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A B S T R A C T

This study establishes the general fusion method for infrared and visual images via latent low-rank re-
presentation (LatLRR) and local non-sampled shearlet transform (LNSST) to effectively combine the salient in-
formation of both images and solve problems on low-contrasting heterogeneous image fusion. First, LNSST is
used as a multi-scale analysis tool to decompose the source images into low-pass and high-pass sub-images.
Second, the LatLRR, which is an effective method for exploring multiple subspace structural data, is used to
extract the salient information of image sources. Thus, the LatLRR can be adopted to guide the adaptive
weighted fusion of low-pass sub-images. Simultaneously, the average gradient, which can reflect image edge
details, is regarded as the fusion rule for high-pass sub-images. A series of images from diverse scenes are used
for the fusion experiments, and the results are evaluated subjectively and objectively. The subjective and ob-
jective evaluations show that our algorithm exhibited superior visual performance, and the values of the ob-
jective evaluation parameters increase by about 5–10% compared with other typical fusion methods.

1. Introduction

The development of infrared (IR) and visible image fusion tech-
nology is largely aimed at developing modern military detection tech-
nology. A visible image (VI) is a reflection image with several high-
frequency components, and VI images can reflect scene details under
certain illumination conditions. However, when illumination is not
good, the resultant contrast of the VI image is relatively low.
Meanwhile, an IR image is a radiation image. The gray level of IR
images is determined by the temperature difference between the target
and background, but resultant images cannot reflect real scenes [1].
Image fusion technology for IR and VI images can effectively synthesize
and explore the combined characteristic information of two com-
plementary images with the same resolution, enhance the under-
standing of a scene, and highlight image targets; thus, image fusion
technology can find objects quickly and accurately despite confusing
situations [2].

Several fusion approaches have been recently proposed, especially
for pixel-level-based VI and IR image fusion [3]. A number of multi-
scale analysis tools, such as contourlet transform (CT) [4], non-sub-
sampled contourlet transform (NSCT) [5], and local non-subsampled
shearlet transform (LNSST) [6], have been successfully used in the field
of image fusion. LNSST is regarded the fastest MGA tool with the most

disaggregation effect. Furthermore, LNSST can exhibit good local
characteristics in space and frequency domains, avoid blocking effects,
weaken the Gibbs-ringing phenomenon by using local small-sized
shearlet filters, and improve the calculation efficiency of time domain
convolutions. Thus, many researchers favor LNSST over other techni-
ques. Lei et al. [7] proposed an adaptive fusion method based on the
LNSST and non-negative matrix factorization to construct an algorithm
that could guide the fusion of low-frequency coefficients, but the final
fused images were dim and lost considerable textural details. Zhang
et al. [8] presented a fusion algorithm based on saliency analysis and
LNSST. This method utilized saliency detection to integrate IR target
information into the VI image, but the fusion effect of background in-
formation required improvements. Wu et al. [9] combined LNSST and
deep Boltzmann machine programming to solve fusion problems, but
deep learning technology is not yet mature for fusion applications.
Wang et al. [10] proposed a fusion algorithm for RDU-PCNN and ICA
bases in the LNSST domain. Although the PCNN has a bionic me-
chanism, the final fused images introduce artifacts and have hazy image
edges. Kong et al. [11] forwarded a technique for gray-scale VI and IR
image fusion based on the LNSST. This method makes use of regional
averaged energy and local directional contrast, but the fused image
loses some important IR saliency information.

Latent low-rank representation (LatLRR) [12], an upgraded version

https://doi.org/10.1016/j.infrared.2018.05.006
Received 23 December 2017; Received in revised form 23 April 2018; Accepted 7 May 2018

⁎ Corresponding author at: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China.
E-mail address: boyangwudi@163.com (B. Cheng).

