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A B S T R A C T

Based on the theory of compressive sensing, a parallel complementary compressive sensing imaging system is
proposed, and the mathematical model of block parallel processing is established. Parametric analysis shows
that the quality of the restored image increases with the increase of observed compression ratio and the decrease
of the number of blocks, which is in conflict with total amount of data and time-consuming of algorithm, and
needs to be considered comprehensively. According to the demand of space remote sensing system applied in
push-broom mode, the image motion model of the system is established. The results show that the image motion
has a severe effect on the quality of restored image, and increasingly responsive with the decrease of the number
of blocks. when the orbital image motion parameter is constant, improving the frame rate of the detector and
increasing the pixel size can obtain a smaller image motion ratio, thereby enhancing the image quality. But the
application scope of the system for push-broom imaging is somewhat limited for its significantly degrade under
low image motion ratio.

1. Introduction

From the perspective of signal decomposition and approximation
theory, E.J. Candes, J. Romberg, T. Tao and D.L. Donoho proposed the
theory of compressed sensing(CS) in 2006 [1–3]. In the framework of
this theory, if a signal is sparse in a transform domain, the sampling
process will no longer be limited by the Shannon–Nyquist sampling
theorem, and the original signal can be recovered from far fewer samples
[4–6]. This not only reduces the requirements for hardware sampling
devices, and far fewer samples can also reduce the pressure on data
storage and transmission, thereby improving resource utilization.

Based on the above advantages, the compressive sensing theory has
been widely concerned in the fields of medical imaging, optical radar
imaging, information image processing and wireless communication.
The research of computational imaging technology in the field of
space remote sensing mainly focuses on high resolution imaging and
multi-spectral imaging based on CS theory [7,8]. In the application of
CS theory, aperture coding [9–11], digital micro-mirror device(DMD)
coding [12,13], random exposure coding [14] are mostly adopted in the
system to realize the random coding observation of the target signal.

The single pixel camera based on DMD is a typical application of
CS theory [15–17]. It uses photodiode instead of the image sensor to
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complete the image sampling function, which greatly reduces the cost
and the complexity of the hardware design. However, when large-scale
imaging is performed, the number of coding increases, resulting in a
sharp increase in observation time. Meanwhile, large-scale matrix makes
the operation time of reconstruction algorithm greatly increased. The
combination of the above two makes the time cost of the system larger,
which sacrifices the real-time performance of the system.

Solmaz Hajmohammadi presents a parallel algorithm for handling
the recursion in bispectrum phase recovery [18]. The proposed mas-
sively parallel bispectrum algorithm relies on multiple block paralleliza-
tion, which achieves a speed-up of 85.94 over its recursive sequential
counterpart with no loss in image quality. Aswin C. Sankaranarayanan
shows two specific prototypes that achieve megapixel resolution images
at video-rate by the extensions of Single Pixel Camera(SPC) [19]. A
highly parallel extension of the SPC based on a focal plane array is
investigated by John P. Dumas [20]. Yao Zhao et al. proposed a super
resolution imaging system based on parallel compressed sensing. The
proposed method first measures the transmission matrix of the scattering
sheet, and parallel means that charge-coupled device camera can obtain
enough measurements at once instead of changing the patterns on the
DMD repeatedly [21].
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B. Sun has demonstrated that a computational ghost imaging system
can be readily made more robust to sources of noise, by rapid sequential
projection of binary patterns and their inverse and demodulating the
signals acquired from a single photodiode [22]. The sampling concept
of complementary compressed sensing is proposed by Wen-Kai Yu, and
applied in a telescope system with two photomultiplier tubes [23]. He
also demonstrated a 3D compressive reflectivity imaging system with
only a single-pixel detector and complementary intensity modulation
performed by a DMD, which complies with the computer-generated
random one-to-one complementary binary pattern pairs [24]. And an ex-
periment on compressive microscopic imaging with single-pixel detector
and single-arm has been performed on the basis of ‘‘positive–negative’’
(differential) light modulation of a digital DMD [25]. A new type
of compressive spectroscopy technique employing a complementary
sampling strategy is reported by Ruo-Ming Lan. In a single sequence of
spectral compressive sampling, positive and negative measurements are
performed, in which sensing matrices with a complementary relation-
ship are used [26]. A.D. Rodríguez demonstrates an inverted microscope
that utilizes a DMD for patterned illumination altogether with two
single-pixel photo sensors for efficient light detection. The system works
by sequential projection of a set of binary intensity patterns onto the
sample that are codified onto a modified commercial DMD [27].

