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Abstract

®

CrossMark

Two-dimensional (2D) In,Se; with unique optical and electrical properties has great potential in
next generation optoelectronics and multilevel phase-change memories. Here, for the first time,
we report high-performance rigid and flexible photodetectors based on chemical vapor
deposition (CVD) grown 2D In,Se;. Both rigid and flexible 2D In,Se; photodetectors show a
broadband response range from ultraviolet (254 nm) to visible light (700 nm). High
photoresponsivities of 578 and 363 A - W' are achieved using rigid and flexible 2D In,Ses
photodetectors, respectively, under 700 nm light illumination, which are higher than those of
photodetectors based on mechanically exfoliated 2D In,Se; and physical vapor deposition grown
2D In,Ses. Furthermore, flexible 2D In,Se; photodetectors show good mechanical durability and
photoresponse stability under repeated bending tests. A high and stable photoresponse provides

an opportunity for CVD-grown 2D In,Se; applications in flexible optoelectronic and

photovoltaic devices.

Supplementary material for this article is available online
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1. Introduction

Graphene opens the door to research two-dimensional (2D)
materials with exciting properties and novel applications in
contrast to their bulk counterparts [1-4]. Compared to other low-
dimensional materials (one-dimensional and zero-dimensional

5 Authors to whom any correspondence should be addressed.

0957-4484/18,/445205+-06$33.00

materials), 2D compounds are more compatible with traditional
semiconductor microfabrication techniques and are easily inte-
grated into complex structures to meet the requirements of novel
electronic and optoelectronic devices [5-7]. Layered materials
exhibit strong intralayer bonding together with a weak interlayer
van der Waals interaction, which offers the possibility of readily
fabricating atomically thin monolayers or few-layer nanosheets
from their parent bulk materials via chemical or micromechanical
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exfoliation methods. Until now, vast 2D layered materials have
been investigated, including graphene [1, 8], h-BN (hexagonal
boron nitride) [9, 10], transition-metal dichalcogenides (TMDs:
MoS, [3, 11], WSe; [12, 13], etc) and III-VI group compounds
(GaSe [14, 15], InSe [16, 17] and In,Ses [18, 19], etc). Compared
to gapless graphene and insulating h-BN, semiconducting TMDs
have been extensively explored for applications in next genera-
tion field-effect transistors (FETs), photodetectors and logic
circuits.

In,Ses, a typical III-VI binary layered chalcogenide, with
a narrow direct bandgap of 1.3 eV, is a candidate material for
applications in optoelectronics [18, 20], phase-change mem-
ory devices [21, 22] and ionic batteries [23]. In contrast to
TMDs, research on 2D In,Ses is limited [18, 19, 24, 25]. The
crystalline—crystalline (o« — (3) phase transformation asso-
ciated with changes in the electrical transport properties of 2D
In,Se; crystals has been demonstrated [26], which paves the
way for multilevel phase-change memories in a single mat-
erial system. Photodetectors based on mechanically exfoliated
2D In,Se; and physical vapor deposition (PVD)-grown 2D
In,Se; nanosheets exhibit a good photoresponse and broad-
band photoresponse range from ultraviolet to near-infrared
[18, 25], and their photocurrents strongly depend on gate bias
[27]. Compared to 2D TMDs, 2D In,Ses shows a more tun-
able thickness-dependent optical bandgap from 1.45eV
(25nm) to 2.8eV (3.1 nm) [28], making it promising for
applications in near-infrared, visible and near-UV photo-
detection. Therefore, 2D In,Se; is a very attractive material
and needs to be further investigated. Though high-perfor-
mance photodetectors based on mechanically exfoliated 2D
In,Se; and PVD-grown 2D In,Se; have been previously
demonstrated [18, 25], mechanical exfoliation is difficult for
large-scale fabrication and it is easier to introduce more
defects under high temperature conditions using the PVD
method [25]. Large-scale 2D In,Se; has been successfully
synthesized using the CVD method, which is conducted
under mild conditions, including low temperature and atmo-
spheric conditions [29]. However, the optoelectronic proper-
ties of CVD-grown 2D In,Se; nanosheets have never been
investigated in detail. Moreover, early reports mainly focus
on rigid 2D In,Se; photodetectors; the research on flexible 2D
In,Se; photodetectors is limited. Therefore, it is important
and necessary to explore optoelectronic properties of
CVD-grown 2D In,Ses.

