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In this paper, we proposed an all-weather °ame detection algorithm which could make full use of
active infrared cameras presently installed in many public places for surveillance purposes.

Firstly, according to the di®erent spectral imaging results in day and night, we propose a video

type classi¯cation algorithm (VTCA) via imaging clues. VTCA could help us select di®erent

°ame visual features in color image and infrared image. Secondly, we use a generic YCbCr-color-
space-based chrominance model to extract regions of interest (ROI) of °ame. Thirdly, two °ame

dynamic features are used to verify the candidate ROIs, which are common °ame °icker feature

and an improved block-based PCA in consecutive frames. The experimental results show that

the proposed °ame detection model has been successfully applied to various situations, including
day and night, indoor and outdoor on our test video datasets, and it gives a better performance

compared with other state-of-the-art methods.

Keywords : Active infrared camera; video-type classi¯cation; generic color model; dynamic °ame

feature.

1. Introduction

Recently, °ame detection systems based on computer vision have gained more and

more attentions. Most of the vision-based ¯re detection systems utilize common

visible camera,1,2,4,7–11,14,18,19,22,27,29 infrared camera,28,20 thermal camera,3 or long

wave infrared (LWIR) thermal camera21 as sensors. The common visible camera is

usually used for detecting °ame in well-lit areas, and other cameras are used in the

dark, haze or dust environment. For °ame detection algorithms, characteristics of
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color, shape, spatial variation, morphology are extensively used as °ame visual

features. Color is the widely used static feature in vision-based ¯re detection systems.

For instance, characteristics of °ame pixels presented in RGB,1,3,22 HSI,9,14 HSV,22

and YCbCr2,22,27 color spaces were used as clues to identify °ame pixels correctly.

Flicker is the most utilized dynamic °ame feature. This feature is usually extracted

using DCT, wavelet decomposition,3,20 motion history detection9 and °ame image

correlation.18,22 Usually, there are several features as °ame detection clues in one

system, then decision fusion plays important rules in the systems. For examples,

Fuzzy Logic,14 Voting method, Choquet integral22 and Dempster–Shafer theory23

are reported for combinations of °ame features in some researches to improve the

accuracy of the vision-based °ame detection systems. There are some representative

researches about °ame detection in videos:

Hou et al.11 proposed a new updating target extraction algorithm for ¯re candi-

date regions segmentation, and then ¯re recognition algorithms, such as fuzzy neural

network and Fuzzy GALSSVM are improved to detect ¯re. Experiments show that

algorithms can be implemented for large space ¯re detection.

Ko et al.14 proposed two algorithms which are based on FuzzyþGaussian and

FuzzyþParzen to detect ¯re, and the latter algorithm produces better result. In the

¯rst place, they used a background model and a °ame color model to detect candi-

date °ame regions. Then, forming probability density functions for the intensity

variation, wavelet energy, and motion orientation are changed into membership

functions for fuzzy logic. At last, defuzzi¯cation step is applied to estimate ¯re

appearance according to the probability value.

In Ref. 3, °ame detection was achieved through a linear weighted classi¯er based

on the following features: contrast enhancement by the local intensities operation,

candidate region selection by thermal blob analysis and region shape regularity.

Determined by wavelet decomposition analysis and region intensity saturation, the

method can detect ¯re regions in thermal videos, which are in turn available in both

outdoor and indoor environments.

A video-based ¯re detection system which utilized color, spatial and temporal

information was proposed in Ref. 8. The system divided the video into spatial-

temporal blocks and used covariance-based features extracted from these blocks to

detect ¯re. The extracted features were trained and tested using a SVM classi¯er.

The system can detect visible °ame well by using nonstationary cameras.

Wirth et al.27 used histogram back-projection in YCbCr color space in combi-

nation with a model image derived from known °ame images to extract candidate

°ame pixel regions.

A feature-based multi-sensor ¯re detector operating on ordinary video and

LWIR thermal images was proposed by Verstockt et al.21 They extracted hot objects

from the thermal images by dynamic background subtraction and histogram-based

segmentation, and intensity-based dynamic background subtraction was utilized

for extracting moving objects. The methods can detect invisible °ame well via
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analyzation using a set of °ame feature focusing on the distinctive geometric, tem-

poral and spatial disorder characteristics of °ame regions, in dark environment.