Based on the above considerations, a parallel complementary com-
pressive sensing imaging system based on DMD is proposed in this paper.
By means of two detectors sensing the light reflected in both outputs of
the DMD, the measurement matrix of −1, 1 sequence is acquired without
increasing the observation time, whose performance is generally better
than 0, 1 sequence. Moreover, multi-block parallel coding is carried
out with an array detector instead of a single pixel, which reduce the
observation time and the operation time. But compared to the traditional
compressive sensing system, an additional detector is added, and the
subsequent driving and processing circuits are also increased, so the
cost of hardware is somewhat increased.

On the basis of this system, the mathematical model of block parallel
processing is established. Parameters such as number of blocks and
observed compression ratio are analyzed and discussed. Then, the image
motion model in the field of remote sensing imaging is established, and
the performance degradation of the restored image due to image motion
is quantitatively analyzed and discussed.

2. Composition of the imaging system

The schematic diagram of parallel complementary compressive sens-
ing imaging system is shown in Fig. 1, which consists mainly of front-
end lens system, DMD, matching lens system 1 and 2, and detector 1
and 2. The DMD is used as a compression encoder in the system. Each
micro-mirror in DMD has 0 and 1 working states, of which 0 corresponds
to the deflection of −12 degrees, and 1 corresponds to the deflection of
+12 degrees. When the target scene is incident on the DMD through
the front-end lens system, a part of the light is reflected by the micro-
mirror in the 0 state along the direction 1, and reaches the detector 1
through the matching lens system 1. Another part of the light is reflected
by the micro-mirror in the 1 state along the direction 2, and reaches
the detector 2 through the matching lens system 2. The matching lens
system mainly realizes the matching relationship between the micro-
mirror size of DMD and the pixel size of detector.

Compared with the single-pixel imaging system, this imaging system
uses an array detector instead of the photodiode as the image informa-
tion receiver. At the same time, two detectors are used to collect the light
reflection information of DMD under two states. Therefore, the imaging
system has two significant advantages.

Firstly, with the array detector used, the target scene can be divided
into blocks according to the scale of the detector pixels, that is, each
encoding is performed in parallel for multiple image blocks. Since the
amount of information of each sub-image block is greatly reduced with
respect to the entire image, the number of parallel encoding times is

Fig. 1. The schematic diagram of parallel complementary compressive sensing
imaging system.

Fig. 2. The workflow of parallel complementary compressive sensing imaging
system.

greatly reduced, which thus reduces the observation time of encoding
process.

Secondly, two array image detectors are used to receive the light
reflection information of the two states of micro-mirror in the DMD
respectively. By subtracting the data collected by each detector from
each other, an observation information can be obtained, thereby the
measurement matrix formed is a sequence of −1 and 1. Compared with
the 0, 1 sequence, this method can obtain more image information,
which resulting in a better reconstructed image with the same number
of observations. Or from another point of view, this system can consume
less observation time with the same reconstructed image quality.

The above description is only a qualitative analysis of the system.
In the following, the mathematical model of the system will be built,
and quantitative analysis and discussion of specific parameters will be
carried out.

3. Blocking and parallel processing method

3.1. Model establishment

The workflow of the imaging system is shown in Fig. 2. Compared
with the traditional compressive sensing imaging system, the target
scene is divided into several blocks first, and each sub-image block is
simultaneously encoded in parallel by DMD. Then two array detectors
are used to receive the encoded image information, wherein each
detector pixel corresponds to a sub-block. Based on the collected image
information, the reconstruction of each sub-image block is completed by
the image restoration algorithm, and finally the block images are spliced
into the desired target scene. The number of encoding is the number of
frames captured by the detector.