Infrared Physics and Technology 92 (2018) 68–77

Available online 16 May 2018
1350-4495/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13504495
https://www.elsevier.com/locate/infrared
https://doi.org/10.1016/j.infrared.2018.05.006
https://doi.org/10.1016/j.infrared.2018.05.006
mailto:boyangwudi@163.com
https://doi.org/10.1016/j.infrared.2018.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infrared.2018.05.006&domain=pdf


of the low-rank representation (LRR), is an effective method for ex-
ploring the multiple subspaces of data structures. LatLRR can robustly
extract salient features from images because the method utilizes an
unsupervised feature extraction algorithm. Moreover, LatLRR is robust
to noise. When an image matrix is decomposed by LatLRR, the image
can be represented as a superposition of principal features, salient
features, and sparse noise. Salient features show the spatial distribution
of salient information of images, and the weighted-mean is usually
treated as the fusion rule for exploring the low contrast and unnatural
reconstruction of heterogeneous fused images. The LatLRR algorithm
can precisely identify salient objects and regions in images to form a
saliency map. The saliency map contains the weight information of the
spatial distribution of a grayscale image and thus integrates a weighting
function. The fusion rule can be changed from the weighted-mean to
the weighted-adaptive approach to effectively merge the salient in-
formation into the fused image and improve the fusion effect.

Based on the above review, this study proposes a general fusion
method for IR and visual images via LatLRR and LNSST. To the best of
our knowledge, this is the first time that the LatLRR has been used in
the field of heterologous image fusion, in which the heterologous source
images have the same resolution [13]. In this study, the LNSST is first
used as a multi-scale analysis tool to decompose image sources into a
low-pass sub-image and a series of high-pass sub-images. Second, the
saliency information of the image is extracted by LatLRR to guide the
adaptive weighted fusion of low-pass sub-image and high-pass sub-
images. Finally, each sub-image is modeled and the corresponding fu-
sion coefficients are produced. An algorithm is adopted to effectively
express image characteristics and obtain a good fusion effect by using
IR and visible light images in the fusion experiments.

The remainder of this paper is organized as follows: Section 2 in-
troduces the theory relevant to LNSST and LatLRR. Section 3 elaborates
the algorithm based on the new fusion rule. Section 4 presents five
experimental results and intuitively compares the proposed method
with other methods. Section 6 provides a summary of the findings.

2. Relevant theory

2.1. LNSST [14,15]

When the dimension is n=2, the shearlet system function with
discrete parameters is as follows:
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j l j
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where φ∈ L2(R2), A, and B are 2× 2 reversible matrices; |det
B|= 1; j is the scale parameter; l is the direction parameter; and k is the
spatial position.

For j≥ 0, −2j≤ l≤ 2j− 1, k∈ Z2, and d=0,1, the Fourier trans-
form of the shearlet can be expressed on the basis of the tight support
frame.
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where V(2−2jξ) is the scale function; Wj,l
(d) is the window function lo-

calized on the trapezoidal pair; Ad is the heterosexual expansion matrix;
and Bd is the shear matrix. The shearlet transform of the f∈ L2(R2)
function can be calculated by Eq. (3).
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As shown in Eq. (3), the shearlet transform is divided into two steps.
The first step is a multi-scale decomposition [i.e., ̂ −f ξ V ξ( ) (2 )j2 ] and the
second step is the direction of the localization, i.e.,

̂ −f ξ V ξ W ξ( ) (2 ) ( )j
j l
d2
,

( ) .
Multi-scale decomposition: The image is subjected to non-sub-

sampled pyramid decomposition using a non-subsampled 2D filter bank
of dual channels to generate a low-pass sub-image and multiple high-
pass sub-images with perfect reconstruction.

Directional localization: Directional localization is achieved by
small-scale shearlet filters and high-pass sub-images convolution cal-
culations. The local window is L× L, where L= n·(2j−1+ 1) with j as
the scale parameter and n as any positive integer. The local small-size
shearlet filter can avoid the blocking effect, weaken the Gibbs-ringing
phenomenon, and improve the calculation efficiency of time domain
convolution. Thus, j is usually 2 or 3 and the local window is usually
15× 15.

The above shearlet transformation is called the LNSST, a technique
that removes the sampling operation in the decomposition stage. LNSST
involves translation invariance because the local small-size shearlet
filter can avoid spectrum aliasing to improve image decomposition and
reconstruction. The shearlet filter formation process for L=15 is
shown in Fig. 1.

The image f is decomposed by the m-layer LNSST to obtain ∑m2dm

high-pass directional sub-images and a low-pass sub-image. Each sub-
image is the same size as the original image, and dm is the number of m-
layers of directional localization. A two-layer LNSST decomposition of
Linda is shown in Fig. 2. The number of high-pass sub-images in the
first layer is 4 (the number of stages is 2), the number of high-pass sub-
images in the second layer is 4 (the number of stages is 2), and the size
of the shearlet filter is 15× 15.

