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Abstract: A feature-based phase retrieval wavefront sensing approach using machine 
learning is proposed in contrast to the conventional intensity-based approaches. Specifically, 
the Tchebichef moments which are orthogonal in the discrete domain of the image coordinate 
space are introduced to represent the features of the point spread functions (PSFs) at the in-
focus and defocus image planes. The back-propagation artificial neural network, which is one 
of most wide applied machine learning tool, is utilized to establish the nonlinear mapping 
between the Tchebichef moment features and the corresponding aberration coefficients of the 
optical system. The Tchebichef moments can effectively characterize the intensity 
distribution of the PSFs. Once well trained, the neural network can directly output the 
aberration coefficients of the optical system to a good precision with these image features 
serving as the input. Adequate experiments are implemented to demonstrate the effectiveness 
and accuracy of proposed approach. This work presents a feasible and easy-implemented way 
to improve the efficiency and robustness of the phase retrieval wavefront sensing. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Broadly speaking, phase retrieval wavefront sensing represents one class of image-based 
approach that recovers the wavefront phase of an optical system in the pupil plane when only 
intensity measurements in the image plane are available [1,2]. Compared to other wavefront 
sensors (Hartmann sensor or shearing interferometry), they have several important 
advantages, such as low requirement for optical hardware and no special need for calibration 
[3,4]. Since the inception of them about three decades ago, phase retrieval wavefront sensing 
approaches have played an important role in detecting the wavefront aberrations of large 
astronomical telescopes, especially for space applications [5–9]. 

The conventional phase retrieval wavefront sensing approaches mainly can be classified 
into two general categories: iterative-transform and parametric approaches. The former is also 
known as the Gerchberg-Saxton (G-S) or error-reduction algorithm [1,10], which involves 
iterative Fourier transformation back and forth between the object and Fourier domains and 
application of the measured intensity data or known constraints in each domain. The latter is 
also named as model-based optimization algorithm or directly called phase diversity 
algorithm [11–14], which recovers the parameterized wavefront aberrations by establishing 
objective function (error metric) and then minimizing the optimization with nonlinear 
optimization methods. Both of these two classes of iterative approaches are time-consuming 
and not suitable for applications with a high requirement for efficiency. Besides, the results of 
these approaches partly depend on the original values needed in the iterative transformation 
or iterative optimization process, and they subject to the stagnation problem (and therefore the 
robustness is low) [9]. 

Artificial neural network, which belongs to machine learning, has been introduced to the 
area of phase retrieval wavefront sensing [15–18]. A neural network is an input-output 
information processor composed of parallel layers of elements or neurons, loosely modeled 
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on biological neurons, which possess local memory and are capable of elementary arithmetic. 
It can be used to learn and store a great deal of nonlinear mapping relations of the input-
output model [19]. Previously, neural networks were utilized to measure the optical phase 
distortion induced by air turbulence in adaptive optics [15,16], which were then applied to 
wavefront reconstruction for the Hubble Space Telescope [17]. These attempts used a 
network with each pixel of the PSF as part of an input vector which was matrix-multiplied 
into a single “hidden” vector. The resulting vector was then fed through a nonlinear sigmoid 
function and matrix-multiplied to an output vector which corresponds to the aberration 
coefficients. The main problem for this approach is the contradiction between too much 
inputs and only one hidden layer. For example, for a pair of 32 32×  PSF images, we need 
about 1800 ( 2 32 32× × ) neurons in the input layer. The intensity of each pixel is not 
independent from the others for a certain PSF pattern, and the final wavefront phase is 
determined by the intensities of all pixels. On the other hand, this type of machine learning 
model considers each pixel independently, and it is the task of the hidden layer to build the 
inherent relations between the intensities of different pixels. Taking these two aspects into 
account, we can deduce that it is very hard to use this kind of machine learning model (with 
only one hidden layer) to establish the precise nonlinear mapping between the inputs and 
outputs. If we decrease the size of PSF images (in references [15–17]16 16× PSF images are 
used), then the capture range are restricted (generally a larger wavefront error corresponds to 
a PSF with a larger size). 