The algorithm theory of compressive sensing imaging system is
derived from the sparse characteristics of natural images under the
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Fig. 3. The block correspondence of the components in the system.

condition of certain sparse transform bases. If the sparse representation
𝛼 of the signal can be obtained by the transformation of sparse basis 𝜓 ,
and the original signal x is observed by using the measurement matrix
𝛷, then the observation signal 𝑦 can be expressed as:

𝑦 = 𝜙𝑥 = 𝜙𝜓𝛼 = 𝑇𝛼 (1)

T is the product of matrix 𝛷 and 𝜓 , which is called the sensing
matrix.

The number of rows of the measurement matrix 𝛷 is less than
the number of columns because of the compressive sensing method.
Therefore, it is an NP-hard problem, which directly calculates x from
y. Under the premise that the sensing matrix T satisfies the Restrained
Isometric Property(RIP), it can be solved by the 𝑙0 norm optimization

problem:

𝛼∗ = argmin ‖𝛼‖0 𝑠.𝑡. 𝑦 = 𝜙𝜓𝛼 (2)

With the 𝑙0 norm minimization problem convex-relaxed, the above
problem can be transformed into 𝐿1 norm optimization problem:

𝛼∗ = argmin ‖𝛼‖1 𝑠.𝑡. 𝑦 = 𝜙𝜓𝛼 (3)

The above problem can be iteratively solved by a specific algorithm,
and the Orthogonal Matching Pursuit(OMP) algorithm is used in this
system. The original signal x can be obtained by multiplying the sparse
basis 𝜓 and the solved 𝛼.

As shown in Fig. 3, it is assumed that the micro-mirror array scale
of DMD in the imaging system is N × N, the number of pixels of the
array detector is M × M, that is, the number of blocks to be processed
in parallel is M × M, where N/M is a positive integer. If a detector pixel
corresponds to a DMD sub-array of size n × n, then there is 𝑛 = 𝑁/M.
The number of parallel encoding is set as m, and the ratio of parallel
encoding number m to the DMD sub-array size n is defined as observed
compression ratio D, that is, 𝐷 = 𝑚∕𝑛2.

Since each sub-block in the system is processed in the same way, the
encoding and image restoration process of a sub-block to be modeled
and analyzed is enough. It is assumed that the original matrix of the
target scene sub-block (𝑖, 𝑗) is 𝑋𝑖,𝑗 , the observation vector obtained by
DMD encoding on detector 1 is 𝑌𝑖, 𝑗 , and the observation vector obtained
on detector 2 is 𝑍𝑖,𝑗 , where𝑋𝑖,𝑗 is 𝑛2 rows and 1 column, 𝑌𝑖,𝑗 and 𝑍𝑖,𝑗 are

Fig. 4. The restored images of Lena. (a) Original image. (b) 𝑀 = 16 𝐷 = 0.6. (c) 𝑀 = 16 𝐷 = 0.7. (d) 𝑀 = 16 𝐷 = 0.8. (e) 𝑀 = 16 𝐷 = 0.9. (f) 𝑀=32 D=0.6. (g)
𝑀 = 32 𝐷 = 0.7. (h) 𝑀 = 32 𝐷 = 0.8. (i) 𝑀 = 32 𝐷 = 0.9.
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Fig. 5. The restored images of House. (a) Original image. (b) 𝑀 = 16 𝐷 = 0.6. (c) 𝑀 = 16 𝐷 = 0.7. (d) 𝑀 = 16 𝐷 = 0.8. (e) 𝑀 = 16 𝐷 = 0.9. (f) 𝑀 = 32 𝐷 = 0.6. (g)
𝑀 = 32 𝐷 = 0.7. (h) 𝑀 = 32 𝐷 = 0.8. (i) 𝑀 = 32 𝐷 = 0.9.

m rows and 1 column because of column processing. The measurement
matrix 𝛷𝑖,𝑗 used on the DMD is a random Bernoulli matrix whose −1, 1
sequence is uniformly distributed, of which 1 corresponds to the state
that light is reflected to detector 1, and −1 corresponds to the state that
light reflected to detector 2, then the whole observation process can be
expressed as:

𝑌𝑖,𝑗 −𝑍𝑖,𝑗 = 𝜙𝑖,𝑗 ⋅𝑋𝑖,𝑗 (𝑖, 𝑗 ∈ (1, 2…𝑀)) (4)

And then based on the observation results, the OMP algorithm is
used to complete the sub-image block reconstruction. Discrete Cosine
Transform(DCT) base is used as the sparse base matrix in this system.
After getting the recovery results of each sub-image block, the final
image can be easily obtained by splicing them together.