2.2. LatLRR

The image sources of the fusion usually contain a certain amount of
noise, but LatLRR can automatically extract salient features from noisy
images. LatLRR is robust to noise, and the saliency map obtained is
more accurate than other saliency detection-based methods [16–18].

The core idea behind LatLRR is that an image matrix can be re-
presented as a superposition of principal features, salient features, and
sparse noise given the low rank and sparse optimization criteria. For an
image matrix X∈ RM×N, the idea may be interpreted as

= + +X XL SX E. (4)

where L represents the low-rank matrix, L∈ RN×N; S represents the
sparse matrix, S∈ RM×M; E represents the sparse noise, E∈ RM×N; XL

(a) Meyer wavelet window    (b) Pseudo-polarized (c) Frequency domain (d) Time domain 
coordinates shearlet filter shearlet filter

Fig. 1. Shearlet filter formation procedure when L=15.
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represents an approximate part of the image; and SX represents the
saliency information of the image.

We can use the convex optimization function to solve the problem of
Eq. (4) (i.e., the norm is minimized). The expression is as follows:

∥ ∥ + ∥ ∥ + ∥ ∥ = + +∗ ∗L S λ E s t X XL SX Emin , . . .
L S E, ,

1 (5)

where λ > 0, || ||* denotes the nuclear norm of a matrix (i.e., sum of
singular values of the matrix) and || ||1 represents the l1-norm (i.e., sum
of absolute values of all matrix elements). An example of the decom-
position of IR and VI images for the same scene by LatLRR is shown in
Figs. 3 and 4. Figs. 3(b) and 4(b) show the main features of the image,
i.e., the approximate part; Figs. 3(c) and 4(c) present the salient fea-
tures of the image; and Figs. 3(d) and 4(d) represent sparse noise.

The IR image can be easily determined by the temperature differ-
ence between the target and the background, and highlighting the

significant features in the interior can be obtained through LatLRR
decomposition. The VI image also contains rich scene information and
textural details. By using the same technique, all salient information in
the VI image can be obtained through LatLRR.

3. Fusion method

3.1. Fusion framework

The fusion algorithm used in this study aims at fusing hetero-
geneous images. The specific fusion framework is shown in Fig. 5, and
the proposed fusion steps can be summarized as follows:

(1) LNSST is used for the multi-scale decomposition of VI and IR
images, in which the low-pass sub-image coefficients and high-pass

(a) Original image (b) Low-pass sub-image

(c) Four direction sub-images in the first level

(d) Four direction sub-images in the second level

Fig. 2. Two-level LNSST of the image Linda.

(a) IR image         (b) Principal features (c) Salient features (d) Sparse noise

Fig. 3. LatLRR mechanism of IR image decomposition.
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sub-images coefficients are [CIR
l,k (i,j), CVI

l,k (i,j)] and [DIR
l,k (i,j), DVI

l,k

(i,j)]; l is the number of decomposition layers; k represents the di-
rection of decomposition of each layer; and (i, j) represents the
position of the pixel element.

(2) IR and VI images are decomposed by LatLRR simultaneously, then
their salient features are obtained to form saliency maps. Saliency
maps contain the spatial information distribution of salient targets.
Thus, saliency maps can be used to guide the adaptive-weighted
fusion of low-pass sub-image and high-pass sub-images.

(3) The coefficients of high-pass sub-images contain the edge energy
information of the image. Thus, the average gradient (AVG) is
calculated and compared as a part of the fusion rule.

(4) The fused image is reintegrated based on the inverse LNSST.

3.2. Fusion rule of low-pass sub-images

The low-pass component of the image represents its main energy,
which is an approximate part of the image. Thus, the fusion rules of
low-pass components determine the final fusion effect. LatLRR algo-
rithm is used to guide the fusion of low-pass sub-image and avoid the
disadvantage of incompatible special characteristics of heterologous
images. The LatLRR algorithm can also decompose the salient features
of the image, which provide the basis for the rules of adaptive-weighted
fusion. The fusion rules of the low-pass sub-image are provided below.

Step 1: The LatLRR algorithm is used to obtain the saliency features
of IR and VI images. The corresponding saliency maps of SIR and SVI are

generated. The gray values of the saliency maps are normalized to form
the weighting coefficient matrices of S1 and S2.

