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a b s t r a c t 

This paper presents a novel fusion framework for infrared and visual image that uses an adaptive dual- 

channel pulse-coupled neural network (PCNN) with triple-linking strength ( ATD-PCNN ) in a local non- 

subsampled shearlet transform (LNSST) domain. First, the LNSST, which is an upgrade based on the NSST, 

is used as a multi-scale analysis tool to decompose the source images into low-pass and high-pass sub- 

images. Second, an improved sum-modified Laplacian (ISML) that reflects the energy characteristics of 

low-pass sub-images in the LNSST domain is used to stimulate the ATD-PCNN model, and an improved 

average gradient (IAVG) that reflects the textural details of high-pass sub-images is used to stimulate the 

ATD-PCNN neurons. Furthermore, to solve the problem of the spectral difference between infrared and 

visible light, three novel operators are used as the adaptive linking strength, and an optimization model 

based on l 2 -norm is used for merging the output coefficients. A series of images from diverse scenes 

are used for the fusion experiments, and the fusion results are evaluated subjectively and objectively. 

The results of the subjective and objective evaluations show that our algorithm exhibits superior fusion 

performance and is more effective than typical fusion techniques. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The concept of image fusion was proposed in the early 1970s,

nd it primarily involves the study of the intrinsic relationship be-

ween multi-source images via the use of appropriate algorithms

o convert two or more pieces of redundant, diverse and comple-

entary information into one fused image with richer information

1] . In general, the source images of the fusion are classified into

wo types: images acquired by the same type of sensor or images

cquired by different types of sensors. Different types of sensors

ave different properties in principle, and the images obtained by

ifferent types of sensors have a greater difference and comple-

entarity. Therefore, research on heterogeneous image fusion tech-

ology is important [2] . Infrared (IR) and visible light (VI) image

usion is the most widely used heterogeneous image fusion tech-

ique. An effective combination of such techniques can combine

he advantages of the two types of images to form a fusion image

ith high contrast, background enhancement and target projection,

hich is more convenient for accurate detection of the target [3] . 
∗ Corresponding author at: Changchun Institute of Optics, Fine Mechanics and 
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Researchers have proposed a large variety of fusion algorithms,

nd multi-scale geometric analysis (MGA) is currently the most

idely used [4,5] . In this method, the source image is decom-

osed into a series of multi-direction and multi-scale sub-images

nd then appropriate fusion rules are applied to transform the

orresponding sub-band images into fused images. Certain tradi-

ional fusion rules generally use the weighted-average method,

hich ensures the complementarity of the brightness of the IR and

I images and eventually leads to image contrast reduction and

nnatural image reconstruction [6] . A pulse-coupled neural net-

ork (PCNN) [7] is obtained by studying neuron stimulation in the

ammalian visual system, and it conforms to the visual informa-

ion system of the human brain. So as a fusion rule, combining

GA with it, the spatial 2D information integrity of the input im-

ge is retained after the fusing process. Using the perfect combina-

ion of the PCNN model and visual characteristics, a better fusion

ffect is obtained. It is worth mentioning that, NSST [8] is the most

dvanced method used today among these numerous MGA meth-

ds, and it is constructed from synthetic wavelets that can ob-

ain a multi-directional tight support structure. In addition, a sub-

ampled operation is not included in the decomposition process;

hus, the image can be finely decomposed. Because the large-sized

hearlet filter will cause a spectral aliasing phenomenon in the

irectional localization stage of the NSST, a local non-subsampled

https://doi.org/10.1016/j.neucom.2018.05.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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shearlet transform (LNSST) [9] is proposed as a multi-scale decom-

position tool of the image based on the NSST. This method uses the

local small-size shearlet filter to avoid the block effect and weaken

the Gibbs-ringing phenomenon, which improves the time domain

convolution calculation efficiency. Therefore, it is very valuable to

study the fusion algorithm based on LNNST with PCNN model. 

Xiang et al. [10] proposed an adaptive dual-channel PCNN

model based on the traditional PCNN. This new model can re-

flect the information from two source images at the same time,

and simplify a large number of peripheral parameters. Moreover,

the "linking strength", which is the most important parameter

of PCNN model is adaptively set. These changes significantly in-

crease the accuracy of the fusion, so they provide some ideas for

the study of this paper [11] . Although a number of results have

been achieved, problems are still encountered, such as target halo

and black pseudo-noise, and the essential reason is that the se-

lection of the linking strength in the model is inappropriate. Aim-

ing at the fusion of images with large difference spectra between

IR and VI, a single operator such as average gradient [12] , spa-

tial frequency [13] and edge gradient [14] , which is treated as the

linking strength, will lead to the decrease of the stability of the

value of linking strength, so it eventually leads to discontinuity

and edge blur in the fused images. The linking strength reflects the

strength of the human visual system response to different charac-

teristic regions in the image, thus, a better operator that can re-

flect the image characteristics is required as the external linking

strength [15] . In addition, low-pass sub-images are different from

high pass sub-images, and the same operator should not be used

as the linking strength for both types. The low-pass sub-image of-

ten neglects the edge detail information, and the high-pass sub-

image often ignores the main energy characteristics. Thus, a type

of auxiliary linking strength is required to connect the information

in the low-pass sub-image and high-pass sub-image and compen-

sate for their deficiencies in linking strength. In addition, the low-

frequency and high-frequency components of the image produced

after LNSST decomposition are different in nature, and the same

operator should not be used as the linking strength for both types.

The low-pass sub-image often neglects the edge detail information,

and the high-pass sub-image often ignores the main energy char-

acteristics. Thus, a type of auxiliary linking strength is required

to connect the information in the low-pass sub-image and high-

pass sub-image and compensate for their deficiencies in linking

strength. Based on the above analysis, the existing adaptive dual-

channel PCNN model needs to find three new operators that can

better reflect the intrinsic eigenvalue of the image to solve the IR

and VI image fusion with large spectral differences. 