Here, for the first time, we report on high-performance
rigid and flexible photodetectors based on CVD-grown 2D
In,Se;. Photodetectors based on CVD-grown 2D In,Ses;
nanosheets on both rigid SiO,/Si substrates and flexible
polyethylene terephthalate (PET) substrates were fabricated.
Both the rigid and flexible CVD-grown 2D In,Se; nanosheet
photodetectors showed high photoresponse with a wide
photoresponse range from ultraviolet (254 nm) to visible light
(700 nm). High photoresponsivities of 578 and 363 A - W'
were obtained from the rigid and flexible photodetectors,
respectively, under 700 nm light illumination, which are
higher than those of mechanically exfoliated and PVD-grown
2D In,Se;. The flexible 2D In,Se; photodetectors showed

excellent mechanical durability and photoresponse stability
after 10 repeated cycles of the bending test.

2. Method

2.1. CVD synthesis of atomically thin InoSes nanosheets

The 2D In,Se; was synthesized by a 2-inch tube furnace-
based CVD system. Se powders (99.998%, Aladdin, 200 mg)
were placed at an upstream heating zone and were heated for
23 mins to 350 °C. In,O5 powders (99.99%, Aladdin, 30 mg)
were placed at a downstream heating zone and were heated
for 44 min to 660 °C. The reaction was kept at 660 °C for
20 min. The vapor was carried from the upstream zone to the
downstream zone by carrier gases (Hp:Ar = 7:13 sccm), and
2D In,Se; nanosheets were deposited on mica substrates
(1 x 1cm?) placed 2 cm away from the downstream heating
zone (i.e. from the In,O; power). After the reaction, the
system was cooled down to room temperature.

2.2. Characterizations of as-grown 2D In,Ses

Optical images of the In,Se; nanoflakes were taken with an
OLYMPUS BX41. The microstructure of the 2D In,Se;
nanosheets were determined by transmission electron micro-
scopy (TEM, Tacnai-G2 F30, accelerating voltage of
300 kV), selective area electron diffraction (SAED) and HR-
TEM. The thickness of the 2D In,Se; was determined by
atomic force microscopy (AFM, Nanoscope Illa Vecco).

2.3. Fabrication and characterization of 2D In,Se; FETs and
photodetectors

As-grown 2D In,Se; nanosheets were transferred onto
300 nm SiO,/Si and flexible PET substrates with the PMMA-
assisted method, and 5/50 nm Cr/Au metal electrodes were
fabricated by thermal evaporation with copper shadow masks.
The electronic and optoelectronic properties of the 2D In,Se;
were measured using a Keithley 4200 SCS with a Lakeshore
probe station under ambient environment. Mono-chromatic
lights of 254, 365, 490, 610 and 700 nm were obtained using
a 500 W xenon lamp with different optical filters, and the
bandwidth of the used filters was 10 nm. The intensities of the
illumination light source were determined by a power and
energy meter (Model 372, Scienteck).

3. Result and discussion

In,Se; is a typical III-VI group layered semiconductor. Bulk
In,Se; is composed of vertically stacked Se-In-Se-In-Se
sheets and each sheet is weakly bound to its neighboring sheet
by van der Waals force (figure 1(a)). 2D In,Se; nanosheets
were synthesized on mica substrates via catalyst-free van der
Waals epitaxy CVD process (more details in section 2). The
as-grown 2D In,Se; nanosheets were first identified by optical
contrast. A typical optical image of as-synthesized 2D In,Se;
nanosheets is shown in figure 1(b). The whole mica substrate
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Figure 1. Characterizations of 2D In,Ses: (a) crystal structure of
In,Ses. (b) Optical image of as-grown In,Se; nanosheets on mica
substrate. (c) A SAED pattern of as-grown In,Se; nanosheet.

(d) HR-TEM image of as-grown In,Se; nanosheet. The inset is
reverse Fourier transform pattern.