In order to compare and analyze the quality of restored image
under different parameters, Peak signal to noise ratio (PSNR), Structural
similarity assessment metric (SSIM) and Feature similarity index (FSIM)
are selected as the evaluation standard of image quality. Where PSNR
is the ratio between the maximum signal and the background noise,
which is the most commonly used image quality evaluation, and larger
values indicate better image quality. It simply calculates the difference
of gray values between images, and the structural relationship between
pixels is not considered, so the calculation results often cannot be
consistent with human’s subjective feelings. SSIM is used to describe the
structural similarity between images, and larger values represent better
image quality. According to the sensitivity of the human eyes to the

structural features of an image, SSIM defines the structure information
as an attribute that is independent of brightness and contrast, and
reflects the structure of an object in a scene from the perspective of
image composition. FSIM characterizes the feature similarity between
images based on the human eye’s acquisition of low-frequency feature
information, which is calculated from the phase congruency (PC) and
gradient magnitude (GM) information of the image. Equally larger
values specific better image recovery quality [28–30].

3.2. Parametric analysis

In the imaging process of the system, the ultimate goal is to optimize
the quality of the restored image with the highest PSNR value, which
is closely related to the observed compression ratio D and the number
of blocks M. The observed compression ratio D affects the total amount
of data S that the system needs to collect. The total amount of data
S required for the entire target scene acquisition in the system can be
expressed as:

𝑆 = 𝑛2 ×𝐷 ×𝑀2 = 𝐷 ⋅𝑁2 (5)

That is, the total amount of data S is proportional to the observed
compression ratio D, so the larger the compression ratio D is, the greater
the data storage and transmission pressure of the system is. While the
number of blocks M corresponds to the number of pixels required by the
detector, and it also affects the consumption time of recovery algorithm.
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Fig. 6. The restored images of Mandrill. (a) Original image. (b) 𝑀 = 32 𝐷 = 0.6. (c) 𝑀 = 32 𝐷 = 0.7. (d) 𝑀 = 32 𝐷 = 0.8. (e) 𝑀 = 32 𝐷 = 0.9. (f) 𝑀 = 64 𝐷 = 0.6.
(g) 𝑀 = 64 𝐷 = 0.7. (h) 𝑀 = 64 𝐷 = 0.8. (i) 𝑀 = 64 𝐷 = 0.9.

In order to verify the universal applicability of the above imaging
system, multiple images of different types and resolutions were taken
for simulation verification. The specific simulation results are shown in
Fig. 4 to Fig. 9. Among them, Figs. 4 and 5 are natural images with
the resolution of 256 × 256, Figs. 6 and 7 are natural images with
the resolution of 512 × 512, and the remote sensing images with the
resolution of 2048 × 2048 are shown in Figs. 8 and 9.

For quantitative analysis, the PSNR, SSIM and FSIM values of the
above images were calculated respectively, as shown in Table 1. Accord-
ing to the data of the three indexes in the table, the changing trend of the
three are always consistent under the conditions of different parameters
M and D. Therefore, PSNR will be taken as the representation of the
image quality evaluation standard in the following. It can be seen from
the table that the quality of the image restoration with different types
and resolutions is consistent with the change of the parameters M and
D. That is to say, the image quality increases with the increase of D in
the same number of blocks M. For the same parameter D, smaller values
of M acquire higher quality images.

After verifying the effectiveness of the system, detailed analysis will
be performed on the image of Remote1 below. According to the data
obtained from the restored image, the PSNR of the restored image are
calculated under a larger parameter range, and the drawing curves are
shown in Fig. 10. The dotted lines in the figure are the calculation results
of using measurement matrix with 0, 1 sequence.

It can be seen from the above results, firstly, the quality of the image
restoration using measurement matrix with −1, 1 sequence is generally

better than that of 0, 1 sequence, and the gap becomes more obvious
with the increase of PSNR value. So it is necessary to use two detectors
for complementary observation.