The singular value of an image [16] contains the structural in-

formation of the image and thus concentrates the energy informa-

tion and the regional characteristics of the image. Therefore, a local

structure information factor (LSI) that is constructed of the local

region singular value of the image is regarded as the main link-

ing strength of the low-pass sub-image, and a sum of directional

gradients (SDG) represents the image information changed in the

horizontal, vertical and diagonal directions, which can be used as

the main linking strength of the high-pass sub-image to charac-

terize the texture details of the image. A Laplacian edge energy

(LEE) operator can reflect the edge energy information of low-pass

sub-images and highlight changes in the edges of details of high-

pass sub-images; therefore, it can be used as a bridge to connect

the information in the low-frequency and high-frequency domains

and compensate for deficiencies in the original linking strength.

Through the interaction of the above three operators, the feature

information of the image can be more fully input into the PCNN

model, and the stability of the value of linking strength can be con-

solidated so that the final fusion image is naturally transitioned. To
c  
ur best knowledge, this is a new adaptive PCNN model, which is

alled ATD-PCNN. 

Based on the preceding review, due to the fact that the cur-

ent adaptive linking strength operator cannot solve the spectral

ifference between IR and VI, and single linking strength can-

ot express the characteristics of the low-pass sub-images and

igh-pass sub-images simultaneously, our method presents a novel

usion framework of VI and IR images by using an adaptive

ual-channel PCNN model with triple-linking strength in the LNSST

omain. First, the LNSST is used as a multi-scale analysis tool to

ecompose the source images into a low-pass sub-image and high-

ass sub-image. Second, the concrete selection principles of the

ow-pass sub-image and high-pass sub-image are separately dis-

ussed in detail in this paper. Furthermore, three new operators

re proposed based on the original adaptive dual-channel PCNN

odel as the external linking strength to solve the problem of the

pectral difference between IR and VI, and an optimization model

ased on l 2 -norm is used for merging the output coefficients. Fi-

ally, each sub-image is modeled, and the corresponding fusion

oefficients are produced. The algorithm can effectively express the

haracteristics of the image and obtain a better fusion effect by us-

ng IR and VI images in the fusion experiments. 

The remainder of this paper is organized as follows. Chapter 2

etails the principle of the LNSST. Chapter 3 introduces the singu-

ar value decomposition of the image and its characteristics. Chap-

er 4 introduces the theoretical framework of the adaptive dual-

hannel PCNN. Chapter 5 elaborates the algorithm based on the

ew fusion rule. Chapter 6 presents six experimental results and

ntuitively compares the proposed method with other methods.

hapter 7 provides a summary of the findings. 

. Local non-subsampled shearlet transform [17,18] 

When the dimension is n = 2, the shearlet system function with

iscrete parameters is as follows: 

 AB ( ϕ ) = { ϕ j,l,k = | det A | j/ 2 ϕ 

(
B 

l A 

j x − k 
)
; j, l ∈ Z, k ∈ Z 2 } . (1)

here ψ∈ L 2 ( R 2 ); A and B are 2 × 2 reversible matrices; |det B | = 1;

 is the scale parameter; l is the direction parameter; and k is the

patial position. For j ≥ 0, -2 j ≤ l ≤ 2 j −1, k ∈ Z 2 , d = 0, 1, the Fourier

ransform of the shearlet can be expressed according to the tight

upport frame: 

ˆ  (d) 
j,l,k 

= 2 

3 j/ 2 V ( 2 

−2 j ξ ) W 

(d) 
j,l 

(ξ ) e −2 π iξA − j 

d 
B −l 

d 
k . (2)

here V (2 −2 j ξ ) is the scale function, W j,l 
( d ) is the window function

ocalized on the trapezoidal pair, A d is the heterosexual expansion

atrix, and B d is the shear matrix. The shearlet transform of the

unction f ∈ L 2 ( R 2 ) can be calculated by Eq. (3) : 

f, ˆ ϕ 

(d) 
j,l,k 

〉
= 2 

3 j/ 2 

∫ 
R 2 

ˆ f (ξ ) V ( 2 

−2 j ξ ) W 

(d) 
j,l 

(ξ ) e −2 π iξA − j 

d 
B −l 

d 
k dξ . (3)

Eq. (3) shows that the shearlet transform is divided into

wo steps: the first step is a multi-scale decomposition,

.e., ̂  f (ξ ) V ( 2 −2 j ξ ) ; and the second step is the direction of localiza-

ion, i.e., ˆ f (ξ ) V ( 2 −2 j ξ ) W 

(d) 
j,l 

(ξ ) . 

Multi-scale decomposition: the image is subjected to non-

ubsampled pyramid decomposition (NSP) using a non-subsampled

 D filter bank of dual channels to generate a low-pass sub-image

nd multiple high-pass sub-images with perfect reconstruction. 

Directional localization: directional localization is achieved by

mall-scale shearlet filters (SFs) and high-pass sub-images convolu-

ion calculations. The local window is L × L , where L = n •(2 j -1 + 1), j

s the scale parameter, and n is any positive integer. Because the lo-

al small-size shearlet filter can avoid the block effect, weaken the
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Fig. 1. Shearlet filter formation procedure when L = 15. 
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ibbs-ringing phenomenon, and improve the time domain convo-

ution calculation efficiency, j is usually 2 or 3 and the local win-

ow is usually 15 × 15. The Meyer window function g ( θ ) is gener-

ted in the window using the Meyer wavelet function v ( x ). 

The Meyer wavelet function is defined as follows: 

 (x ) = 

{ 

0 x < 0 

35 x 4 − 84 x 5 + 70 x 6 − 20 x 7 0 ≤ x ≤ 1 

1 x > 1 

(4) 

The Meyer window function is as follows: 

(θ ) = 

{ 

1 | x − 1 / 2 | < 1 / 3 

cos 2 π
2 
(v (3 | x − 1 / 2 | − 1) 1 / 3 ≤ | x − 1 / 2 | ≤ 2 / 3 

0 other 
(5) 

here g ( θ ) is subjected to discrete resampling in the pseudo-

olarized network and is then changed from pseudo-polarized

oordinates to the Cartesian coordinate system, ˆ W 

s 
j,l 

forms a fre-

uency domain implemented shearlet filter with a size of L × L ,

nd 

2 j −1 ∑ 

l= −2 j 

ˆ W 

s 
j,l 

( ξ1 , ξ2 ) = 1 . W 

S 
j,l 

is represented as the time domain-

mplemented shearlet filter. For any image f , we have the follow-

ng: 

2 j −1 ∑ 

= −2 j 

f × W 

S 
j,l = f, j ≥ 0 . (6)

When L = 15, the formation process of the shearlet filter is ex-

ressed as shown in Fig. 1 . 