=
−

−
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Step 2: S1 and S2 are used to guide adaptive-weighted fusion based
on the saliency extraction of IR and VI images, respectively. The specific
expression is as follows:

=
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where Cl,k (i,j) represents the final low-pass fusion coefficients. The
saliency map contains the weight information of the spatial distribution
of the grayscale value of the image, so this fusion method adaptively
integrates the salient information of an IR image into the VI image with
textural details. Since the spectral difference of the two source images
can be compensated by the adaptive-weighted of the saliency map, the
problem of low-contrasting fused image will be solved. Similarly, the
saliency information of the two source images combined appropriately,

(a) VI image         (b) Principal features (c) Salient features (d) Sparse noise

Fig. 4. LatLRR mechanism of VI image decomposition.

Fig. 5. Schematic of our proposed algorithm.
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which greatly improves the final fusion effect.

3.3. Fusion rule of high-pass sub-images

High-pass sub-images reflect the edge features and textural details
of the image. The traditional “maximum absolute value” [19] is used as
fusion rule, but results in significant loss of detailed information. By
contrast the AVG [20] can reflect image edge details and represent
changes in the gray image. Thus, the final fusion coefficients of high-
pass sub-images can be replaced by AVG calculation.

Salient maps of image sources can present salient scene information.
Large salient maps suggest relatively more salient information of an
image source. Fusing high-pass sub-images coefficients is guided by the
combination of AVG and LatLRR. The specific integration steps are
listed below.

Step 1: The AVG of high-pass sub-images coefficients is calculated
and expressed as follows:

∑ ∑=
×

∇ + ∇ + ∇ + ∇

= −

−

= −

−
AVG i j

M N
D i j D i j D i j D i j
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where AVG is represented by the (i, j) position; M×N is designated as
3×3; and ∇Dh(i, j), ∇Dv(i, j), ∇Dmd(i, j), and ∇Dvd(i, j) represent the
gradient changes in the horizontal, vertical, main diagonal, and oblique
diagonal directions, respectively.

Step 2: The sizes of S1 and S2 and the AVG values between the
coefficients of high-pass sub-images are compared separately, and then
the final fusion coefficients are determined. The fusion rule is defined as

= ⎧
⎨⎩

> >
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The AVG operator can reflect image edge details and represent
changes in the gray image. The weighting coefficient matrices of S1 and
S2 contain salient scene information. The information of high-pass de-
tails can be fully integrated because of the effective combination of the
above matrices. The AVGs of the IR and VI image effect maps of the
same scene are shown in Fig. 6. As shown in Fig. 6(b) and (d), the image
edge information is extracted and enlarged by the AVG operator, thus
making it more intuitive and accurate than the “absolute maximum
principle,” which is used to fuse the texture information between two
source images.

Fig. 7. First group of fusion experiments.

(a) VI image          (b) The AVG of (a)           (c) IR image          (d) The AVG of (c)

Fig. 6. Images calculated by AVG.
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4. Experimental results and analysis

Our method is compared with NSST-SF-PCNN [21], GFF [22], VSM
[23], IFE [24], and GTF [25] to verify the superiority of our proposed
method. Five different environments are selected to show the scope of
the algorithm. The first group shows a man hidden in the forest, the
second group depicts an airport at night, the third group shows a port,
the fourth group shows a man walking in the forest, the fifth group
depicts a ship on the sea, and the sixth group shows the coast. The
original image size of the first three groups is 256×256, the size of the
fourth group is 360×270, and the last two groups is 505×510. The
parameters of the comparison algorithms are set as follows:

In the NSST-SF-PCNN method, the level of multi-scale decomposi-
tions is set to be 3, and the number of direction from coarser to finer

scale is set to be 8, 16 and 16, respectively. The size of the shearing
window is set to be 3. The size of the neighborhood is 3×3. Wijkl is
[0.1035, 0.1465, 0.1035; 0.1465, 0.0000, 0.1465; 0.1035, 0.1465,
0.1035]. Δ and Vθ are set to be 0.01 and 10, respectively.

In the GFF method, the default parameters are set as: r1= 45,
eps1= 0.3, r2= 7, eps2= 10−6.