In Ref. 1, a probabilistic model for color-based ¯re detection was proposed. It could

quantize the pixels into array of degrees of confdence for whether the corresponding

pixel shows ¯re, and then analyze the interframe changes for speci¯c low-level features

describing possible ¯re regions. These features were color, area size, surface coarseness,

boundary roughness, and skewness within suspected ¯re regions. The method can

identify ¯re in video.

Wang et al.22 used RGB, HSV and YCbCr color models in combination to rep-

resent possible ¯re regions. When they used the feature of ¯re correlation between

frames, their experiments proved that the algorithm gives well performance, which

can completely extract ¯re area and reduce the interferences from changes of

brightness in images.

Ho et al.9 used temporal probability density, represented by extracting the

°ickering area with level crossing and separating the alias objects from the °ame and

smoke region. Then, the continuously adaptive mean shift (CAMSHIFT) vision

tracking algorithm was employed to provide feedback of the °ame and smoke real-

time position at a high frame rate.

Cheong et al.4 proposed a new visual-sensor-based ¯re monitoring system, which

applies two additional methods to candidate ¯re pixels: luminance map and support

vector machine (SVM). The system removes non¯re pixels using the luminance map,

and a temporal ¯re model was made for two-class SVM classi¯er with radial basis

function (RBF) kernel.

Wu et al.12 proposed a ¯re detection method by combining the characteristics

of ¯re with human activity. This method specially focuses on early stage manmade

¯re, and performs well in the initial combustion which has small scale and short

appearance.

In Ref. 20, T€oreyin et al. extracted the °ame region of interest (FROI) through

°ame motion and luminance detection. Wavelet analysis and variation analysis of

temporal information were employed to con¯rm the existence of °ame.

Dimitropoulos et al.6 proposed a method for ¯re detection by spatio-temporal

information. A nonparametric model is utilized to background subtraction and color

analysis. After that, the ¯re behavior can be detected by employing various spatio-

temporal features. And dynamic texture analysis is applied to further distinguish ¯re

region.

Zhang et al.29 applied a combination of color feature and ¯re °icker feature from

time series analysis of ¯re height changes.

Toereyin et al.19 employed raw RGB information and developed a set of rules to

classify the °ame pixels along with a motion information and Markov ¯eld modeling

of the °ame °icker process.

A multi-feature fusion early °ame detection algorithm based on D-S evidence

theory5,15–17 is proposed in our previous work.23 Flame °icker frequency based on
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DCT and °ame image correlation between frames are fused by D-S evidence theory

to detect °ame in visible images.

The remainder of this paper is arranged as shown in Fig. 1. In Sec. 2, we propose a

video type classi¯cation algorithm (VTCA). In Sec. 3, we use the YCbCr color space

to construct two generic chrominance model for visible and infrared °ame pixel

classi¯cation. In Sec. 4, °ame detection using dynamic features are utilized as clas-

si¯ers. Finally, we draw conclusions in Sec. 5.

2. Video Type Classi¯cation Algorithm

Active infrared cameras are widely used in existing vision-based surveillance sys-

tems. In order to make full use of these devices, we apply the active infrared

cameras as environment sensors for °ame detection. Usually, there is a photo re-

sistor in an active infrared camera to control the infrared lights according to the

environment illumination conditions, so characteristics of °ame pixels in visible-

light and infrared images are not the same caused by the captured images variation.

In other words, it is hard to extract the °ame ROI of visible and infrared accurately

through a single color-feature-based algorithm. Background model,14 dynamic

background subtraction21 and histogram-based segmentation methods21 could

handle with this problem, but they also introduce more interference. Although

using sunrise–sunset times for a speci¯c location could switch di®erent imaging

types for daytime and night time, it does not work for indoor environments where

the illumination is irregular, especially at cinema and theatre. VTCA presented in

this paper could classify the type of each frame capture from camera using image

feature, and thus di®erent ROIs extraction algorithm can be selected, respectively.