(1 x 1cm? was covered by randomly dispersed 2D In,Ses
nanosheets. The lateral size was up to 100 pm and different
optical contrasts of 2D In,Se; nanosheets represented differ-
ent thicknesses (see more discussions in our earlier study
[29]). The thickness of the as-grown 2D In,Se; nanosheets
was estimated by optical contrast and further determined by
AFM. Figure S1, which is available online at stacks.iop.org/
NANO/29/445205 /mmedia, is a typical AFM image of a 2D
In,Se; nanosheet. The thickness of the thinnest nanosheet was
~1 nm, corresponding to the monolayer sample. The micro-
structure of the as-grown 2D In,Se; nanosheets was char-
acterized by TEM. Figure 1(c) is a typical SAED pattern of
the as-synthesized 2D In,Se; nanosheet. It was a 6-fold
symmetry structure, demonstrating the as-synthesized 2D
In,Se; nanosheets orientated along the (001) zone axis with
good crystalline quality. Figure 1(d) is the HR-TEM image of
the as-synthesized 2D In,Se; nanosheets and shows an ideal
hexagonal lattice structure with a distance of 0.35nm,
corresponding to the a-In,Ses lattice constant in the (100)
direction [18].

To explore the electronic properties of the 2D In,Ses
nanosheets, 2D In,Se; nanosheets were transferred to SiO,/Si
substrates and back-gated FETs were fabricated (see section 2 for
more detail). Figure 2(a) is the 3D model of the 2D In,Se; FETs
with a back-gated configuration. 2D In,Se; nanosheets, a 300 nm
SiO, layer, Cr/Au and the p-doping silicon worked as the
channel materials, dielectric materials, source/drain and gate
electrode, respectively. Figure 2(b) is a typical optical image of
2D In,Se; FETs with a channel length of 10 ym and a channel
width of 20 um. The thickness of the 2D In,Se; channel was
determined to be 6 nm by AFM, as shown in figure S2. In this
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Figure 2. Electronic properties of 2D In,Se; FETs. (a) Schematic
diagram of back-gated 2D In,Se; FETSs configuration. (b) Optical
image of 2D In,Se; FETs. (c) The transfer curves of 2D In,Se; FETs
measured at Vygs = 0.5 V. (d) The corresponding output curves of 2D
In,Se; FETs.

study, all measurements were conducted in an ambient
environment. Figures 2(c) and (d) are the room temperature gate-
dependent transfer and output curves, respectively. The 2D
In,Se; FETs show a typical n-type semiconducting transport
behavior since the current decreased with an applied gate voltage
sweeping from positive values to negative values in the transfer
curves. This n-type conductance behavior was consistent with
bulk In,Ses and totally different from the p-type semiconducting
behavior of the PVD-grown 2D In,Se; via a higher temperature
process [25], because a higher temperature decomposes In,Ses
powders and results in selenium-rich environments. To evaluate
the electronic transport properties of the 2D In,Ses, the field-
effect electron mobility () was calculated by the equation
p=[L/(W X (0g:/d) x Vgo)] x dlgs/dV,, where L = 10 pim is
the channel length, W = 20 um is the channel width (as shown
in figure 2(b)), g, =8.854 x 107"?Fm™" is the vacuum
permittivity, €, is 3.9 for SiO, and d is 300 nm for the thickness
of SiO,. The field-effect electron mobility of the 2D In,Se; FETs
was calculated to be 1 cm? V™' s™! in an ambient environment
from the linear part of the transfer curve in figure 2(c), which is
comparable to PVD-grown In,Se; with a back-gated structure
[25]. The current on/off ratio is another important parameter for
evaluating the performance of a FET, which is determined by
adopting a ratio of maximum to minimum Iy, from the transfer
curves. The current on/off ratio was 10* for this 2D In,Ses
device as illustrated in the logarithmic transfer curve (figure 2(c)).
Figure 2(d) shows the corresponding output curves measured
when the gate voltage swept from —20V to 20V with 10V/
step. The output current decreased as the applied gate voltage
swept from negative to positive values, which further confirms
the n-type conductance property of the 2D In,Ses. The electronic
performance of the 2D In,Se; should be further improved by the
elimination of wrinkles and organic residues introduced by the
PMMA -assisted transfer process (as shown in figure S1).
In,Se; with a narrow direct bandgap of 1.3eV is a pro-
mising material for applications in optoelectronic devices, such as
photodetectors. To investigate the photodetection performance of
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Figure 3. Photoresponse of 2D In,Se3 photodetector on rigid
Si0,/Si substrate. (a) The I~V curves of 2D In,Se; photodetector
under various illumination wavelengths (from 254 nm to 700 nm)
with a light intensity of 0.29 mW - cm™>. (b) The responsivity as a
function of illumination wavelengths at V43 = 5 V. (c) The
detectivity as a function of illumination wavelengths at V43 = 5 V.
(d) The I~V curves of 2D In,Se; photodetector on SiO,/Si substrates
under 700 nm light illumination with various light intensities.

