain level, we
terminate the iteration.

4 Discussion

TheMRI reconstruction from an incomplete of Fourier sam-
ples is an significant target to improve scanning technologies,
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Fig. 7 MR image reconstruction results of our method for leg image
with pseudo radial sampling (Exp.3). a Reference image, b zero-filled
reconstruction, c RecPF reconstruction, d sampling mask in k-space
with 20% undersampling, e magnitude of reconstruction error for (b),

f magnitude of reconstruction error for (c), g SparseMRI reconstruc-
tion, h DLMRI reconstruction, i reconstruction using our proposed
method, j magnitude of reconstruction error for (g), k magnitude of
reconstruction error for (h), l magnitude of reconstruction error for (i)

and it can quickly carry out accurate and safe examina-
tion reports for doctors with high quality images. As well
known, one of the major challenges is the ill-posed nature

of the reconstruction process due to insufficient samples.
The theory of CS could reconstruct the unknown image by
using significantly fewer measurements than the number
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Fig. 8 Visual comparison of leg reconstructions using different meth-
ods with 16.41% undersampling (Exp.6). a Reference image, b zero-
filled reconstruction, c RecPF reconstruction, d sampling mask in
k-space with 16.14% undersampling, e magnitude of reconstruction
error for (b), f magnitude of reconstruction error for (c), g SparseMRI

reconstruction, h DLMRI reconstruction, i reconstruction using our
proposed method, jmagnitude of reconstruction error for (g), kmagni-
tude of reconstruction error for (h), lmagnitude of reconstruction error
for (i)

of unknowns, and some MRI reconstruction algorithms
with the compressed sensing have proved to be successful
[12, 13, 16, 27]. In this paper, our primary objective is to

present an effective MRI reconstruction algorithm with high
quality images. Unlike the conventional CS reconstruction
approaches with a cost functional, our MRI reconstruction



Med Biol Eng Comput (2018) 56:635–648 645

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b) (c)

(d) (f)(e)

(g) (h) (i)

(j) (k) (l)
Fig. 9 MR image reconstruction results of our method for head image
with 2D random sampling (Exp.1). a Reference image, b zero-filled
reconstruction, c RecPF reconstruction, d sampling mask in k-space
with 20% undersampling, e magnitude of reconstruction error for (b),

f magnitude of reconstruction error for (c), g SparseMRI reconstruc-
tion, h DLMRI reconstruction, i reconstruction using our proposed
method, j magnitude of reconstruction error for (g), k magnitude of
reconstruction error for (h), l magnitude of reconstruction error for (i)

process can be divided into two steps: first, we propose
two cost functions to obtain two estimated images with
different information; second, we incorporate the guided
filter into the MRI reconstruction process, the former

two estimated images, with one as the guidance image and
the other as the filtering image, then the guided filter is
applied to reduce ring and refine the result of filtering
image.
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Fig. 10 Left: The cost values of iteration for equations (7)(“−”) and (8)(“×”). Right: The value of ‖ut+1−u‖2‖u‖2 at each iteration

In the experimental section, we have shown several
groups of results by a number of sampling schemes with dif-
ferent undersampling ratios, and compared with other MRI
reconstruction algorithms. From Figs. 5–9, Tables 2–4, we
can see that our proposed method could obtain higher qual-
ity images under the same measurements. The better results
of our method are mainly attributed to the following fac-
tors. First, we utilize the total variation in the proposed cost
function (7) to obtain image uI which could preserve the
structure information of the original image with less details.
The estimated image up from the proposed cost function
(8) contains more details than uI . The guided filter is an
edge-preserving image filter, and it does not suffer from the
gradient reversal artifacts. We utilize it to reconstruct more
details and suppress artifacts effectively. The image up con-
tains more details and more amplified artifacts then uI . We
adopt the uI as the guidance image and up as the filter-
ing image to recover more details and reduce the amplified
artifacts.

The reconstruction of MRI without noise is mainly dis-
cussed in this paper. We will study the reconstruction of MR
image with noise in the future.

5 Conclusion

In our work, we adopt a different approach to solve the
problem of MRI reconstruction. The proposed method inte-
grates the guided filter into an iterative image reconstruction

method. In each iteration, the reconstruction process is
divided into two steps. First, we obtain two images by the
proposed two cost functions. The one will be filtered by the
guided filter and the other one will work as the guidance
image respectively. During the second step, the guided fil-
ter is applied to reduce ring and refine the result of the first
step. Comparing with the some latest MRI reconstruction
methods, we demonstrate with experimental results that this al-
gorithm provides competitive and even better figures of merit.
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Appendix

The derivation from Eqs. 7 and 8 to Eqs. 9 and 10

We first must be precise about our notation. In the fol-
lowing, we have ‖∇u − ∇uE‖22 = ‖∇xu − ∇xuE‖22 +
‖∇yu − ∇yuE‖22, where ∇x represents the horizontal dif-
ference operator, and ∇y represents the vertical differential
operator.

To find the optimal value of uI , we must solve the
optimization problem

uI = argmin
u

{λ‖∇xu−∇xuE‖22+‖∇yu−∇yuE‖22+‖PFu−f ‖22}
(12)
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Because this problem is differentiable, the optimality con-
ditions for uI are easily derived. By differentiating with
respect to u and setting the result equal to zero, we get the
update rule

[λ(∇T
x ∇x + ∇T

y ∇y) + FT P T PF]u
= λ(∇T

x ∇x + ∇T
y ∇y)uE + FT P T f (13)

We now take advantage of the identities ∇T ∇ = −� and
FT = F−1 to get

(FT P T PF − λ�)u = FT P T f − λ�uE (14)

Therefore, the system that must be inverted to solve for uI is
circulant. Because of the circulant structure of this system,
we can solve for the optimal value of uI using only two
Fourier transform. Through the Eq. 14, we can get the Eq. 9

FuI = P T f − λF�FuE

|P |2 − λF�F−1
(15)

Similarly, the problem (8) is differentiable. By differen-
tiating with respect to u and setting the result equal to zero,
we get the update rule

(β + FT P T PF)u = βuE + FT P T f (16)

which is

FT (β + P T P )Fu = FT (βFuE + P T f ) (17)

Thus, we can get the Eq. 10

Fup = P T f + βFuE

|P |2 + β
(18)
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