The more accurate the VTCA classi¯cation is, the better performance of °ame

detection could be achieved. VTCA is a novel algorithm based on color histogram

statistics in HSV color space. After analyzing the images from video libraries of

PETS2001,23 KMU CVPR Lab,24 NIST,13 VisiFire25 and the video library in this

Fig. 1. Process of proposed method.
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paper, the number of colors in infrared images is less than visible images. That

means that the H components in visible-light and infrared images (both in the HSV

color space) are di®erent. Besides, the color purity of infrared images is much lower

than visible-light images. The S components in infrared and visible images are

di®erent too. Figure 2 can illustrate this idea well.

2.1. De¯nition of the eigenvector HSn and H-S histogram

In order to visualize the HSV components of the image, we introduce the eigenvector

HSn and the H-S histogram, where n is the number assigned to each eigenvector. H

component is divided into 16 levels fH0, H1, . . . , H15g, each of Hi represents 22:5
�

di®erence of hue. Furthermore, every H1 component is divided into eight (sub)levels,

representing saturation component fS0, S1, . . . , S7g. In this way, an H-S histogram

with 128 levels is created, and the H and S components of pixels can be mapped into

eigenvectors HSn and an H-S histogram. HxSy is de¯ned as pixel which is in the yth S

level of xth H level of H-S histogram, where n can be calculated by n ¼ 8xþ y, and

hsn is de¯ned to be the value of each HSn. hsn also means that there are hsn pixels in

Fig. 2. H-S histograms of visible images and infrared images. (a) is the image of visible-light video 14 in

subclass 1 which is illustrated in Fig. 3, (b) is the image of visible-light video 7 in subclass 1, (c) is the image

of infrared °ame video inf 1 in subclass 3, and (d) is the image of infrared video ini 1 in subclass 3. (e) to (h)
is the H-S histogram of (a) to (d), respectively.

Flame Detection Using Generic Color Model and Improved Block-Based PCA
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level n. In order to express hsn signi¯cantly in the H-S histogram, we normalize hsn
as follows:

nor hsn ¼ hsn
Maxfhs1;hs2; . . . ;hsng

: ð1Þ

2.2. Video type classi¯cation based on H-S histogram

Plenty of experiments have been done on a large amount of visible-light and infrared

images, taken from the test video library in this paper. Some of the images and their

H-S histograms are illustrated in Fig. 2, the types of images can be classi¯ed by

Eqs. (2) and (3).

Rule 1 : nor hsn � Th hsn
Rule 2 : Th hl � Num H � Th hh

Rule 3 : Th sl � Num S � Th sh

8<
: : ð2Þ

We can de¯ne visible images as

IsVisible ¼ 1 Rule 1�Rule 3

0 otherwise;

�
ð3Þ

where Th hsn is the threshold of hsn. We only use the eigenvector HSn whose hsn
value is above Th hsn for video type classi¯cation. Num H and Num S present

the number of H and S components in H-S histogram, respectively. If the Num H

of an image is between Th hl and Th hh, and the Num S is between Th sl and

Th sh, the image is visible. To evaluate the performance of the proposed VTCA, we

test it on video library in this paper. Detail results of VTCA are presented in

Sec. 5.2.

3. Flame ROI Detection Using Generic Chrominance Model

Due to the imaging principles of active infrared camera, characteristics of °ame

pixels in the color image and infrared image are di®erent, so it is hard to extract the

FROI accurately via the same color clues. Naturally, visible and infrared candidate

°ame regions are initially detected using di®erent methods. This process is essential

for improving the °ame detection performance and reducing the detection time on

both types of videos.

3.1. Detection of infrared FROI

Brightness is the main feature of infrared °ame. Infrared °ame region of interest

(IR-FROI) can be detected by extracting pixels that satisfy brightness features.