The above shearlet transformation is called the local non-

ubsampled shearlet transform. The local non-subsampled shearlet

emoves the sampling operation in the decomposition stage, which

as translation invariance, because the local small-size shearlet fil-

er can avoid the aliasing of the spectrum and make the decompo-

ition and reconstruction of the image better. 

The process of local non-subsampled shearlet reconstruction

s divided into two steps: (1) the coefficients of high-pass sub-

mages at the same scale but in different directions are accumu-

ated after decomposition and then the reconstructed coefficients

re obtained; and (2) an inverse transformation of the decomposed

ow-pass sub-image coefficients and the reconstructed high-pass

ub-images coefficients is performed to obtain the reconstructed

mage. A local non-subsampled shearlet has good local properties,

xcellent direction selectivity, and parabolic edge characteristics.

he image f is decomposed by the m -layer LNSST to obtain �m 

 

dm high-pass directional sub-images and one low-pass sub-image.

ach sub-image is the same size as the original image, and d m 

s the number of m -layers of directional localization. A two-layer

NSST decomposition of Trui is shown in Fig. 2 . The number of

igh-pass sub-images in the first layer is 4 (the number of stages

s 2), the number of high-pass sub-images in the second layer is

 (the number of stages is 3), and the size of the shearlet filter is

5 × 15. 
. Singular value decomposition of image 

Singular value decomposition provides a new method of ex-

racting algebraic features of images, and it has been diffusely

dapted for data compression, signal processing, and pattern

ecognition [19,20] . The singular value decomposition theorem and

ts properties are described in detail as follows. 

If the matrix A ∈ R m ×n , then the two orthogonal matrices

 = [ u 1 , u 2 ,…, u m 

] ∈ R m ×n and V = [ v 1 , v 2 ,…, v m 

] ∈ R m ×n occur and one

iagonal group S = diag [ σ 1 , σ 2 ,…, σ p ] occurs. For U 

T U = I, V 

T V = I,

 = min( m,n ), σ 1 ≥σ 2 ≥ •••≥σ p > 0, and the following is obtained:

 = US V 

T = 

p ∑ 

i =1 

σi u i v T i . (7) 

Eq. (7) is considered the singular value decomposition of ma-

rix A , where the matrix S is regarded as the singular value ma-

rix. Here, σ i ( i = 1, 2, …, p ) indicates the singular value of matrix

 . The singular value of the matrix represents the essential nature

f the image rather than the visual characteristics and reflects the

ntrinsic properties of the image. The energy E of matrix A can be

xpressed as E = || A | F 
2 , which can be proven in Eq. (8) : 

 = ‖ 

A ‖ 

2 
F = ‖ 

S ‖ 

2 
F = 

∥∥US V 

T 
∥∥2 

F 
= tr[(US V 

T ) · (US V 

T ) T ] 

= tr(S · S T ) = ‖ 

S ‖ 

2 
F = 

p ∑ 

i =1 

σ 2 
i . (8) 

As shown in Eq. (8) , after image A is decomposed by a singu-

ar value, the energy information is concentrated in the singular

alue matrix S . Specifically, the singular value of the image rep-

esents the energy characteristic of the image. When Fig. 3 (a) is

ingularly decomposed and reconstructed, the singular value vec-

or is replaced with the unit diagonal matrix of the same size, and

ig. 3 (b) is obtained. 

As shown in Fig. 3 (a), after the singular value vector is stripped,

he energy information of the image is almost completely shielded.

urthermore, the singular value vector of the image contains most

f the energy information of the image. This principle is also the

heoretical basis of the proposed algorithm. 

. Adaptive dual-channel PCNN 

The PCNN is obtained by studying the neuron stimulation in the

ammalian visual system, and it conforms to the visual informa-

ion system of the human brain. Therefore, the PCNN model with

 bionic mechanism can retain the spatial 2D information integrity

f the input image the image is fused. Using the perfect combina-

ion of the PCNN model and visual characteristics, a better fusion

ffect is obtained [ 21–23 ]. Traditional PCNN models have many pa-

ameters, and most of them cannot be ignored; thus, we use a sim-

lified dual-channel PCNN model. The expression is as follows: 

 i j 
1 
( n ) = S i j 

1 (n ) , (9) 
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Fig. 2. Two-level LNSST of the image Linda. 

Fig. 3. Residual image after the singular value is stripped. 
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F i j 
2 
( n ) = S i j 

2 (n ) , (10)

L i j (n ) = 

{ 

1 i f 
∑ 

k,l∈ N(i, j) 

Y kl ( n − 1 ) > 0 

0 otherwise 
, (11)
 i j (n ) = max 
{

F 1 i j ( n ) (1 + β1 
i j L i j (n )) , F 2 i j ( n ) (1 + β2 

i j L i j (n )) 
}
, 

(12)

 i j (n ) = 

{
1 i f U i j (n ) ≥ θi j (n − 1) 
0 otherwise 

, (13)

i j (n ) = θi j (n − 1) − 
 + V θY i j (n ) , (14)

 i j = 

{
n i f Y i j ( n ) = 1 for the first time 
T i j ( n − 1 ) otherwise 

. (15)

This model also includes the following parts: receiving domain,

nformation fusion domain, and pulse generator, where S 1 ij and S 2 ij 
epresent the gray-scale values normalized at the ( i, j ) position of

he two source images. Their values are regarded as the external

timulus for the model. L ij is the linking input, and F 1 ij and F 2 i j 
epresent two symmetrical feedback inputs. Furthermore, β1 

i j and
2 

ij represent the linking strength; Y ij denotes the external output

f the neurons after internal processing; U ij is treated as the inter-

al activity item of the neurons; 
 is the declining extent of the
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Fig. 4. Adaptive dual-channel PCNN model. 