In the VSM method, the number of decomposition levels is typically
set as N=4, which is good enough to produce satisfactory fusion re-
sults. The initial spatial weight is set as σ0s=2. Generally, the values of
λ in the range of [0.005, 0.02] would all obtain satisfactory results and
we set λ=0.01 in this paper.

In the IFE method, the default parameters are set as:
QuadNormDim=512; QuadMinDim=32; GaussScale= 9;
MaxRatio= 0.001; StdRatio= 0.8.

Fig. 9. Third group of fusion experiments.

Fig. 8. Second group of fusion experiments.
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In the GTE method, they fix λ to 4 as an empirical value, which can
achieve good visual effects in most cases.

Our method takes “maxflat” and [2, 2, 3, 3] as the direction filter
and the pyramid filter, respectively. For the fairness of the algorithm
comparison, the parameters of each algorithm are all selected opti-
mally, and all experiments are conducted with MATLAB 2012a pro-
gramming using a PC with Intel Core i7/3.4 GHz/4G processor.

4.1. Subjective evaluation

The first to fifth group of experiments are shown from top to bottom
in Figs. 7–12. The NSST-SF-PCNN, GFF, CNN, IFE-VIP, GTF and the
proposed method are shown in succession from (a) to (f) in each group.
In the first group of experiments, the depiction of Fig. 7(c), (d), and (g)
are close to IR images, which also implies that the information of VI
images is not well restored. The brightness of Fig. 7(f) is somewhat too
high, image contrast is low, and textural details at the trees are not well
restored. Fig. 7(e) is relatively better than the earlier images; however,
compared with the algorithm in this study, the image is not clear and
the reconstruction of the high-pass details is not as good as Fig. 7(f).

Thus, the fusion image based on our algorithm has the best view.
In the second group of experiments, Fig. 8(c) and (g) are ambiguous

with some images details lost. Fig. 8(f) still has the disadvantage of
excessively high brightness, which eventually leads to unnatural image
reconstruction. Fig. 8(d) does not restore the headlight information of
the VI image. Therefore, information loss in the fused image is ap-
parent. The contrast is low in Fig. 8(e), and the restoration of back-
ground details is not as good as Fig. 8(h).

In the third group of experiments, except for our algorithm, the
fused images of other contrast algorithms are ambiguous, in which
Fig. 9(g) is the most serious while Fig. 9(d) and (e) are dark. The
background information of Fig. 9(c) is blurred, and the overall bright-
ness of Fig. 9(f) is too high to cause important details to be missed. By
contrast, Fig. 9(f) has the best contrast, sharpness, and detail reduction.

In the fourth group of experiments, Fig. 10(d) and (g) are close to IR
images, and Fig. 10(c) and (f) are close to VI images. Therefore, none of
the four fusion algorithms fully combines the characteristics of the two
image sources. The depiction of Fig. 10(e) is close to the proposed al-
gorithm, and textural details are as good as Fig. 10(f).

In the fifth group of experiments, the backgrounds of Fig. 11(c) and

Fig. 11. Fifth group of fusion experiments.

Fig. 10. Fourth group of fusion experiments.
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(g) do not fuse well the information of the mountain profile in the IR
image. Moreover, the hull of Fig. 11(d) and (g) are close to IR images,
thus losing the edge information of VI images. The contrast of Fig. 11(e)
is not as good as the algorithm in this study. In addition, the water wave
texture of the sea surface is not as good as Fig. 11(h).

In the sixth group of experiments, the depiction of Fig. 12(g) is al-
most similar to that of the IR image. Fig. 12(d) has the disadvantage of
non-uniform gray value transition in the background. Fig. 12(e) is too
dark and the contrast is low. Fig. 12(f) shows a white pseudo-noise
coastline. This study has the best view compared with the other algo-
rithms, and the texture transition of water waves on the sea surface is
very natural.

4.2. Objective evaluation

Results of image fusion are usually evaluated subjectively and ob-
jectively, and they present limited differences in most circumstances.
However, evaluating fusion results correctly and subjectively is a dif-
ficult task. Thus, the fusion effect is frequently evaluated based on
objective quality evaluations.