Every image in red, green and blue (RGB) color space can be viewed as compo-

sition of three color planes: red, green, and blue. Nevertheless, although RGB color

space can be applied for pixel classi¯cation, it has disadvantages of illumination

Q. Zhao et al.
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dependence, thus if the illumination of image changes, the °ame pixel classi¯cation

rules cannot perform well. Furthermore, it is not possible to separate a pixel's

value into intensity and chrominance. The chrominance can be used in modeling

color of °ame rather than modeling its intensity. It provides more robust repre-

sentation for °ame pixels. So it is needed to transform RGB color space to one of

the color spaces where the separation between intensity and chrominance is more

discriminate.2 We use YCbCr color space to model °ame pixels. The conversion of

two-color space is linear, it is convenient to convert RGB space to YCbCr space. Y

channel is luminance which is easy to represent the brightness feature of image

pixels.

Rule 1 : F ðx; yÞ ¼
1 if Y ðx; yÞ > Ymean

0 otherwise

(

Rule 2 : F ðx; yÞ ¼
1 if jCrðx; yÞ � Crmeanj < � in

0 otherwise

(
8>>>>><
>>>>>:

: ð4Þ

InFire FrnðxiÞ ¼
255 Rule 1 & Rule 2

0 otherwise

�
ð5Þ

3.2. Detection of visible FROI

Color feature is an essential feature of the °ame, and is often used to extract the

FROI from videos. We experiment on three di®erent FROI algorithms, and test

di®erent rules of °ame extraction. The rules are based on YCbCr,2 RGB,4 and HSI.10

We select four visible °ame rules from Ref. 2 to extract °ame in our experiments

(Rule 1–Rule 4).

Rule 1 : Y ðx; yÞ > Cbðx; yÞ
Rule 2 : Crðx; yÞ > Cbðx; yÞ

Rule 3 : F� ðx; yÞ ¼
1 if Y ðx; yÞ > Ymean;Cbðx; yÞ < Cbmean;Crðx; yÞ > Crmean

0 otherwise

(

Rule 4 : F� ðx; yÞ ¼
1 if jCbðx; yÞ � Crðx; yÞj � �

0 otherwise

(

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

Fire FrnðxiÞ ¼
255 Rule 1�Rule 4

0 otherwise

�
: ð7Þ

(x; y) is the pixel location, Y mean, Cbmean, and Crmean are the mean values of

luminance, Chrominance-Blue, and Chrominance-Red channel. In Ref. 2, � is a

constant value which is used to distinguish the °ame and interference. � is 40 in our

experiments.

Flame Detection Using Generic Color Model and Improved Block-Based PCA
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4. Flame Dynamic Feature Extracted Using Improved
Block-Based PCA

Although the detection of FROI using two color models is e®ective in videos con-

taining °ames, moving objects having similar °ame features are also detected in-

correctly. Various video °ame detection algorithms have recently been proposed.

There are more sophisticated video-based °ame detection methods exploiting

spatial-temporal characteristics of °ames. Some of them are spatial features of

°ames, such as °ame edge corner feature, °ame height feature, °ame centroid

feature and °ame area variation. Besides, the temporal features of °ames are widely

used in °ame detection, such as °ame °icker feature based on DCT, °ame wavelet

decomposition analysis and °ame image correlation between frames, etc. Although

dynamic features mentioned above are useful in visible images, however according

to the infrared °ame characteristics, there are few regular spatial features of °ame

in infrared images. So we proposed a better °ame features which satisfy both visible

°ame detection and infrared °ame detection. In this paper, we use features based

on °ame °icker which are applied by an improved block-based principle component

analysis.

Firstly, a common °icker feature was used to get more accurate FROIs. As far as

we know, °ame height changes violently with °ame °ickering. Due to this feature,

there are plenty of pixels changing from ¯re to non¯re or from non¯re to ¯re in

sequential frames. So, °ame can be detected by using this feature in a sequential

°ame video. We count the times a pixel (x; y) changes between extreme values in

continuous frames. Whether the change count is greater than a ¯xed threshold is an

evidence for judging pixel (x; y) belongs to an FROI or not.