Fig. 5. Schematic of our proposed algorithm. 
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ynamic threshold, which can be regarded as 0.01 to ensure that

he decay rate of the dynamic threshold is mild; θ ij is the thresh-

ld function; and V θ determines the threshold of the fired neu-

on and thus should be set to a relatively large value, e.g., 10. The

ime matrix T ij [24] is used to adaptively determine the number of

easonable iterations. The simplified dual-channel PCNN model is

llustrated in Fig. 4 . 

. Fusion rule 

.1. The fusion framework 

The algorithm used in this paper aims at solving the fusion of

eterogeneous images. The specific fusion framework is shown in

ig. 5 . The proposed fusion steps can be summarized as follows: 

(1) The LNSST is used for multi-scale decomposition of the IR

and VI images. 

(2) Because of the essential difference between the high-

frequency and low-frequency components, two adaptive

dual-channel PCNN models with different linking strength

and external stimuli are used to process them separately.

For the low-frequency components of PCNN ( LF-PCNN ), a lo-

cal structure information factor is used as the main linking

strength, and an improved sum-modified Laplacian (ISML) is

used as the external stimulus. For the high-frequency com-

ponents of PCNN ( HF-PCNN ), a sum of the direction gra-

dients is treated as the main linking strength, and an im-

proved average gradient (IAVG) is treated as the external

stimulus. 
(3) This paper proposes a Laplacian edge energy operator as the

auxiliary linking strength, which is also regarded as the link-

ing strength of the LF-PCNN and HF-PCNN, and is simulta-

neously input into the respective dual-channel PCNN model.

Because the dual-channel PCNN model can directly output

the coefficients of the fused image, the two sets of fusion co-

efficients will be outputted when the model has two linking

strengths. For this reason, an optimization model [23] based

on l 2 -norm is used to combine the two sets of fusion coeffi-

cients into one group. 

(4) The fused image is reintegrated based on an inverse LNSST. 

.2. Fusion rule of low-pass sub-images 

The low-pass component of the image represents the main en-

rgy of the image, which is an approximate part of the image, so

he fusion rules of low-frequency components determine the fi-

al fusion effect. The local structure information factor is an excel-

ent mathematical feature that concentrates the energy of the im-

ge and contains most of the structural information of the image.

he value can reflect the regional features and the low-frequency

haracteristics of the image. An improved sum-modified Laplacian

ISML) algorithm that indicates the energy information of the low-

ass sub-images is utilized as an external stimulus for the LF-

CNN. 

Step 1: In this paper, the ISML is an upgrade based on the novel

um-modified Laplacian (NSML). The NMSL represents the horizon-

al and vertical directions of the Laplacian energy and lacks energy

nformation in the diagonal direction, which means that impor-

ant details could be missing from the fusion result. Therefore, the
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specific expression is improved as follows: 

∇ 

2 ML k l (i, j) = ∇ 

2 ML l,k 
1 

(i, j) + ∇ 

2 ML l,k 
2 

(i, j) 

+ ∇ 

2 ML l,k 
3 

(i, j) + ∇ 

2 ML l,k 
4 

(i, j) , (16)

∇ 

2 ML l,k 
1 

(i, j) = 

∣∣2 C k l (i, j) − C k l (i − 1 , j) − C k l (i + 1 , j) 
∣∣, (17)

∇ 

2 ML l,k 
2 

(i, j) = 

∣∣2 C k l (i, j) − C k l (i, j − 1) − C k l (i, j + 1) 
∣∣, (18)

∇ 

2 ML l,k 
3 

(i, j) 

= 

∣∣2 C k l (i, j) − C k l (i − 1 , j − 1) − C k l (i + 1 , j + 1) 
∣∣/ √ 

2 , (19)

∇ 

2 ML l,k 
4 

(i, j) 

= 

∣∣2 C k l (i, j) − C k l (i − 1 , j + 1) − C k l (i + 1 , j − 1) 
∣∣/ √ 

2 , (20)

ISML k l (i, j) = 

∑ 

m 

∑ 

n 

W ( m, n ) 
(∇ 

2 ML k l ( i + m, j + n ) 
)2 

, (21)

 (m, n ) = 

1 

15 

[ 

1 2 1 

2 3 2 

1 2 1 

] 

. (22)

where C l 
k ( i, j ) represents the low-pass multi-scale decomposi-

tion coefficients of the pixels, l represents the decomposition num-

ber, k represents the direction of decomposition of each layer, and

W ( m,n ) represents the weighted templates. In this study, 3 × 3 win-

dows are used, ISML l 
k ( i, j ) is the improved sum-modified Laplacian

operator, and the operator contains the row energy ML 1 , column

energy ML 2 , and diagonal energy ML 3 and ML 4 . 

Step 2: The low-pass sub-image is separated into blocks by a

sliding window. The size of the block is 3 × 3, the center point is

( i, j ), and then calculate the singular value of each sub-block image.

Step 3: The singular value of each sub-block image is calculated

based on Eq. (23) , and then the value of the element is equivalent

to the corresponding main linking strength. 

β1 (i, j) = LSI(i, j) = ‖ 

σ (i, j) ‖ 

2 
F , (23)

where σ ( i, j ) is the singular value in the local region, and || || F 
denotes the F -norm of the matrix. The value of LSI ( i, j ) reflects the

basic structure of the image area and the richness of the detail of

the local area information, which can describe the changes in the

image features. 