Recently, another type of model, the convolutional neural network (CNN), has been 
introduced to image-based wavefront sensing [18]. In machine learning, CNNs are a class of 
deep, feed-forward artificial neural networks which can directly consider a group of pixels 
rather than each pixel independently. A CNN consists of an input and an output layer, as well 
as multiple hidden layers, including convolutional layers, pooling layers, fully connected 
layers and normalization layers [20]. While CNN needs relatively little pre-processing and is 
independent from prior knowledge and human effort in feature design, an enormous amount 
of efforts are needed to train this multi-layer neural network with so much number of inputs. 
The training of multi-layer neural network suffers from a series of problems, such as 
vanishing gradient and exploding gradient [21,22]. The training result depends heavily on 
personal experience, since some parameters needed in the training process (such as the 
number of node in each layer and the learning rate) are determined by experience. On the 
other hand, the accuracy of CNN for image-based wavefront sensing is still not very high at 
present. We can see from Fig. 4 of reference [18] that the root-mean-square wavefront error 
(RMS WFE) values for wavefronts synthesized from CNN predicted coefficients compared to 
the true wavefront is about 0.2 waves (may be the emphasis in this reference is on capture 
range, not fitting accuracy). Besides, no experiment is performed to demonstrate its feasibility 
in practical environment. 

To greatly simply the structure of the neural network for machine learning while 
maintaining a good non-linear fitting accuracy, a feature-based method is proposed in contrast 
to the intensity-based methods mentioned above which directly deal with the gray-scale pixels 
of the PSF images. Specifically, the geometric features of a pair of PSF images (usually 
collected from in-focus and defocus image planes) are extracted to serve as the input of the 
neural network (no longer the intensities of pixels). This process of feature extraction can be 
seen as an effective compression of the PSF image data. Tchebichef moments, which are 
orthogonal in the discrete domain of the image coordinate space, are introduced as the 
geometric features [23–25]. The back-propagation artificial neural network, which is one of 
the most wide applied and easy implemented neural network models, is utilized as the 
nonlinear fitting tool [26,27]. Tchebichef moments can effectively characterize the intensity 
distribution of the PSF, and they do not involve numerical approximation of continuous 
integrals and coordinate space transformation. The back-propagation artificial neural network 
with Tchebichef moments serving as the input has a simple structure and is very convenient 
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to train. Once well trained, it can estimate the aberrations to a good precision with high 
efficiency and robustness (completely free of stagnation problem). The effectiveness and 
accuracy of this feature-based approach using machine learning is fully verified by 
experiment. Some other discussions concerning this approach are also presented. 

This paper is organized as follows. In Section 2, we introduce the principle of a wide-
applied machine learning tool, back-propagation artificial neural network. Then we continue 
to describe the Tchebichef moments and present the feature-based phase retrieval approach 
using machine learning in Section 3. Experimental validations and discussions on the 
proposed approach is presented in Section 4. In Section 5, we conclude the paper. 

2. Introduction of the back-propagation artificial neural network 
Artificial neural networks are one class of the most widely applied machine learning tools. 
They are computing systems made up of a number of simple, highly interconnected 
processing elements, which process information by their dynamic state response to external 
inputs. Such systems learn (progressively improve performance) to do tasks by considering 
examples, generally without task-specific programming. They have found most use in 
applications difficult to express in a traditional computer algorithm using rule-based 
programming. Neural networks have been widely applied in pattern recognition, intelligent 
control and some other areas. 

An artificial neural network contains a collection of connected units called artificial 
neurons, which is analogous to axons in a biological brain. Each connection (synapse) 
between neurons can transmit a signal to another neuron. The receiving (postsynaptic) neuron 
can process the signal(s) and then signal downstream neurons connected to it. Specifically, 
the output of a neuron, ky , can be expressed as 

 
1
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m
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i

y x w bϕ
=

 = − 
 
  (1) 

where ( )ϕ ⋅  is called activation (or transfer) function, m  is the number of the input neurons, 

ikw  is the weight for the ith input signal, ix , kb is the bias (or offset) which used to properly 

shift the results of this linear transformation. The purposes of the activation function are 
introducing nonlinearity to the neural networks and bounding the value of the neuron so that 
the neural network is not paralyzed by divergent neurons. A common example of activation 
function is the sigmoid (or logistic) function, which is shown in Eq. (2). 
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The mathematical model of an artificial neuron is illustrated in Fig. 1. 
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Fig. 1. The mathematical model of an artificial neuron. 

The process of adjusting the weights such that it can learn the appropriate mapping 
relations between the inputs and the outputs is called learning or training. The training begins 
with random weights, and the goal is to adjust them so that the error will be minimal. The 
back-propagation algorithm is one of the most widely used algorithms for training the neural 
networks. The sketch of back-propagation algorithm for a neural network with three layers is 
shown in Fig. 2, where each circular node represents an artificial neuron. 

The back-propagation algorithm can be divided into the following two steps: 

(1) Forward propagation of operating signal. The input signal is propagated from the 
input layer, via the hide layer, to the output layer. During this process, the weight 
and offset values of the network are maintained constant and the status of each layer 
of neuron will only exert an effect on that of next layer of neuron. 

