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This paper proposes a more accurate eccentricity and tilt measurement method based on Young’s interference
experiment. The basic principle of the method is introduced first before the method is simulated. Then the results
are obtained when a to-be-adjusted focusing lens with eccentricity and tilt is simulated. The optical sensitivity also
is obtained from these simulation results, and the expression for the change in optical path length caused by
eccentricity and tilt is analyzed. Use of this method to detect eccentricity and tilt and assist in adjustment of
the system allows the instrument to achieve higher accuracy and thus obtain improved imaging quality and
spectral resolution. © 2018 Optical Society of America

https://doi.org/10.1364/AO.57.000F50

1. INTRODUCTION

The imaging spectrometer is the result of a combination of im-
aging technology with spectroscopy [1–3]. This instrument can
not only obtain target image information but can also obtain
the spectral characteristics of the target material from the ac-
quired spectral image data; it can thus obtain a target’s spectral
characteristics and confirm its existence and its material com-
position. This spectrometer has a wide range of applications in
meteorology, resource management, and environmental, eco-
logical, and other fields [4,5]. The imaging spectrometers
use a slit that constrains the spatial resolution of the target, thus
limiting the system’s luminous flux and reducing its signal-to-
noise ratio [6]. At the same time, the slit imaging spectrometer
requires a push sweep or a sweep to obtain all required infor-
mation, which not only wastes large amounts of observation
time but also reduces the system’s stability. Lenslet array integral
field spectrometry (IFS) is a fast and efficient type of three-
dimensional (3D) imaging spectrometer, initially used in
astronomy [7]. The lenslet array IFS has no moving parts or
slits, so it offers higher stability and can acquire the target
3D data cube more rapidly [8,9]. The spectrometer obtains
a spectrum of each spatial element in its fields of view, produc-
ing a cube of data corresponding to two spatial (x, y) and one
spectral (λ) dimension. It gathers complete information of the
celestial body, greatly saving valuable observation time on
the telescope, and improves the stability and consistency of the

observed data. It has proved to become one of the most effective
means for performing 3D imaging spectroscopy and a central
focus in present-day technological advances in astronomical
instrumentation.

For measurement of the center deviation, there are two main
classification methods. The first method is divided into colli-
mated imaging and interferometry and is based on the coher-
ence of the light source used; the other is based on the light
propagation method used to separate it into reflective and
transmissive measurements. These two methods are crossed
with each other to form the four main types of center deviation
measurement method [10–15]. The basic principle of reflective
collimation imaging measurement is that a self-collimating op-
tical path is used to reflect the center deviation of a measured
spherical surface onto the deviation of the target object’s quasi
image. This method measures the position of the sphere center
on the measured surface of the measured lens. Therefore, to
determine the deviation of the optical axis of the measured lens
from the reference axis, the position of the sphere center on the
other surface of the lens must also be obtained. In general, re-
cursive measurement methods are used to obtain the center
position of the second face and thus determine the optical axis
of the lens and measure the center deviation of the lens. In the
transmissive imaging measurement method, the light that is
emitted from the index object passes through the optical system
into parallel light and is then refracted and imaged using the
test lens. If a center deviation is present in the lens under test,
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the index image that it produces will deviate from the optical
axis. In reflective center interferometry, the reflected light from
the surface of the measured lens interferes with the reference
light. The center deviation information can then be obtained
from the interference pattern. Depending on the difference in
position of the reflected light from the lens, the method can be
divided into two types: center interferometry–based and edge
interferometry–based methods. Transmissive interferometry
determines the optical axis of a lens by measuring the two focus
lines (measured line) of the lens and then comparing the
deviation between the reference axis and the measured line
to determine the center deviation of the lens. When the two
basic methods of imaging and interferometry are compared,
the measurement range for imaging is large, the results are in-
tuitive, fewer components are required to perform the measure-
ments, and the structure is simple, which is conducive to
system integration. In contrast, the interferometric range is
relatively small, the required structure is more complex, and
the processing of the results is more difficult, but the measure-
ment accuracy of interferometry is generally higher than that of
the imaging-type measurement method [16–19].