Step 4: To fully utilize the energy information of the image and

effectively extract the details of the image, this paper proposes a

LEE operator as the auxiliary linking strength, and its purpose is

to consolidate the stability of the main linking strength. When LSI

is used as the main linking strength, let LEE input into the PCNN

model at the same time, and its expression is as follows: 

ω 1 = 

[ −1 −1 −1 

−1 A + 8 −1 

−1 1 −1 

] 

, ω 2 = 

[ 

0 −1 0 

−1 A + 4 −1 

0 1 0 

] 

, 

w (m, n ) = 

1 

15 

[ 

1 2 1 

2 3 2 

1 2 1 

] 

, (24)

E l,k 
1 

(i, j) = 

[ 

1 ∑ 

m = −1 

1 ∑ 

n = −1 

ω 1 ( m + 2 , n + 2 ) C k l ( i + m, j + n ) 

] 2 

, (25)
 

 

l,k 
2 ( i, j ) = 

[ 

1 ∑ 

m = −1 

1 ∑ 

n = −1 

ω 2 ( m + 2 , n + 2 ) C k l ( i + m, j + n ) 

] 2 

, (26)

 OE k l (i, j) = E l,k 
1 

(i, j) + E l,k 
2 

(i, j) , (27)

′ (i, j) = LE E k l (i, j) = 

∑ 

m 

∑ 

n 

w (m, n ) · E OE (i, j) . (28)

here ω 1 and ω 2 are the Laplacian operators, w ( m,n ) represents

he weighted templates, C l 
k ( i, j ) represents the multi-scale de-

omposition coefficients of low-pass sub-images, and LEE l 
k ( i, j ) de-

otes the Laplacian edge energy. This operator can simultaneously

eflect the energy of the edge information and the change in the

dge information; therefore, it can assist the local structure infor-

ation factor as the low-frequency linking strength to clarify the

dge energy of the low-pass sub-image so that the low-pass en-

rgy information can be fully inputted to the dual-channel PCNN

odel. 

Step 5: Iterate the Eqs. ( 9 )–( 15 ) until all the neurons are ignited

nd then calculate U ij (n), L ij (n), θ ij (n), T ij (n), and Y ij (n). The

used coefficients can be chosen as follows: 

 

k 
l (i, j) = 

{
C l,k 

L 
(i, j) U i j (n ) = U 

L 
i j 
(n ) 

C l,k 
V 

(i, j) U i j (n ) = U 

V 
i j 
(n ) 

, (29)

 

L 
i j (n ) = F L i j (n )(1 + βL 

i j L i j (n )) , (30)

 

V 
i j (n ) = F V i j (n )(1 + βV 

i j L i j (n )) . (31)

here the low-pass multi-scale decomposition coefficients of the

R image, VI image, and fusion image are represented by C L 
l,k ( i , j ),

 V 
l,k ( i, j ) and C l 

k ( i, j ), respectively. Here, n denotes the total igni-

ion time. 

Step 6: An optimization model based on l 2 -norm [25] is used

o combine the two sets of fusion coefficients into one group, and

he process is as follows: 

rg min 

{ ∥∥C k l (i, j) − C l,k 
1 

(i, j) 
∥∥2 

2 
+ λ

∥∥C k l (i, j) − C l,k 
2 

(i, j) 
∥∥2 

2 

} 

, (32)

here C l 
k ( i, j ) represents the final fusion coefficients of each sub-

mages, C 1 
l,k ( i, j ) and C 2 

l,k ( i, j ) represent the fusion coefficients

enerated by the two linking strength of LF-PCNN model, respec-

ively. This model constrain C l 
k ( i, j ) close to the final fusion coef-

cients, and the parameter λ is used to control the balance of C 1 
l,k 

 i, j ), C 2 
l,k ( i, j ) and C l 

k ( i, j ). 

.3. Fusion rule of high-pass sub-images 

The high-pass sub-images always reflect the edge features and

exture details of the image, so an IAVG that represents the de-

ails of the texture of the high-pass sub-images to stimulate the

F-PCNN is recommended. The SDG can also reflect the high-

requency information, so it is chosen as the main linking strength

f HF-PCNN. 
Step 1: An average gradient (AVG) is proposed in other papers

s a gradient feature of the image, and it reflects the details of
he edge of the image and represents the change in the gray value
f the image. Similar to the IMSL principle, two diagonal gradient
hanges are added based on previously cited studies to more com-
letely fuse the edge information of two images to prevent a loss
f details. The IAVG is shown in the following equations: 

AV G k l (i, j) = 

1 

M × N 

(M−1) / 2 ∑ 

i =(1 −M) / 2 

(N−1) / 2 ∑ 

j=(1 −N) / 2 

×
√ 

∇D 

2 
h 
(i, j) + ∇D 

2 
v (i, j) + ∇D 

2 
md 

(i, j) + ∇D 

2 
v d (i, j) 

2 
, (33)
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i  

N  

[  

o  

g  

s  

h  

fi  

a  

t  

6  

t  

d  

λ  

3  

P  

θ  

s  
 D h (i, j) = D 

k 
l (i, j) − D 

k 
l (i + 1 , j) , (34)

 D v (i, j) = D 

k 
l (i, j) − D 

k 
l (i, j + 1) , (35)

 D md (i, j) = [ D 

k 
l (i, j) − D 

k 
l (i + 1 , j + 1)] / 

√ 

2 , (36)

 D v d (i, j) = [ D 

k 
l (i + 1 , j) − D 

k 
l (i, j + 1)] / 

√ 

2 . (37)

here D l 
k ( i, j ) represents the multi-scale decomposition coef-

cients of high-pass sub-images, M × N is taken as 3 × 3, and

 D h ( i, j ), ∇ D v ( i, j ), ∇ D md ( i, j ), ∇ D vd ( i, j ) represent the gradient

hanges in the horizontal, vertical, main diagonal, and oblique di-

gonal directions, respectively. 