(2) Back propagation of error signal. The error signal is propagated from the output end 
to the input layer in a layer-by-layer manner and the weights of network are 
regulated by the error feedback. The difference between the real output and expect 
output of the network is defined as the error signal. Continuous modification of 
weight and offset values will be applied to make the real output of network closer to 
the expected one. 

In this algorithm, gradient descent method is usually used to adjust the weight of each 
neuron according to the error between the current output and the desired output. Once the 
network is well trained, we can save the values of the weights and offsets of the network. 
Then we can use them to directly obtain a set of outputs when a set of inputs is available, 
without the need for any iterative computation or optimization process. Note that any 
supervised learning involves back-propagating error to correct weights. On the other hand, 
back-propagation is not unique to networks that are trained via supervised learning. The term 
“back-propagation neural network” in this paper indicates the neural networks are trained via 
supervised learning which includes back-propagating error in the model. 
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Fig. 2. Back-propagation algorithm for a neural network with three layers. 

3. Feature-based phase retrieval approach using machine learning 
In this section, we first introduce the discrete orthogonal Tchebichef moments which is use to 
represent the features of the PSF images and effectively compress the image data. Then the 
feature-based phase retrieval approach using artificial neural network as well as its 
application procedure are presented. 

3.1 Tchebichef moment features 

In this paper, the Tchebichef moments are introduced to extract or represent the features of 
the point spread functions (PSFs) at the in-focus and defocus image planes. Moments with 
orthogonal basis functions are powerful feature descriptors due to its property of minimal 
information redundancy in a moment set [25]. Compared to the other continuous orthogonal 
moments, such as Zernike and Legendre moments, Tchebichef moments which belong to the 
class of discrete orthogonal moments have several important advantages in feature 
representation. Specifically, they do not involve numerical approximation of continuous 
integrals and coordinate space transformation. Therefore, they have a higher feature 
representation capability [23,24]. 

The mathematical basis that leads to a definition for discrete orthogonal moments of an 

image intensity distribution are first presented below. If ( ){ }nt x  is a set of discrete 

orthogonal polynomials, i.e., it satisfies the following condition 
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1
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where , 0,1, 2, ..., 1,m n N= − and ( ),n Nρ  is the squared norm of the polynomial set ( ){ }nt x , 

then any bounded function ( ),f x y , { }0 , 1x y N≤ ≤ − , has the following polynomial 

representation 
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where the coefficients are given by 
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with , 0,1, 2, ..., 1.p q N= −  It can be recognized that if we define a discrete orthogonal 

moment functions as in Eq. (5) with ( ){ }nt x  as the basis set, then the image can be 

reconstructed from the moments according to Eq. (4). This indicates that discrete orthogonal 
moments can effectively represent the features of the intensity images and the original image 
data are effectively compressed. 

The classical discrete Tchebichef polynomials satisfy the property of orthogonality 
presented in Eq. (3), with 
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In this case, according to Eq. (3), ( ),n Nρ  can be obtained as 
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However, the value of ( )nt x grows as nN , and the value of the moment pqT grows as 
( )p qN − + , making it not suitable for feature representation. To solve this problem, the 

Tchebichef polynomials are usually scaled with a factor of nN , and ( ),n Nρ  are scaled with 

the factor of 2nN  correspondingly. In this case, there will not be large variations in the 
dynamic range of values of the moments computed with Eq. (5). 

It seems that the scaled Tchebichef polynomials presented above are very complicated to 
calculate and program. In effect, they can be conveniently calculated and programed with the 
following recurrence formula, 

 ( ) ( ) ( ) ( ) ( )
2

1 1 22

12 1 1
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     (8) 

where 2,3,..., 1,n N= −  and 

 ( )0 1,t x =  (9) 

 ( ) ( )1 2 1 / .t x x N N= + −  (10) 

Therefore, the discrete orthogonal Tchebichef moments not only have a superior capacity for 
image feature representation, but are very convenient for application. 