Secondly, on the premise of the same number of blocks M, the value
of PSNR increases with the increase of observed compression ratio D,
which is not difficult to understand, because the larger the observed
compression ratio is, the larger the amount of information obtained by
the system is, and the quality of restored image will naturally improve.
However, the observed compression ratio is directly proportional to the
total amount of data. Therefore, using too high compression ratio to
enhance the image quality will aggravate the burden of image storage
and transmission.

Thirdly, with the increase of the number of blocks M, the PSNR of the
restored image gradually decreases. In order to explain the reason, we
introduce the definition of sparsity 𝛿𝑘, which is the ratio of the number
k of non-zero values of the original image after sparse basis transform
to the original signal length 𝑥𝑙, and it can be expressed as:

𝛿𝑘 =
𝑘
𝑥𝑙

(6)

Since the remote sensing image is not ideal sparse feature after sparse
basis transform, there exist lots of non-zero values which are close to 0.
Therefore, under the condition of 256 grayscale levels, the threshold
is set to 10, which higher than that is seen as a non-zero value and
counted into the k. With different number of sub-blocks, the remote
sensing image is transformed by DCT basis, and the sparsity 𝛿k of each
sub-block obtained is shown in Fig. 11.
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Fig. 7. The restored images of Peppers. (a) Original image. (b) 𝑀 = 32 𝐷 = 0.6. (c) 𝑀 = 32 𝐷 = 0.7. (d) 𝑀 = 32 𝐷 = 0.8. (e) 𝑀 = 32 𝐷 = 0.9. (f) 𝑀 = 64 𝐷 = 0.6.
(g) 𝑀 = 64 𝐷 = 0.7. (h) 𝑀 = 64 𝐷 = 0.8. (i) 𝑀 = 64 𝐷 = 0.9.

Table 1
The quantitative results of the above images with the indexes of PSNR, SSIM and FSIM.

Images Resolution Measures 𝑀 = 16 𝑀 = 32

𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9 𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9

Lena 256 × 256
PSNR 23.97 dB 26.37 dB 29.86 dB 32.69 dB 20.37 dB 23.48 dB 24.39 dB 26.09 dB
SSIM 0.9431 0.9670 0.9851 0.9922 0.8769 0.9367 0.9490 0.9655
FSIM 0.8049 0.8711 0.9342 0.9653 0.6859 0.7800 0.7998 0.84210

House 256 × 256
PSNR 26.07 dB 29.06 dB 32.19 dB 37.23 dB 20.58 dB 23.52 dB 25.01 dB 29.38 dB
SSIM 0.9626 0.9809 0.9907 0.9971 0.8757 0.9346 0.9527 0.9824
FSIM 0.8199 0.8831 0.9320 0.9748 0.6770 0.7667 0.7973 0.9011

Images Resolution Measures 𝑀 = 32 𝑀 = 64

𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9 𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9

Mandrill 512 × 512
PSNR 21.18 dB 23.43 dB 25.23 dB 28.00 dB 19.65 dB 20.47 dB 23.33 dB 27.07 dB
SSIM 0.8414 0.8956 0.9291 0.9594 0.8171 0.8415 0.9076 0.9561
FSIM 0.8815 0.9264 0.9485 0.9761 0.8646 0.8727 0.9280 0.9696

Peppers 512 × 512
PSNR 26.19 dB 27.93 dB 31.68 dB 37.21 dB 20.20 dB 24.03 dB 26.37 dB 29.49 dB
SSIM 0.9672 0.9788 0.9906 0.9977 0.8791 0.9470 0.9708 0.9844
FSIM 0.8992 0.9261 0.9688 0.9944 0.8129 0.8522 0.9071 0.9543

Images Resolution Measures 𝑀 = 128 𝑀 = 256

𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9 𝐷 = 0.6 𝐷 = 0.7 𝐷 = 0.8 𝐷 = 0.9

Remote1 2048 × 2048
PSNR 24.01 dB 28.83 dB 35.81 dB 37.36 dB 18.64 dB 22.49 dB 27.02 dB 32.53 dB
SSIM 0.9371 0.9597 0.9907 0.9939 0.8570 0.9108 0.9539 0.9850
FSIM 0.9855 0.9971 0.9997 0.9999 0.9542 0.9776 0.9952 0.9994