The following five objective quality indexes are selected as the
evaluation criteria: (1) AVG [26], (2) information entropy (IE) [27], (3)
edge retentiveness (QAB/F) [28], (4) space frequency (SF) [29], and (5)
standard deviation (SD) [30]. Meanwhile, AVG is used to reflect small
details of contrast and texture changes in the image. IE can be used
directly to measure the richness of image information. SF incarnates the
overall activity of the image in spatial domains. SD is used to reflect the
pixel distribution of gray values. QAB/F computes the amount of edge
information, which is shifted from image sources to fused images. For
all five indexes, the greater the value is, the better the performance will
be.

A detailed quantitative evaluation of the six groups of IR and VI
images is shown in Tables 1–3. Values in boldface represent the best
results given the same index in the aforementioned method.

In the fourth group of experiments, the value of AVG of the pro-
posed algorithm is slightly lower than that of the VSM algorithm. The
main reason is that the fused image of the AVG algorithm has a higher
contrast ratio than the proposed algorithm. However, the other eva-
luation parameters of the VSM algorithm are not as good as the pro-
posed algorithm of this paper, which shows that the texture features

and edge details of the source images are well transferred to the pro-
posed fused image. So the proposed algorithm has more ability to re-
store gradient information compared with other algorithms. Apart from
the findings of the fourth experiment, the AVG values of the proposed
algorithm are higher than those of other algorithms in each group of
experiments. Similarly, except for the third group of experiments, the IE
value of the proposed algorithm is also higher than those of the other
algorithms, which indicates that the information of fused images using
this algorithm is rich and combines the distinctive features of IR images
with the textural details of VI images altogether. In the first, second,
and sixth group of experiments, the SD value of the IFE algorithm is
always the highest because image brightness values based on the IFE
algorithm is too high, which leads to an abnormal increase in gray
values; thus, the SD is unrealistic. In the first and fifth experiments, the
QAB/F values of the proposed algorithm are slightly lower than that of
the GFF algorithm. On the basis of objective evaluation parameters, the
result is the same as that of the subjective evaluation. The proposed
algorithm is superior to other algorithms in terms of image gray value
distribution, edge detail, and clarity.

The last column in the Table 1 represents the running time of each
method. It can be found by comparison that the NSST-PCNN method
has poor timeliness and its running time is much higher than other

Table 1
Objective evaluation results of the first two groups of fused images.

Group Methods Evaluation index Time/s

AVG IE QAB/F SF SD

1 NSST-PCNN 6.1628 6.7568 0.4354 11.5985 30.2343 16.95
GFF 5.8794 6.7518 0.5547 11.5417 30.1531 1.21
VSM 6.2863 6.6799 0.4316 13.7775 29.2309 1.77
IFE 6.0695 6.7760 0.4905 12.1391 34.4136 0.97
GTF 5.7834 6.5689 0.4456 11.4568 28.4232 1.56
Proposed 6.2934 6.8043 0.5441 13.8054 34.0326 2.01

2 NSST-PCNN 8.4300 7.2840 0.4932 16.0309 40.2327 15.99
GFF 8.1631 7.1380 0.6027 16.3177 36.7515 1.32
VSM 9.1998 7.2895 0.5436 18.8321 41.7515 1.70
IFE 9.1782 7.3270 0.5436 18.3845 49.2668 0.95
GTF 8.1545 7.2290 0.5265 17.2381 40.4321 1.62
Proposed 9.2547 7.3347 0.6176 19.0025 48.0779 2.05

Fig. 12. Sixth group of fusion experiments.
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algorithms. In addition, the running time of the proposed algorithm is
the longest among the other comparison algorithms, which shows that
the complexity of the proposed algorithm is relatively high, so its
timeliness needs to be improved. However, the good visual effects of a
fusion algorithm often sacrifice certain timeliness, so the running time
of the proposed algorithm is still acceptable.

5. Conclusion

This study presented an adaptive fusion framework for IR and VI
images based on the LatLRR in LNSST domain. The LNSST was used as a
multi-scale decomposition tool for the image in our proposed method.
For low-pass components, adaptive-weighted fusion based on salient
feature extraction using the LatLRR algorithm was adopted. For high-
pass components, the AVG operator was used to process fusion coeffi-
cients. Six different scenarios were considered to verify fusion perfor-
mance. The outcome showed that our algorithm could effectively fuse
high-contrasting visible light and IR images while retaining consider-
able textural and detailed information without any artifacts. The ex-
perimental results of subjective and objective evaluations showed that
our algorithm offered better fusion performance than typical fusion
methods.
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