3.2 Feature-based phase retrieval approach 

The sketch map of the feature-based phase retrieval wavefront sensing approach is shown in 
Fig. 3. Specifically, the problem of phase retrieval wavefront sensing is converted to a 
feature-based nonlinear fitting problem. The discrete orthogonal Tchebichef moments are 
utilized to extract or represent the features of the point spread functions (PSFs) at the in-focus 
and defocus image planes. This feature extraction process can be seen as a data compression 
process, which can efficiently reduce the effective data. The two-dimensional intensity image 
data is converted to a one-dimensional feature vector. Then this feature vector is utilized as 
the input of the neural network, which is a powerful nonlinear fitting tool and can establish 
the nonlinear mapping between these image features and the corresponding wavefront 
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aberration coefficients. Compared to the conventional iterative phase retrieval approaches, 
this approach can directly output the aberration coefficients of the optical system without the 
need for the time-consuming iterative transformation or optimization process. Compared to 
the current intensity-based neural-network approaches, this feature-based approach has a far 
low computational load on the hardware. The neural network with the image features serving 
as the input has a simple structure and is very convenient to train and implement. 

 

Fig. 3. Sketch map of the feature-based phase retrieval wavefront sensing approach using 
machine learning. 

Note that in this approach, a pair of PSF images obtained at different focal planes are also 
needed, for the mathematical mapping from the set of all possible pupil phase screens to the 
set of all possible intensity distributions is a many-to-one mapping. Therefore, to invert this 
mapping and guarantee the uniqueness of the solution for wavefront phase, a pair of PSF 
images with a known defocus diversity between them are needed here. 

The application procedure of the feature-based phase retrieval wavefront sensing approach 
is presented below (also illustrated in Fig. 4): 

(1) Determine the system parameters needed in phase retrieval wavefront sensing, mainly 
including wavelength, aperture size, focal length, pixel size of the detector, and the 
defocusing length (used to obtain a pair of PSF images at different focal planes). The 
geometric of the pupil should also be precisely determined. These parameters are the 
premise for us to generate the data set needed for training the network. 

(2) Generate the data set for training the neural network under the specified system 
parameters. Specifically, within certain range of the wavefront aberration 
coefficients, a set of aberration coefficients is randomly introduced; a pair of in-
focus and defocus PSF images can be generated using this set of aberration 
coefficients according to the principle of Fourier optics. An error in the defocus 
distance is considered in this process to simulate the actual defocus error and a 
proper level of noise is introduced to the generated PSF images to simulate the 
practical noisy condition. After appropriate pretreatment, the discrete orthogonal 
Tchebichef moments of the pair of PSF images are extracted. The extracted features 
serve as one column of input matrix and the corresponding aberration coefficients 
serve as one column of the output matrix. This process is illustrated in Fig. 4. After a 
large number of the repetition of the above process, the input data set and output data 
set can be generated. 

(3) Properly select the number of neurons in each layer and train the neural network with 
the input data set and the corresponding output data set. 
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(4) Apply the trained neural network to determine the wavefront aberration coefficients 
with the PSF images actually collected from the optical system. Note that the image 
features should be extracted first before they can be handled with the neural network. 

While the pretreatment before feature extraction is not included in Fig. 4, this process 
should be taken seriously. The pretreatment mainly includes smooth de-noising, intensity 
normalization and sub-pixel translation. The purpose of intensity normalization is to make 
sure that the same wavefront aberration coefficients correspond to the same intensity 
distribution (such that it is not affected by the intensity of the light source). The purpose of 
sub-pixel image translation is to guarantee that the same wavefront aberration coefficients (do 
not include tip and tilt terms) correspond to the same position of the PSF in the image (in 
other words, the effects of tip-tilt terms on the position of the PSF in the image should be 
eliminated). These two aspects are important for guaranteeing the accuracy of the nonlinear 
mapping between the aberration coefficients and the PSF intensity distribution established by 
the neural network. 

 

Fig. 4. Application procedure of the feature-based phase retrieval wavefront sensing approach 
using machine learning. 

4. Experimental validation 
In this section, an experiment will be performed to validate the effectiveness of the proposed 
approach. We first introduce the experimental setup and obtain a suitable neural network 
which takes into consideration the image noise and the error in the defocus distance. The 
training result can also show the non-linear fitting accuracy of the neural network. Then we 
apply the neural network to the collected PSF images and recover the wavefront aberrations. 
The accuracy of the experimental results are demonstrated and analyzed. Besides, some other 
discussions concerning the contradiction between the accuracy and capture range of the 
proposed approach are also presented. 