Step 2: The sum of the direction gradients can reflect the

hange in the edge details of the image and combine the informa-

ion in the horizontal, vertical and diagonal direction at the pixel

evel, which is one of the key indexes for reflecting the image clar-

ty. Thus, this index can be used as the linking strength of the

igh-pass sub-images. The mathematical expression is as follows: 

DG = ∇ D h + ∇ D v + ∇ D md + ∇ D v d , (38)

 C h = 

√ (
D 

k 
l 
(i, j) − D 

k 
l 
(i − 1 , j) 

)2 + 

(
D 

k 
l 
(i, j) − D 

k 
l 
(i + 1 , j) 

)2 
, 

(39) 

 C v = 

√ (
D 

k 
l 
(i, j) − D 

k 
l 
(i, j − 1) 

)2 + 

(
D 

k 
l 
(i, j) − D 

k 
l 
(i, j + 1) 

)2 
, 

(40) 

 C md = 

√ (
(D 

k 
l 
(i, j) − D 

k 
l 
(i − 1 , j − 1)) 

2 + (D 

k 
l 
(i, j) − D 

k 
l 
(i + 1 , j + 1)) 

2 
)
/ 
√ 

2 , 

(41) 

 C v d = 

√ (
(D 

k 
l 
(i, j) − D 

k 
l 
(i − 1 , j + 1)) 

2 + (D 

k 
l 
(i, j) − D 

k 
l 
(i + 1 , j − 1)) 

2 
)
/ 
√ 

2 , 

(42) 

2 (i, j) = SDG 

k 
l (i, j) . (43)

here D l 
k ( i, j ) is the high-pass coefficient obtained by multi-scale

nalysis, l is the number of decomposed layers, k is the number of

ecomposition directions of each layer. SDG l 
k represents the sum

f the direction gradients at the pixel element; ∇C h and ∇C v rep-

esent changes in the horizontal and vertical directions, respec-

ively; and ∇ C md and ∇ C vd represent the changes in the diagonal

irections. Greater direction gradient sums correspond to higher

ocal area clarity and faster neuronal activation. 

Step 3: Similar to the fourth step in Section 5.2 , the Laplacian

dge energy of the high- frequency sub-images is calculated by us-

ng Eqs. (24) –(28 ). For the high-pass sub-images, because this op-

rator can also represent the transformation of the edge informa-

ion, it can facilitate the sum of the direction gradients with the

ame effect, and the high-pass detail information is also more fully

nputted into the fused image. The Eqs. (44) and ( 45 ) is changed as

ollows: 

 

l,k 
1 ( i, j ) = 

[ 

1 ∑ 

m = −1 

1 ∑ 

n = −1 

ω 1 ( m + 2 , n + 2 ) D 

k 
l ( i + m, j + n ) 

] 2 

, (44) 
s  
 

l,k 
2 ( i, j ) = 

[ 

1 ∑ 

m = −1 

1 ∑ 

n = −1 

ω 2 ( m + 2 , n + 2 ) D 

k 
l ( i + m, j + n ) 

] 2 

, (45) 

Step 4: Similar to the fifth step in Section 5.2 , iterate the Eqs.

 9 )–( 15 ) and Eqs. (29) –( 31 ) until all the neurons are ignited, and

hen the final high-frequency fusion coefficients D l 
k ( i, j ) is ob-

ained. 

Step 5: Similar to the sixth step in Section 5.2 , use the opti-

ization model to combine the output coefficients: 

rg min 

{ ∥∥D 

k 
l (i, j) − D 

l,k 
1 

(i, j) 
∥∥2 

2 
+ λ

∥∥D 

k 
l (i, j) − D 

l,k 
2 

(i, j) 
∥∥2 

2 

} 

, (46) 

.4. Supplementary instructions 

The above-mentioned adaptive dual-channel PCNN model with

riple-linking strength is called as the ATD-PCNN model. The con-

equent of the linking strength calculated from the above three

perators is shown in Fig. 6 . Obviously, Fig. 6 (b) is similar to the

ource image, so the local structural information factor can rep-

esent the energy characteristic of the image very well; Fig. 6 (c)

hows the edge information of the source image clearly, so the

exture information of the image can be delivered in detail to the

TD-PCNN model by the sum of direction gradient; compared with

ig. 6 (b) and (c), Fig. 6 (d) contains both the detail and the subject

nformation, so the Laplacian edge energy operator is very suit-

ble to act as an auxiliary linking strength. In general, the local

tructure information (LSI) factor contains the energy information

f the image, so it is similar to the essence of the low-frequency

omponents, and then it can be used as the linking strength of the

ow-frequency components of PCNN model. Similarly, the sum of

irectional gradient (SDG) operator can capture the texture details

f the image, so it is similar to the essence of the high-frequency

omponents, and then it can be used as the linking strength of the

igh-frequency components of PCNN model. Unlike other types of

mage fusion, the purpose of infrared and visible light image fusion

s to combine the spatial energy distribution information of the in-

rared image with the texture detail information of the visible light

mage, so the spectral differences of them should be considered,

nd the LSI and SDG can precisely play the role. Since the research

n this paper is based on the fusion of infrared and visible light

mage, the above two linking strengths are set for them, so the LSI

nd SDG are not suitable for other types of image fusion. 

. Experimental results and analysis 

To verify the superiority of the proposed method, our method

s compared with the following methods: NSCT-DUAL-PCNN [10] ,

SST-SF-PCNN [13] , GFF [26] , VSM-WLS [27] , CNN [28] , IFE-VIP

29] , GTF [30] , PCNN, and NSCT-ATD-PCNN. To show the breadth

f the algorithm, six different environments are selected. The first

roup shows a man in the doorway, the second group depicts a

oldier in a trench, the third group shows a jeep in front of a

ouse, the fourth group shows a man entering a building, the

fth group depicts a ship on a lake, and the sixth group shows

 man hidden in the forest. The original image size of the first

wo groups is 768 × 576, the size of the middle two groups is

20 × 450, and the size of the last two groups is 505 × 510. In

his paper, our method takes “maxflat” and [2, 2, 3, 3] as the

irection filter and the pyramid filter of LNSST, respectively, and

= 0.002, A = 32; NSCT-ATD-PCNN use “9/7 ′′ , “pkva”, and [0, 2, 3,

] as the direction filters and the pyramid filter, respectively; and

CNN method are set as: αL = 0.06931, αθ = 0.2, V L = 1, V θ = 20,

= 0.2, N = 200, and W = [0.707,1,0.707;1,0,1;0.707,1,0.707];. The

ource images of each group of infrared and visible light are

trictly registered, and they can be downloaded from the site:
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Fig. 6. The images calculated by the linking strength. (a) The source image. (b) The image calculated by the local structural information operator. (c) The image calculated 

by the sum of direction gradient. (d) The image calculated by the Laplacian edge energy operator. 