Remote2 2048×2048
PSNR 25.56 dB 29.75 dB 36.17 dB 37.96 dB 19.72 dB 23.38 dB 28.86 dB 33.83 dB
SSIM 0.9365 0.9680 0.9894 0.9966 0.8853 0.9118 0.9609 0.9866
FSIM 0.9883 0.9983 0.9998 0.9999 0.9689 0.9831 0.9965 0.9996
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Fig. 8. The restored images of Remote1. (a) Original image. (b) 𝑀 = 128 𝐷 = 0.6. (c) 𝑀 = 128 𝐷 = 0.7. (d) 𝑀 = 128 𝐷 = 0.8. (e) 𝑀 = 128 𝐷 = 0.9. (f)
𝑀 = 256 𝐷 = 0.6. (g) 𝑀 = 256 𝐷 = 0.7. (h) 𝑀 = 256 𝐷 = 0.8. (i) 𝑀 = 256 𝐷 = 0.9.

It can be seen from Fig. 11 that, with the number of sub-blocks
increasing, the sparsity 𝛿𝑘 in each sub-block gradually increases and
the sparseness deteriorates. This can be explained by the fact that the
properties of natural image in each sub-block are degraded as the sub-
blocks become more and more refined, which leads to the sparseness
degradation. Therefore, PSNR will decrease with the increase of M, when
the same observed compression ratio D is used. In other words, on the
premise of the same total amount of data, the smaller the number of
blocks M, the higher the value of PSNR. However, the decrease of M
results in an increase in the size of the measurement matrix, which
leads to a time-consuming increase of the restoration algorithm, as
shown in Fig. 12, which are performed using MATLAB software on a
PC with a dual core Intel i5 2.5 GHz CPU. Furthermore, the real-time
performance of remote sensing image acquisition is degraded, so it needs
to be considered comprehensively in practical application.

4. Impact of image motion

4.1. Model establishment

The imaging system described in this paper requires multiple coding
of the same target scene, which is theoretically suitable for the gaze
imaging system. While the space remote sensing system usually works
in the push-sweep mode because of the characteristics of its orbit. If this
system is used in the push-sweep mode, there will be a decline in the

quality of restored image due to the image motion during the multiple
coding of a target scene. For quantitative analysis, the image motion
model of the system is established below.

The coding rate of the system depends on the refresh rate of DMD
and the frame rate of array detector, and takes the lower value of the
two. Constrained by the limitation of DMD and detector, it is assumed
that the time required for single observation is t, and the moving speed
of target scene on the focal plane is v. Then the image motion of two
adjacent observations is v × 𝛥t. Fig. 13 is the schematic diagram of image
motion in the encoding process.

The pixel size of the detector is set to a, and one detector pixel
corresponding to the sub-array size of DMD is n ×n, then the image
motion ratio p within two adjacent observations is as follows:

𝑝 = 𝑣 × 𝛥𝑡
𝑎∕𝑛

(7)

If the image motion is zero at the first observation, then the image
motion ratio 𝑃𝑘 of the 𝑘th observation can be expressed as:

𝑃𝑘 = (𝑘 − 1) ⋅ 𝑝(𝑘 ∈ (1, 2…𝑚)) (8)

The original data of the sub-block (𝑖, 𝑗) that is to be observed is matrix
X, which can be expressed as:

𝑋 =
⎡

⎢

⎢

⎣

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑛

⎤

⎥

⎥

⎦

(9)
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Fig. 9. The restored images of Remote2. (a) Original image. (b) 𝑀 = 128 𝐷 = 0.6. (c) 𝑀 = 128 𝐷 = 0.7. (d) 𝑀 = 128 𝐷 = 0.8. (e) 𝑀 = 128 𝐷 = 0.9. (f)
𝑀 = 256 𝐷 = 0.6. (g) 𝑀 = 256 𝐷 = 0.7. (h) 𝑀 = 256 𝐷 = 0.8. (i) 𝑀 = 256 𝐷 = 0.9.

Fig. 10. The relationship between PSNR and observed compression ratio in
different number of blocks.

The result of m observations is the matrix Y of m rows and 1 column:

𝑌 =
[

𝑦1,1 ⋯ 𝑦𝑚,1
]𝑇 (10)

There is no image motion for the first observation, so the target scene
matrix 𝑋1=X. Then the matrix 𝑋1 is arranged in a column, and the

matrix 𝐶𝑋1 is formed.