Flame in videos has continuous oscillation feature because of in°uences from gas

plume entrainment and air °ow. Shen18 and many other researches proposed a series

of principles based on the oscillation feature. And we enhance this characteristic by

using an improved frame correlation for ¯re detection. Considering the ¯re's shapes

and area are not stable in di®erent situations, we normalize the ¯re region and reduce

the dimensionality of ¯re feature to guarantee that various ¯re images have the

standardized feature dimensionality. A method called improved block-based prin-

cipal component analysis (IBBPCA) is proposed to resolve the dimensionality re-

duction problem. The method is applied to the accurate FROIs target. When the

FROI, which may contain a possible ¯re section, is to be extracted, IBBPCA seg-

ments the region into several small blocks. The bounding box of the motion region is

calculated and divided into 30 sub-regions evenly as a 6� 5 matrix in this paper.

Every sub-region is regarded as a block and has a value which represents the com-

posite degree of approximation to °ame. The value V of each blocks are computed as

Eq. (8).

Vk ¼
Pn

i¼1 Yi þ !� jCbi � Crijð Þ
n

k ¼ 1; . . . ;m; ð8Þ

Q. Zhao et al.
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where m is the total number of blocks, and n denotes the number of pixels in each

block. Yi, Cbi, Cri represent the value of YCbCr channel in the ith pixel of kth block,

respectively, and ! is the weight. Then, a region could be represented by a set of

invariant composed of color information, it can be represented as feature F in

Eq. (9).

F ¼ ½V1;V2;V3; . . . ;Vm�: ð9Þ
In this paper, we use a 6� 5 matrix, so the value ofm is 30. Butm can be changed to

adjust di®erent situations. Then, IBBPCA applies traditional principal component

analysis to complete further dimensionality reduction. We set up a ¯re image da-

tabase for the training purpose. The training images in the database are segmented

into 30 blocks as the previous method. Then, a training matrix is created where

columns and rows denote each training picture and corresponding feature F , re-

spectively. The eigenvalue and eigenvector are calculated from covariance matrix

which is obtained from the training matrix. We use the eigenvector to handle the

feature F , and reduce F into 10 dimensions from 30. According to Eq. (10), we can

obtain the correlation via continuous frames' feature F .

Cðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 ðV j
p � V j

q Þ22

q
m

; ð10Þ

where p, q are the regions belonging to two successive frames in a video. V j
p and V j

q

represent the jth invariants of p, q region's feature F , and m is the dimension of

feature F . The result of Eq. (9) denotes the correlation between continuous frames,

and this frame correlation can be used for detecting °ame.

5. Experiment Analysis and Comparison

5.1. Introduction of experiments and test video details

Our °ame detection system was implemented using Visual Studio 2005 environment,

and experiments were conducted on a PC installed Windows XP operating system. A

general active infrared camera (Web a DSP CCD camera, Model WB-335) was used

to capture several °ame sample videos. The resolutions of images are 320� 240.

In general, experimental veri¯cation of a °ame detection system is a very di±cult

task. Our test video library has been divided into four subclasses. Subclass 1 is used

for testing the VTCA, subclass 2 is used for testing visible °ame detection, subclass 3

is used for testing °ame detection results under the nonvisible environments, and the

videos in subclass 4 are captured from our °ame detection system which monitored

all-weather. Figure 3 show the scenes of test video library. Some of test videos in this

Library are formerly proposed by others. 1–16 are from PETS 2001.24 f 1-f 6, i 1-i 6

are cited from Ref. 14 and can be downloaded from website of KMU CVPR Lab.13

f 7 is from National Institute of Standards and Technology.25 f 8 is from Toreyin's

test videos.26 Others are captured from our general active infrared camera, such as

Flame Detection Using Generic Color Model and Improved Block-Based PCA
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infrared test videos (inf 1-inf 8, ini 1-ini 8) in Fig. 3(c). To validate the e®ectiveness

of the proposed approach. Flame detection rate r+, and false alarm rate of inter-

ferences r− are applied to measure results of algorithms.

To validate the e®ectiveness of the proposed approach. Flame detection rate r+,

and false alarm rate of interferences r− are applied to measure results of algorithms.