The lenslet array in lenslet array IFS is a binary optical
element. Therefore, when compared with traditional imaging
spectrometers, the lenslet array IFS is more sensitive to errors
such as eccentricity and tilt, and optical adjustment is thus
more critical. Use of the method for detection of eccentricity
in traditional imaging spectrometers cannot meet the integra-
tion requirements of a field-of-view imaging spectrometer. This
paper presents a more accurate method for detection of eccen-
tricity and tilt. The proposed method is based on Young’s
double-slit interference experiment [20]. The eccentricity
and tilt of the lens will cause the optical paths of the two
interfering light beams to differ, which results in offset of
the interference fringes. This method converts the eccentricity
and tilt distance errors into interference fringe offsets, thus
allowing the accuracy to reach wavelength order.

2. PRINCIPLE OF THE SYSTEM

A schematic diagram of the optical system of the lenslet array
IFS is shown in Fig. 1. The light is converged using the pre-
imaging system and is then incident on the lenslet array. After it
passes through the lenslet array, the beam forms a microaper-
ture array at the focal plane of the lenslet array. This microa-
perture array serves as an entrance aperture to the subsequent
spectrometer system and replaces the slit that is used in a
conventional imaging spectrometer. The image of the micro-
aperture is collimated, is split using the spectrometer system,
and is finally converged onto the detector to form an image
of the microaperture array. Because of the dispersion effect
of the spectrometer system, the microaperture array is thus ac-
tually a 2D array of spectral bands, as shown in Fig. 1. To pre-
vent crosstalk in the optical information that is obtained using
the microaperture array, the preimaging system that is placed in
front of the microlens array requires an image-side telecentric
structure and high telecentricity. In addition, the lenslet array
belongs to the group of binary optical elements. During the
adjustment process, the lenslet array and the other mirrors
require higher eccentricity and higher tilt errors. Therefore,

a measurement method that is more sensitive to eccentricity
that is based on Young’s interference test method was chosen
for this work.

The device used to detect eccentricity and tilt based on
Young’s interference experiment is shown in Fig. 2. This device
is composed of a polychromatic light source, Young’s double
slit, a high-precision adjustable frame with multiple degrees
of freedom, a lens for mounting, an imaging lens, a shock-proof
ground structure, and a charge-coupled device (CCD) detector.
The light that is emitted by the light source is incident on the
double slits of the screen, where the two slits are in close prox-
imity and are equidistant from the light source. The light waves
that are emitted from S1 and S2 are separated from the same
light wave and are both coherent light waves. The two beams
are imaged using the imaging lens on the CCD detector behind
the lens to be mounted and are superimposed on the CCD
detector to form an interference pattern. The changes in the
interference fringes are strongly affected by the surrounding
environment. Therefore, the entire device setup is mounted
on the same antivibration ground structure as the precision
turntable to ensure that the device maintains the same ampli-
tude as the examined mirror, which thus greatly reduces the
errors that are caused by vibration.

S1 and S2 represent the intersections of the slits and the
meridian plane. Assume here that point P is an arbitrary point
located on the CCD. For convenience in the calculations, il-
lumination by a monochromatic light source is initially consid-
ered. When the two interference light beams pass through the
lens under test, the intensity of the light that is produced by
their superposition at point P is

I � I 1 � I 2 � 2
ffiffiffiffiffiffiffiffiffi
I 1I 2

p
cos δ: (1)

Here, I 1 and I 2 are the light intensities of the two light waves
incident on the screen, and δ is the optical path difference. If
the widths of the two slits in the experimental device are equal,
then I 1 � I 2 � I 0. At the same time, the distances from the

Fig. 1. Schematic diagram of lenslet array IFS.