𝐶𝑋1 =
[

𝑥11,1 ⋯ 𝑥11,𝑛 𝑥12,1 ⋯ 𝑥12,𝑛 𝑥1𝑛,1 ⋯ 𝑥1𝑛,𝑛
]𝑇

(11)

The first observation result 𝑏1,1 is obtained from the following
equation, where 𝛷1,∶ is the first row of the measurement matrix.

𝑏1,1 = 𝜙1,∶ ⋅ 𝐶𝑋
1 (12)

When this sub-block is observed for the 𝑘th time, the target scene 𝑋𝑘

becomes:

𝑋𝑘 =
⎡

⎢

⎢

⎣

𝑥𝑘1,1 ⋯ 𝑥𝑘1,𝑛
⋮ ⋱ ⋮
𝑥𝑘𝑛,1 ⋯ 𝑥𝑘𝑛,𝑛

⎤

⎥

⎥

⎦

(13)

Each element in the matrix above is calculated as follows:

𝑥𝑖,𝑗
𝑘 = (1 − (𝑃𝑘 − ⌊𝑃𝑘⌋)) ⋅ 𝑥𝑖+⌊𝑃𝑘⌋,𝑗 + (𝑃𝑘 − ⌊𝑃𝑘⌋) ⋅ 𝑥𝑖+⌈𝑃𝑘⌉,𝑗 (14)

Where ⌊ ⌋ means rounding down, ⌈ ⌉ means rounding up, and 𝑖, 𝑗 ∈ [1, 𝑛].
Due to the existence of image motion, the data sampling process is
beyond the data range of the original image n × n. Therefore, the image
data outside the target image area needs to be introduced. Assuming
that the image motion process is along the line direction of the image,
more image data in the image motion direction is required. The specific
application data range is 𝑥𝑖,𝑗 (i ∈ [1, n + ⌈𝑃𝑘 ⌉], j ∈ [1, n]. The
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(a) 𝑀 = 64.

(b) 𝑀 = 128.

(c) 𝑀 = 256.

(d) 𝑀 = 512.

Fig. 11. The sparsity of the image with different number of blocks.

subsequent simulation process should take into account the adequacy
of the image data. Based on Eq. (14), the matrix 𝑋𝑘 is arranged in a
column, and the matrix 𝐶𝑋𝑘 is formed.

𝐶𝑋𝑘 =
[

𝑥𝑘1,1 ⋯ 𝑥𝑘1,𝑛 𝑥𝑘2,1 ⋯ 𝑥𝑘2,𝑛 𝑥𝑘𝑛,1 ⋯ 𝑥𝑘𝑛,𝑛
]𝑇

(15)

The 𝑘th observation result 𝑏𝑘,1 is obtained from the following equa-
tion, where 𝛷𝑘,∶ is the 𝑘th row of the measurement matrix.

𝑏𝑘,1 = 𝜙𝑘,∶ ⋅ 𝐶𝑋
𝑘 (16)

Fig. 12. The relationship between time-consuming and observed compression
ratio in different number of blocks.

Fig. 13. The schematic diagram of image motion in the encoding process.

4.2. Parametric analysis

In the above model, when the system hardware parameters are
determined, the image motion ratio p is proportional to the target
push-broom speed, which indicates the application environment of the
system. According to Eq. (8), the total image motion P of the observation
process is affected by the observation times m. While based on 𝑚 =
𝐷(M/N) 2, the observation times m is affected by the number of blocks
M and the observed compression ratio D. Therefore, the PSNR of the
restored image will be analyzed below with respect to the image motion
ratio p, the number of blocks M, and the observed compression ratio D
parameters.

For the convenience of detail observation and the adequacy of
the image data, the typical local area of the above remote sensing
image Remote1 is taken as the analysis object with a resolution of
256×256, which guarantees that the sampling data of the entire image
motion process will not exceed the overall image data of 2048 × 2048
resolution. Fig. 14 shows the restored images obtained with different
number of blocks M and image motion ratio p. According to the data
obtained from the restored image, the PSNR values of the reconstructed
image are calculated under different parameters, and the drawing curves
are shown in Figs. 15 and 16, wherein Fig. 15 shows the case of𝑀 = 128,
and Fig. 16 shows the case of 𝑀 = 256.