Flame detection rate : rþ ¼ nf

ntf

; ð11Þ

False alarm rate of interference : r� ¼ ni

nti

: ð12Þ

(a)

(b)

(c)

Fig. 3. Test video library. (a) Subclass 1, visible-light test video library. (b) Subclass 2, visible °ame and

interference test video library. (c) Subclass 3, infrared °ame and interference test video library.
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Table 1. Experimental results of VTCA.

Video

Frame

Number

Accuracy

Rate (%) Video

Frame

Number

Accuracy

Rate (%) Video

Frame

Number

Accuracy

Rate (%)

1 727 100 f 1 329 100 inf 1 2549 100

2 843 99.17 f 2 750 100 inf 2 750 99.87

3 727 100 f 3 892 100 inf 3 750 99.87

4 270 100 f 4 402 98.34 inf 4 1000 99.70
5 1490 100 f 5 645 100 inf 5 750 100

6 1490 100 f 6 549 100 inf 6 724 100

7 1576 100 f 7 2522 99.66 inf 7 775 100
8 5730 100 f 8 707 100 inf 8 750 100

9 899 98.99 i 1 314 100 ini 1 1250 100

10 3963 100 i 2 209 100 ini 2 1225 100

11 5090 100 i 3 304 90 ini 3 1300 100
12 3271 100 i 4 182 100 ini 4 425 100

13 540 100 i 5 540 99.75 ini 5 974 100

14 586 100 i 6 662 100 ini 6 924 100

15 2249 100 i 7 154 98.79 ini 7 799 100
16 538 100 i 8 586 100 ini 8 650 100

(a)

(b)

Fig. 4. Algorithms comparison. (a) Flame Detection Rate, (b) Interference False Alarm Rate, (c) Flame
Detection Rate and (d) Interference False Alarm Rate.
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5.2. Results of VTCA

VTCA can be used under both indoor and outdoor environments, di®erent seasons,

di®erent illumination conditions. Table 1 shows the VTCA results of subclass 1

(visible light, di®erent situations), subclass 2 (visible light, f 1 to f 8 are °ame videos

under both indoor and outdoor environments, and i 1 to i 8 are interference videos)

and subclass 3 (infrared, inf 1 to inf 8 are °ame videos under both indoor and out-

door environments, and ini 1 to ini 8 are infrared interference videos). Results show

that the proposed VTCA is accurate and robust.

5.3. Results and comparisons

To evaluate the performance of our algorithm, Ko,14 Xu28 and T€oreyin's19,20 algo-

rithms, which have been working well among existing algorithms, were compared

with our method. The comparative results are presented in Fig. 4, with (a) and (b)

being algorithm comparisons under visible °ame and interference videos. In order to

compare objectively, we cite part of results from Fig. 9 of Ref. 14. In Fig. 3(a), our

methods outperformed FuzzyþParzen, Ko and T€oreyin's20 methods with an average

°ame detection rate (AFDR) of 93% compared to 92%, 86% and 64%, in Fig. 3(b),

average interference false alarm rate (AIFAR) of 0% compared to 0%, 6%, and 2%.

(c)

(d)

Fig. 4. (Continued)
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Figures 3(c) and 3(d) are algorithm comparisons under infrared °ame and interfer-

ence videos, in Fig. 3(c), proposed methods outperformed Xu and T€oreyin's1

methods with an AFDR of 91% compared to 82% and 66%, in Fig. 3(d), AIFAR of

0.75% compared to 0.25% and 22%, respectively.

6. Conclusions

In this paper, a °ame detection algorithm using Generic Color Model and Improved

Block-based PCA in Active Infrared Camera is proposed. Experiments show that the

VTCA proposed in our essay gives accurate results. By experimenting on the test

video dataset in this paper, the proposed model gets 93% correct rate of °ame

detection with a 0% false alarm rate in visible videos, and achieves 91% correct rate

of °ame detection with a 0.75% false alarm rate in infrared videos. The algorithm can

make full use of present surveillance system. Afterwards, we will focus on the °ame

position based on computer vision, and improve the accuracy of extracting FROI.
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