Fig. 2. Structural diagram of the device setup.
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two slits to the light source are also equal, which means that the
vibrations at the two slits are in the same phase. The phase
difference between the light waves at point P is dependent
on the difference in the optical paths from points S1 and S2
to point P. Let the distances from S1 and S2 to point P be
r1 and r2, respectively; then, the optical path difference at point
P is D � n�r2 − r1�, so the phase difference is

δ � 2π
n�r2 − r1�

λ
: (2)

n is the refractive index of the medium, and λ is the wavelength
in a vacuum. Bringing Eq. (2) into Eq. (1) allows the light in-
tensity expression to be written as

I � 2I 0 � 2I 0 cos

�
2πn

r2 − r1
λ

�
� 4I 0 cos2

�
πn�r2 − r1�

λ

�
:

(3)

The light intensity at point P is determined by difference in the
optical paths from points S1 and S2 to point P. Over the entire
diffraction screen, when some points meet the following
conditions,

D � r2 − r1 � mλ m � 0, � 1, � 2,…, (4)

then the light intensity at these points has a maximum value of
I � 4I0; when other points meet the following conditions,

D � r2 − r1 �
�
m� 1

2

�
λ m � 0, � 1, � 2,…, (5)

then the light intensity at these points has a minimum value of
I � 0. At the remaining points, the light intensity has a value
between 0 and 4I 0 [21].

The simulation of Young’s double-slit interference under il-
lumination by monochromatic light is shown in Fig. 3(a).
When there is no lens eccentricity to be detected in the optical

path that detects decentering of the lens, the position of the
zero-order major maximum is the center of the lens.
However, because it is difficult to distinguish the dominant
position in the interferogram of Young’s double-slit interfer-
ence experiment when simulated using monochromatic light,
polychromatic light is selected for the simulation. Young’s dou-
ble-slit interferogram of complex-colored light is shown in
Fig. 3(b). It is easy to see that, when compared with
Young’s interference fringes from monochromatic light, the
center position of the lens can be found more easily in the
simulation using multicolored light, thereby enabling more
accurate determination of the amount of variation in the inter-
ference fringes caused by eccentricity and tilt. Therefore, we use
Young’s interference method based on polychromatic light to
measure the eccentricity during adjustment of the optical
system.

3. SIMULATION OF ECCENTRICITY AND TILT

In accordance with the model established above, the variation
produced by the interference fringes is simulated under condi-
tions of eccentricity or tilt of the lens. First, to maintain the
above optical path difference of zero, an eccentricity of only
1 μm is applied to the lens to be mounted, and the variation
of the interference fringes is shown in Fig. 4. From Fig. 4(a), we
see that there is a movement of approximately 0.25 stripe
widths in the zero-order dominant position of the interference
fringe. When the lens is given a tilt of 2.5e − 8°, a translation of
0.2 fringe-widths occurs at the zero-order dominant position of
the interference fringe, as shown in Fig. 4(b). The main cause of
the variation in the interference fringes is that the optical path
difference between the two interference light beams changes.
The eccentricity or tilt of the lens to be adjusted causes the lens
position to change. After the light that is emitted from the
Young’s double slits passes through the lens to be mounted,
the optical path difference between the two light beams when
convergent on the CCD is no longer zero.

Fig. 3. (a) Simulation results obtained using monochromatic light;
(b) simulation results obtained using polychromatic light. Fig. 4. (a) Simulation of the eccentricity. (b) Simulation of the tilt.
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The changes on the optical path difference caused by the
eccentricity and the tilt of the lens will be analyzed separately.
Figure 5 shows an optical schematic view of the lens when there
is no eccentricity or tilt present. Z is the optical axis, s1 and s2
are the intersections of the plane where the slit is located with
the meridian plane, and the Young’s double-slit distance is 2d .
A and B are the intersection coordinates of s1 and the lens to be
mounted, where these coordinates are A�xa, ya� and B�xb, yb�,
respectively, and C and D are the intersection coordinates of s2
and the lens to be mounted, where the coordinates are C�xc , yc�
and D�xd , yd �, respectively. O1 is the center of the circle in
which the front surface of the lens to be mounted is located,
and R1 is its radius of curvature, while O2 is the center of the
circle in which the rear surface of the lens to be mounted is
located and R2 is its radius of curvature. H 1 and H 2 represent
the intersections of the optical axis Z and the front and rear
surfaces of the lens to be mounted, respectively, and the point
O is the point of intersection of the optical axis and the front
and rear surfaces of the lens. The coordinate system is
established using the H 1 point as the origin. The O1 point
coordinate is O1�LH1O1