First of all, by comparing the two figures, it can be seen that the
smaller the number of blocks M is, the more sensitive the PSNR is to
parameter p, and the sensitivity of PSNR to p is about 1h when𝑀 = 128,
while the sensitivity of PSNR to p is about 5h when 𝑀 = 256.

Secondly, the overall trend shows that the PSNR of restored image
gradually decreases with the increase of the image motion ratio p. This
indicates that the image motion does have a negative impact on the
restoration of the image.

Thirdly, when the parameter p is fixed to several values, the PSNR
increases first and then decreases with the increase of the observed
compression ratio D, and there exists a maximum point. This can be
explained as follows. At the stage of low observed compression ratio,
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(a) 𝑀 = 128 𝑝 = 0. (b) 𝑀 = 128 𝑝 = 0.001.

(c) 𝑀 = 128 𝑝 = 0.003. (d) 𝑀 = 128 𝑝 = 0.005.

(e) 𝑀 = 256 𝑝 = 0. (f) 𝑀 = 256 𝑝 = 0.01.

(g) 𝑀 = 256 𝑝 = 0.02. (h) 𝑀 = 256 𝑝 = 0.03.

Fig. 14. The restored images with different number of blocks and image motion
ratio, where 𝐷 = 0.8.

the amount of observation data increases with the increase of D, which
is beneficial to image restoration, thus increasing the PSNR. At the
stage of high observed compression ratio, the total image motion P of
the observation process also increases linearly with the increase of D,
and the image quality degradation caused by image motion becomes
prominent, resulting in a decrease in PSNR.

Fig. 17 shows a trend diagram for the change of PSNR with parameter
p and D. Under the condition of high compression ratio and low image
motion ratio, either the decrease of observed compression ratio D or the
increase of image motion ratio p will lead to a sharp deterioration of

Fig. 15. The relationship between PSNR and observed compression ratio in
different image motion ratio, where 𝑀 = 128.

Fig. 16. The relationship between PSNR and observed compression ratio in
different image motion ratio, where 𝑀 = 256.

restored image quality. In particular, the imaging quality of the system
is more sensitive to the image motion ratio p.

Therefore, in order to achieve high quality restored image, it is
crucial to reduce p while using high compression ratio D. However, the
image motion ratio p is closely related to the system application environ-
ment and the system hardware parameters. From Eq. (7), it can be seen
that when the orbital image motion parameter is constant, improving
the frame rate of the detector for reducing the single observation time
and increasing the pixel size can obtain a smaller image motion ratio
p, thereby enhancing the image quality. Meanwhile, it must be pointed
out that the image quality has been significantly degraded under the
low image motion ratio p, so the application scope of the system for
push-scan imaging is somewhat limited.

5. Conclusion

In this paper, a parallel complementary compressive sensing imaging
system based on DMD is proposed, and the mathematical model of block
parallel processing is established on the basis of this system. Parametric
analysis shows that the PSNR increases with the increase of observed
compression ratio and the reduction of the number of blocks. However,
the observed compression ratio has a positive correlation with the total
amount of data, and the number of blocks is negatively correlated with
the algorithm time-consuming. Therefore, the relationship between the
image quality and total amount of data, time-consuming of algorithm is
contradictory, which needs to be comprehensively considered.

According to the demand of space remote sensing imaging in push-
broom mode, the image motion model of the system is established. The
results show that the image motion has a severe effect on the quality
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(a) 𝑀 = 128.

(b) 𝑀 = 256.

Fig. 17. The trend for the change of PSNR with parameter 𝑝 and 𝐷.

of restored image, and increasingly responsive with the decrease of the
number of blocks. In order to achieve high quality restored image, it
is crucial to reduce image motion ratio while using high compression
ratio. when the orbital image motion parameter is constant, improving
the frame rate of the detector for reducing the single observation time
and increasing the pixel size can obtain a smaller image motion ratio,
thereby enhancing the image quality. Meanwhile, it must be pointed
out that the image quality has been significantly degraded under the low
image motion ratio, so the application scope of the system for push-scan
imaging is somewhat limited.
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