Fig. 7. Source images. 

Fig. 8. The first group of fusion experiment. 
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https://figshare.com/articles/TNO _ Image _ Fusion _ Dataset/1008029 . 

All experiments are conducted in MATLAB 2012a on a PC with an

Intel Core i7/3.4 GHz/4 G processor. The six sets of source images

are presented in Fig. 7 (a)–(f) from the first to the sixth group. 

The NSCT-DUAL-PCNN, NSST-SF-PCNN, GFF, VSM-WLS, CNN,

IFE-VIP, GTF, PCNN, NSCT-ATD-PCNN methods and the proposed

method are shown from Fig. 8 (a)–(j) to Fig. 13 (a)–(j). The first

group to the sixth group of experiments are shown from top to

bottom. In each experiment, the NSCT-DUAL-PCNN method shows

a large amount of black pseudo-noise. Without the best selection

for the linking strength, this method causes the fused image to
e blurred, which significantly affects the perceptibility. When the

ual-channel PCNN model is not applied, the image contrast and

dge details of the NSST-PCNN method are not clarified. The GFF

nd GTF methods poorly integrate visible light information into

he fused image, which results in a fused image that is close to

he original infrared image. The CNN method is better for the fu-

ion of infrared targets, although the background of the infrared

nformation is not well integrated into the fused image. The IFE-

IP method has issues with high brightness, which results in a re-

uction in image contrast and inability to retrieve important in-

ormation. The overall perception of VSM-WLS method is gloomy,

https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029
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Fig. 9. The second group of fusion experiment. 

Fig. 10. The third group of fusion experiment. 
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a  
o the contrast ratio of the fused images is relatively low. Because

he traditional PCNN method does not combine with MGA tools,

either adopt the setting of adaptive parameters, the final fused

mages lose many details and have poor impressions. The NSCT-

TD-PCNN method uses the same ATD-PCNN model as the pro-

osed algorithm in this paper. However, because the decomposi-

ion effect of NSCT is not as good as the LNSST, the final fused

mages are inferior to the proposed algorithm in detail and con-

rast ratio. Compared with the above mentioned algorithms, the

used images based on our algorithm have the highest contrast ra-

io and can fuse the IR target and background information under

he human visual field. Furthermore, the proposed algorithm does

ot lose the edge detail information in the fusion process; thus, its

erformance is the best. 
.2. Objective evaluation 

Usually, image fusion results can be evaluated in subjectively

nd objectively. Under most circumstances, fusion results present

imited differences; thus, correctly subjectively evaluating fusion

esults is difficult. Thus, the fusion effect is frequently evaluated

ased on objective quality evaluations. The following five objective

uality indexes are selected as the evaluation criteria: (1) AVG [31] ,

2) information entropy (IE) [32] , (5) edge retentiveness (Q 

AB/F )

33] (3) space frequency (SF) [34] , and (4) standard deviation (SD)

35] . 

A detailed quantitative evaluation of the six groups of IR

nd VI images is shown in Tables 1 –3 . The values in boldface
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Fig. 11. The fourth group of fusion experiment. 

Fig. 12. The fifth group of fusion experiment. 
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represent the best results using the same index in the aforemen-

tioned method. 

The SD of our algorithm is higher than that of other algorithms

as indicated in Table 1 , which shows that the gray value distribu-

tion of our algorithm is uniform; thus, our algorithm can achieve

the best detailed transformation and clarity in various cases. In the

first group of experiments, the Q 

AB/F value of the proposed method
s slightly lower than that of the GFF algorithm, and the SF value

f the proposed method is slightly lower than that of the VSM-

LS algorithm, which is mainly related to the fusion of the sky

ackground. In the second group of experiments, the evaluation

arameters of the proposed algorithm are higher than those of the

ther algorithms; thus, the superiority of the proposed algorithm is

gain demonstrated. In the third group of experiments, the value
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Fig. 13. The sixth group of fusion experiment. 

Table 1 

Objective evaluation results of the first two groups of fused images. 

Group Fusion methods Evaluation index 

AVG IE QA B/F SF SD 

1 NSCT-PCNN 4.9012 7.2616 0.3573 12.7019 41.8997 

NSST-PCNN 4.1972 7.1106 0.3496 9.8456 33.9946 

GFF 4.8740 7.1255 0.5292 11.7246 41.9639 

VSM-WLS 5.3883 6.9847 0.4658 13.6016 39.0442 

CNN 5.3250 6.8158 0.4846 12.7526 37.5135 

IFE-VIP 4.5750 6.9247 0.5208 10.2045 36.8846 

GTF 5.0240 6.9137 0.5004 11.4568 38.4232 

PCNN 4.0534 6.7437 0.4307 11.2735 35.6836 

NSCT-ATD-PCNN 5.3843 7.1747 0.5142 12.4678 48.5212 

Proposed 5.4955 7.2817 0.5254 12.8566 50.3672 

2 NSCT-PCNN 6.0503 7.4272 0.4784 13.5230 35.8130 

NSST-PCNN 5.3765 6.6793 0.5100 13.4397 29.6847 

GFF 5.4261 7.3881 0.6071 13.0951 46.2241 

VSM-WLS 6.9869 6.9736 0.5813 13.8672 34.1787 

CNN 5.8501 7.1369 0.5829 14.4781 40.5863 

IFE-VIP 4.7424 6.9278 0.5756 10.7570 33.3696 

GTF 5.5264 6.8724 0.5920 12.7345 40.4321 

PCNN 4.4315 6.7389 0.5065 11.8681 28.4707 

NSCT-ATD-PCNN 6.8375 7.2835 0.6131 13.7536 46.5432 

Proposed 6.9650 7.4347 0.6376 14.5025 48.0779 

o  

t  

v  

D  

b  

i  

e  

l  

a  

Table 2 

Objective evaluation results of the middle two groups of fused images. 