, 0�, and the O2 point coordinate is
O2�LH 1O2

, 0�. The equation for circle O1 is then,

�x − LH 1O1
�2 � y2 � R2

1: (6)

The equation for circle O2 is

�x − LH 1O2
�2 � y2 � R2

2: (7)

The equations for s1 and s2 are

y � d , (8)

y � −d : (9)

LH 1O1
and LH 1O2

are known quantities. Equations (6) and (8)
can be used to obtain the abscissa of point A, xa, as

xa � LH 1O1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − d

2

q
: (10)

Similarly, the abscissa of point B, xb, is

xb � LH 1O2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − d

2

q
: (11)

When there is eccentricity in the lens to be adjusted, as shown
in Fig. 6, the eccentric displacement is denoted by m. In this
case, the coordinates of point O1 are O1�LH 1O1

,m�, the

coordinates of point O2 are O2�LH 1O1
,m�, and the equations

for circle O1 and circle O2 after the eccentricity are

�x − LH 1O1
�2 � �y − m�2 � R2

1, (12)

�x − LH 1O2
�2 � �y − m�2 � R2

2: (13)

Using the equations for circle O1, circle O2, s1, and s2, the
abscissas of points A, B, C , and D can then be obtained.
The corresponding. xa, xb, xc , and xd values are

xa � LH 1O1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − m�2

q
, (14)

xb � LH1O2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d − m�2

q
, (15)

xc � LH 1O1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � m�2

q
, (16)

xd � LH 1O2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d � m�2

q
: (17)

Here, LAB and LCD are

LAB � �LH 1O2
− LH 1O1

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 − �d − m�2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − m�2

q �
, (18)

LCD � �LH 1O2
− LH 1O1

�

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 − �d � m�2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � m�2

q �
: (19)

The expression for the optical path difference Δt caused by the
eccentricity is

Δd � �LCD − LAB� � n�LAB − LCD�
� �n − 1��LAB − LCD�

� �n − 1�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 − �d − m�2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − m�2

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d � m�2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � m�2

q �
: (20)

When there is a tilt of the lens, as shown in Fig. 7, the tilt angle
is θ, and the center coordinates of both circle O1 and circle O2

change. Their tilted center coordinates are O1�LH1O1
cos θ,

Fig. 5. Optical schematic view of lens without eccentricity or tilt. Fig. 6. Optical schematic view of the lens with eccentricity.
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LH 1O1
sin θ� and O2�LH 1O2

cos θ, LH 1O2
sin θ�, respectively.

The equations of these sloping circles, O1 and O2, are

�x − LH 1O1
cos θ�2 � �y − LH 1O1

sin θ�2 � R2
1, (21)

�x − LH 1O2
cos θ�2 � �y − LH 1O2

sin θ�2 � R2
2: (22)

Using the equations for circle O1, circle O2, s1, and s2, the ab-
scissas of points A, B, C , and D can then be obtained.