(e) The calculated I, and R as a function of light intensity under
700 nm at Vg, = 5 V. (f) The stability performance of rigid 2D
In,Se; photodetector under 700 nm switching on and off at

Vas = 5 V with a light intensity of 0.29 mW - cm ™2

the 2D In,Se; nanosheets, photodetectors were fabricated on a
rigid SiO,/Si substrate and a flexible PET substrate. First, we
explored the photoresponse properties of the rigid 2D In,Se;
photodetectors. All the photoresponse measurements were con-
ducted at Vo, =0V in our study. Figure 3(a) shows the I-V
curves of the rigid 2D In,Se; photodetector measured under
various illumination lights. The rigid 2D In,Se; photodetector
showed a broadband photoresponse range from ultraviolet
(254 nm) to visible light (700 nm). To directly evaluate the
photodetection performance of the 2D In,Se; photodetector, three
important parameters (photocurrent (I,,), responsivity (R) and
detectivity (D™)) were extracted as a function of illumination light
at V4 = 5V with a light intensity of 0.29 mW - cm ™2 From the
equation I, = Ii-I4, where [; and I4 are the current measured with
and without illumination, respectively, the values of I, can be
calculated. As shown in figure S3, the I, was 335 nA for 700 nm
light illumination and I, increased as the illumination light
wavelength decreased. We could then calculate the R value using
the following equation: R = I,/P - S, where P is the light
intensity and S is the channel area (200 ,umz). The calculated R
value was 578 AW ' for 700nm light illumination and R
increased as the wavelength decreased, as shown in figure 3(b),
which is consistent with Z,,. The R value was 2 ~ 8 times higher

than those of the mechanically exfoliated few-layer In,Se;
nanosheets (395 A W~ under 300 nm) [18] and PVD-grown 2D
In,Se; nanosheets (34OAW71 under 532 nm) [25], which were
also 2 ~ 3 orders of magnitude higher than those of 2D GaSe
(25AW™ Y [13], currently commercial silicon and InGaAs
photodetectors (<1 AW [28, 30]. The D* value can be cal-
culated by the equation: D* = RS/ 2/ (2ely)'?, where R is the
responsivity, S is the area of the photodetector channel, e is the
electron charge, and Iy is the dark current. The D" value was
6.0 x 10'? Jones for 700 nm light as shown in figure 3(c). The
D™ value was higher than those of mechanically exfoliated few-
layer In,Se; (2.26 % 102 Jones) [18], currently commercial
silicon and InGaAs photodetectors (1012 Jones) [30, 31].
Figure 3(d) shows I-V curves of the rigid 2D In,Se; photo-
detector illuminated by 700 nm light under various light inten-
sities. The I, linearly increased as the illumination light intensity
increased, which demonstrates that generated I,, was solely
determined by the amount of photogenerated carriers under light
illumination (shown in figure 3(e)). The calculated R values
degraded with increasing light intensity, as shown in figure 3(e),
which can be attributed to the trap states existing in the In,Se;
nanosheets or at the interface between the In,Se; and SiO,
substrate, which is similar to early reports of 2D In,Ses photo-
detectors [27]. This behavior is well-known for trap-dominated
photodetectors. As illumination light intensity increases, the
longest-living trap states are filled and the shorter-living trap
states begin to account for a significant component of the carrier
lifetime. Therefore, the recombination probability of photo-
generated electrons and holes will increase, which leads to a
lower responsivity. To evaluate a photodetector, the stability and
repeatability are also important parameters. As shown in
figure 3(f), the 2D In,Se; photodetector was illuminated under
700nm with a bias voltage of 5V and a light intensity of
0.29mW - cm 2 The 2D In,Ses photodetector exhibited a stable
and repeatable photoresponse after ten on/off cycles. To reveal
the response time of the 2D In,Se; photodetector, an enlarged
time-resolved response with the light on and off is shown in
figure S4. It can be clearly seen that the rise and fall times were
20 and 40 ms, respectively, which are comparable to that of a
mechanically exfoliated 2D In,Se; photodetector [18].