Group Fusion methods Evaluation index 

AVG IE QA B/F SF SD 

3 NSCT-PCNN 4.9858 7.6696 0.3820 6.1437 53.0802 

NSST-PCNN 3.3474 7.2022 0.5686 6.9689 56.4587 

GFF 2.8348 7.1193 0.5831 6.1894 35.6565 

VSM-WLS 5.3423 7.1823 0.4487 9.1661 36.9416 

CNN 3.3754 7.1753 0.5005 7.0172 38.2479 

IFE-VIP 3.2863 7.1574 0.5659 6.8684 37.6036 

GTF 3.4752 7.1932 0.4952 7.0242 41.9325 

PCNN 3.0752 7.1083 0.3665 6.0675 40.7127 

NSCT-ATD-PCNN 5.4631 7.2143 0.5543 9.0351 55.5432 

Proposed 5.5721 7.2959 0.5761 9.3107 57.1198 

4 NSCT-PCNN 5.0073 7.3628 0.3908 9.2786 51.7220 

NSST-PCNN 4.3398 6.9941 0.4344 8.1744 39.4377 

GFF 4.1216 6.8889 0.6072 7.9503 34.3422 

VSM-WLS 5.0290 6.9702 0.4720 9.5800 49.3080 

CNN 4.8633 7.1839 0.5074 9.3732 51.8397 

IFE-VIP 4.2545 7.1547 0.5324 8.6974 49.3352 

GTF 4.3243 6.8742 0.4634 8.0216 50.8255 

PCNN 4.0434 6.6638 0.4235 7.8865 40.2263 

NSCT-ATD-PCNN 4.8254 7.2753 0.5447 9.5237 55.7344 

Proposed 4.9107 7.3250 0.5668 9.6053 57.2323 

e  

o  

g  

o  

Q  

o  

p  

p  

p  
f Q 

AB/F of the proposed algorithm is slightly lower than that of

he GFF algorithm, but the difference is still small. However, the IE

alue of the proposed algorithm is lower than that of the NSCT-

UAL-PCNN because the NSCT-DUAL-PCNN algorithm causes many

lack artifacts in the fusion, which leads to an abnormal increase

n the gray value; thus, the IE is unrealistic. In the fourth group of

xperiments, the AVG value of the proposed algorithm is slightly

ower than that of the VSM-WLS algorithm, and the other values

re higher than those of the other algorithms. The fifth group of
xperiments is similar to the fourth group, and only the SF value

f the proposed algorithm is lower than that of the VSM-WLS al-

orithm, which shows that the VSM-WLS algorithm is similar to

ur proposed algorithm. In the sixth group of experiments, the

 

AB/F value of the proposed algorithm is slightly lower than that

f the CNN algorithm, and the other parameters are higher com-

ared with the other methods. Based on the objective evaluation

arameters, the final result is the same as that of the superior. The

roposed algorithm is superior to the others algorithms in terms of
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Table 3 

Objective evaluation results of the last two groups of fused images. 

Group Fusion methods Evaluation index 

AVG IE QA B/F SF SD 

5 NSCT-PCNN 2.8453 5.7484 0.3542 7.3054 19.2228 

NSST-PCNN 2.7707 5.9209 0.5654 7.1446 19.8795 

GFF 2.4 4 47 5.4152 0.5568 6.4845 20.4683 

VSM-WLS 3.1300 5.4133 0.5699 8.0035 16.9300 

CNN 1.9172 5.9175 0.5704 6.0754 19.4387 

IFE-VIP 2.4104 5.7929 0.4641 6.2482 19.8898 

GTF 2.0647 5.4326 0.5089 6.5424 17.7524 

PCNN 2.0432 5.3456 0.5255 6.5378 17.4567 

NSCT-ATD-PCNN 2.8789 5.9345 0.6022 7.6578 21.4590 

Proposed 2.9062 6.0 0 03 0.6221 7.7212 22.7661 

6 NSCT-PCNN 6.6058 6.9485 0.3350 11.0123 35.2992 

NSST-PCNN 5.1420 6.6522 0.3193 8.5655 29.8836 

GFF 5.6612 6.8422 0.5514 9.7923 34.4608 

VSM-WLS 6.5141 6.5431 0.4075 12.8170 27.9779 

CNN 5.7914 6.9653 0.5598 10.2403 34.8340 

IFE-VIP 6.7687 6.7255 0.4969 11.6890 32.5045 

GTF 5.9627 6.6752 0.4216 11.5228 34.8340 

PCNN 5.2560 6.5256 0.3678 10.1345 30.0908 

NSCT-ATD-PCNN 7.3215 7.0256 0.5267 12.3456 37.7876 

Proposed 7.3764 7.1396 0.5384 13.2142 39.6234 
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the image gray value distribution, edge detail, and clarity. Further-

more, the proposed algorithm has good perception, which prevents

the limitations of black artifacts caused by the large difference

between the VI and IR. The contrast of the image after fusion is

good, the overall gray value transition is natural, and good percep-

tibility is observed. 

7. Conclusion 

This paper presented a novel fusion framework for VI and IR

images based on the proposed LNSST-ATD-PCNN method. In our

method, the LNSST is used as a multi-scale decomposition tool for

the image based on the NSST, and the adaptive dual-channel PCNN

model is also improved. To address the large spectral difference

between IR and VI, three novel operators are treated as the adap-

tive linking strength. Furthermore, the ISML of the low-pass sub-

image and the IAVG of the high-pass sub-images are input to

stimulate the ATD-PCNN. To verify the fusion performance, six dif-

ferent scenarios are used. The outcome shows that our algorithm

can effectively fuse VI and IR images with a high contrast while

retaining a wealth of textural and detail information without any

artifacts. The experimental results of the subjective and objective

evaluation indicate that our algorithm has better fusion perfor-

mance than typical fusion techniques. 
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