The corresponding values of xa, xb, xc , and xd are

xa � LH 1O1
cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − LH 1O1

sin θ�2
q

, (23)

xb � LH 1O2
cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d − LH 1O2

sin θ�2
q

, (24)

xc � LH 1O1
cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � LH 1O1

sin θ�2
q

, (25)

xd � LH1O2
cos θ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d � LH 1O2

sin θ�2
q

: (26)

Here, LAB and LCD are

LAB � �LH 1O2
− LH 1O1

� cos θ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d − LH 1O2

sin θ�2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − LH 1O1

sin θ�2
q

, (27)

LCD � �LH 1O2
− LH 1O1

� cos θ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d � LH 1O2

sin θ�2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � LH 1O1

sin θ�2
q

: (28)

The expression for the optical path difference Δt that is caused
by the tilt is

Δt � �n − 1�

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 − �d − LH 1O2

sin θ�2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d − LH 1O1

sin θ�2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − �d � LH 1O2

sin θ�2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − �d � LH 1O1

sin θ�2
q �

: (29)

MATLAB software was used to simulate the influence of the
eccentricity and the tilt on the interference fringes, and
the weights, a and b, of the influence of the eccentricity
and the tilt, respectively, on the interference fringe variations
were obtained. Finally, we obtain the following optical path
difference Δ when the lens to be installed has both eccentricity
and tilt:

Δ � aΔd � bΔt : (30)

4. OPTICAL ACCURACY

The distance between two adjacent bright stripes or between
two dark stripes is called the fringe spacing and is denoted
by e. The expression for the spacing e of the interference fringes
in Young’s double-slit interference experiment is

e � D
d
λ, (31)

whereD is the distance from the observation point to the double
seam and d is the distance between Young’s double seams. λ is
the center wavelength of the observation band, and when
D � 1m, d � 0.5 mm, and λ � 0.587 μm, then the stripe
width e is 1.174 mm. The results of the above simulations show
that the lens is translated by 1 μm, the zero-order major trans-
lation is approximately 293.5 μm, the lens tilt is 2.5e − 8°, and
the zero-order major translation is approximately 234.8 μm.
Because the electronics subdivision technology can reach
50 nm, the optical precision can be converted to 0.0002 μm.
The actual polychromatic light wave curve is shown in Fig. 8.

To determine whether or not the eccentricity and tilt of the
to-be-adjusted lens satisfies the system requirements, an evalu-
ation function must be defined to evaluate the adjustment
error. σ2 is defined as the evaluation function for the system
and is expressed as

σ2 �
X�N

i�−N

�yx0−i − yx0�i
�2: (32)

Fig. 7. Optical schematic view of the lens with tilt.

Fig. 8. Actual polychromatic light wave curve.
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When x0 is the maximum coordinate, x0−i is the interference
fringe of −i, which is reflected on the CCD detector as the pixel
coordinate, and y is the gray value of the stripe. For different
installation accuracy requirements, different values can be set
for σ2. If the σ2 value in the adjustment process is within
the set range, the adjustment can be considered to meet the
accuracy requirements. If the value of σ2 exceeds the preset pre-
cision value, this means that the eccentricity does not reach the
expected requirement, and it is thus necessary to continue to
adjust the attitude of the lens until the preset precision value is
satisfied.

5. CONCLUSIONS

The traditional method for measurement of the eccentricity of
a lens to be installed cannot meet the lenslet array IFS mount-
ing accuracy requirements, so this paper proposes a method
with higher optical precision based on Young’s double-slit in-
terference experiment to measure lens eccentricity. First, the
basic principles of the method were introduced, and then a
theoretical model for simulation was established. The mono-
chromatic light model and the polychromatic light model were
compared. Then, polychromatic light was selected to simulate
the eccentricity and the tilt of the lens. From the results of the
simulation analysis, the optical sensitivity was then obtained.
The optical path difference that was generated by the eccentric-
ity was analyzed, and finally the error evaluation function was
given. When different systems are to be installed, there will also
be different eccentricity requirements, so different error accu-
racy values can be preset. When the adjustment function
exceeds the relevant preset precision value during the adjust-
ment process, this indicates that the eccentricity does not meet
the system’s requirements, and it is then necessary to continue
to adjust the attitude of the lens to be mounted until the ac-
curacy requirement is satisfied. The method based on the
eccentricity of Young’s double-slit interferometric system is
not only suitable for adjustment of the microlens array integral
to the field-of-view imaging spectrometer but is also applicable
to other transmissive systems that require high eccentricity
accuracy.
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