Next, we explore the photoresponse of the flexible 2D
In;Se; photodetector. The flexible and transparent photo-
detectors based on as-grown 2D In,Se; nanosheets were
fabricated on PET substrates (see section 2 for more detail).
The inset in figure 4(a) is an optical image of a flexible 2D
In,Se; photodetector on a PET substrate. Figure 4(a) shows
the I-V curves of a flexible 2D In,Se; photodetector illumi-
nated at various wavelength incident lights with a light
intensity of 0.29 mW - cm ™2 It is obvious that the flexible 2D
In,Se; photodetector exhibited a wide photoresponse range
from the ultraviolet (254 nm) to visible light (700 nm), which
is similar to the results of the 2D In,Se; photodetector on the
rigid SiO, substrate. As shown in figure S5, the I,, was
211 nA for 700 nm light and I, increased as the wavelength
decreased, which is similar to results of the rigid photo-
detector. Noticeably, the generated I,, of the flexible 2D
In,Se; photodetector on the PET substrate was lower than that
of the rigid In,Se; photodetector on the SiO, substrate. The
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Figure 4. Photoresponse of flexible 2D In,Se; photodetector. (a) The
I-V curves of 2D In,Se; photodetector on flexible PET substrates
under various illumination wavelengths with a light intensity of
0.29 mW - cm 2. Inset: optical image of flexible 2D In,Ses
photodetector. (b) Calculated R as a function of illumination
wavelengths at Vg, = 5 V. (¢c) D* as a function of illumination
wavelengths at V4 = 5 V. (d) The stability performance of flexible
2D In,Se; photodetector before and after bending to 20 mm bending
radius for 10 cycles switching on and off under 700 nm at Vy; =5V
with a light intensity of 0.29 mW - cm™2.

photon absorption was determined by multiple reflection
interference at the interfaces of the semiconductor and sub-
strates [32]. Because Si is non-transparent, In,Se; nanosheets
can absorb more photons by light multiple reflection, while
PET is transparent and more photons go directly through the
substrate rather than reflecting back. So it is reasonable that a
flexible In,Se; photodetector on a transparent PET substrate
would generate a lower I,,. The calculated R value was
363 AW~ for 700 nm, as shown in figure 4(b), which is
comparable to the value of the mechanically exfoliated few-
layer In,Se; nanosheets on the SiO, substrate (395 AW™!
under 300 nm at Vg, = 5 V) [18]. The D* value of the flexible
2D In,Se; photodetector was 6.4 x 10'* Jones for 700 nm
light, shown in figure 4(c). The D* value was higher than
those of the mechanically exfoliated few-layer In,Se;
(2.26 x 10" Jones) [18]. The mechanical stability and dur-
ability are important for a flexible photodetector. The
mechanical stability and durability of the flexible 2D In,Se;
photodetectors were investigated by repeated bending.
Figure 4(d) shows the photoresponse of the flexible In,Se;
photodetectors measured under on/off 700 nm light illumi-
nation before and after 10 repeated bending cycles with a
bending radium of 20 mm. The flexible 2D In,Se; photo-
detectors exhibited little variation in both the photocurrent
and dark current after 10 repeated bending cycles, suggesting
its excellent flexibility and mechanical durability. As shown
in figure S6, the flexible 2D In,Se; photodetectors showed a
slower photoresponse speed with a rise time of 80 ms and a
fall time of 70 ms compared to the rigid 2D In,Se; photo-
detector. The photoresponse speeds of the flexible 2D In,Se;
photodetectors remained unchanged after bending, as seen in
figure S6, further demonstrating its excellent flexibility.

4. Conclusion

In conclusion, the electronic and optoelectronic properties of
CVD-grown 2D In,Se; nanosheets were investigated for the
first time. FETs based on CVD-grown 2D In,Se; showed a
typical n-type semiconducting behavior. 2D In,Se; photo-
detectors were fabricated on rigid SiO,/Si substrates and
flexible PET substrates, and showed high photoresponse and
a broadband photoresponse ranging from ultraviolet (254 nm)
to visible light (700 nm). High photoresponsivities of 578 and
363 A - W ! were achieved by rigid and flexible CVD-grown
2D In,Ses photodetectors under 700 nm light illumination,
respectively, which were higher than those of the mechani-
cally exfoliated 2D In,Se; and PVD-grown 2D In,Ses.
Moreover, the flexible 2D In,Se; photodetectors showed
good mechanical durability and photoresponse stability under
repeated bending testing. The high and stable photoresponse
paves the way for CVD-grown 2D In,Se; nanosheet appli-
cations in photodetector and photovoltaic devices.
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