4.1 Experimental setup and obtain of the neural network 

The sketch and physical map of the optical system used in the experiment are shown in Fig. 
5(a) and Fig. 5(b), respectively. The interferometer (PhaseCam 4020) in Fig. 5 performs two 
major roles. On one hand, it can directly measure the aberrations of the optical system which 
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is composed only by one lens (the aberrations of this system are introduced by slightly tilting 
or translating the lens (while the aperture stop stays unchanged) so that an off-axis field is 
used). The results of interferometer will be compared to results of the proposed approach to 
demonstrate the accuracy of the proposed approach. On the other hand, the focus of 
interferometer is used to serve as point light source. The beam passes through the system two 
times and a PSF can be obtained at the detector. By using the one-dimensional precision 
translation stage we can obtain a pair of PSFs with a known defocus diversity between them. 
The focal length of the lens is 180mm, the diameter of the aperture stop is 8.5mm, the defocus 
distance is 2mm, the wave length is 0.6328μm, and the pixel size of the detector is 5.5μm. 

 

Fig. 5. The sketch (a) and physical map (b) of the optical system used in the experiment. 

Then we will obtain a proper neural network for recovering the wavefront of the 
experimental optical system. To this end, 100000 sets of aberration coefficients (4th~9th 
Fringe Zernike coefficients corresponding to focus, astigmatism, coma and spherical 
aberration) are randomly generated in certain ranges which are shown in Table 1. These 
aberration coefficients constitute the output data set. The aberration ranges in Table 1 are 
partly determined according to the aberration property of the optical system used in the 
experiment. 100000 pairs of PSF images are computed with the specified optical parameters 
of the system according to Fourier optics. Meanwhile, an error in the defocus distance within 
the range of [-0.1mm, 0.1mm] is considered in this experiment. A noise level of 50dB is 
added to the PSF images to simulate the practical noisy condition. The low order 
( , 0,1,2,3,4p q = ) Tchebichef moments of each pair of PSF images are extracted, which 

constitute the input data set. Then the neural network can easily be trained using the neural 
network fitting tool of Matlab (the number of nodes in the hidden layer is selected as 30). In 
this process, the data set is separated into three parts, i.e., training set, validation set and test 
set. The training set is used for learning, which is to fit the weights of the network; the 
validation set is used for tuning the final architecture of the network; the test set is only used 
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for asses the performance of the network. The ratio between them in this work is 40%: 30%: 
30% (i.e. 40000 sets for training, 30000 sets for validation, and 30000 sets for test). 

Table 1. Ranges of different aberration coefficients for generating the data set 

Coefficient C4 C5 C6 C7 C8 C9 
Range [-0.5,0.5] [-0.7,0.7] [-0.7,0.7] [-0.3,0.3] [-0.3,0.3] [-0.1,0.1] 

These Fringe Zernike coefficients are in λ ( 632.8nmλ =  

The training result is shown in Fig. 6, which provides the distribution of the error between 
the targets and the actual outputs of the network in the form of histogram. We can roughly 
recognize that for most of the cases the fitting error is within 0.025 waves. More specifically, 
the root mean square errors between the targets and outputs of the network in the training set, 
validation set and testing set are 0.0088 waves, 0.0089 waves, and 0.0089 waves, respectively 
(the mean squared errors between the targets and outputs are 7.75e-5, 7.94e-5, and 7.87e-5, 
respectively). This partly demonstrates the accuracy of the neural network with Tchebichef 
moment features serving as the input in the presence of image noise and the error in defocus 
distance. 

 

Fig. 6. Distribution of the error between the targets and the actual outputs of the network in the 
form of histogram in the presence of image noise and the error in the defocus distance. 

4.2 Application of the neural network and result analysis 

Then we will apply the obtained neural network to the real PSF images collected from the 
experimental optical system. After proper pretreatment mentioned in Section 3, the 
Tchebichef moments of the PSF images are extracted, which will serve as the input. The 
neural network can directly output the aberration coefficients of optical system corresponding 
to each pair of PSF images. 

The effectiveness of the proposed approach is validated using the following two methods. 
On one hand, we use the recovered aberration coefficients to re-generate a pair of PSF images 
(in-focus image and defocus image) according to Fourier optics. The effectiveness of the 
proposed approach can be qualitatively validated by comparing this pair of generated PSF 
images with those real PSF images collected from the optical system. In this experiment, we 
collect 20 pairs of PSF images, and 20 sets of aberration coefficients are obtained with the 
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proposed approach. Then 20 pairs of PSF images are regenerated. The comparison between 
the collected PSF images and regenerated PSF images is shown in Fig. 7. 

 

Fig. 7. Comparison between the 20 pairs of real PSF images and the 20 pairs of regenerated 
PSF images. In each of the 20 images in this figure, the upper two PSFs are collected form the 
optical system (at different focal planes) and the two PSF images below are generated with the 
recovered aberration coefficients. We can recognize that the regenerated PSF images bear 
strong similarities with those real collected, which qualitatively demonstrate the accuracy of 
the recovered aberration coefficients. 
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Table 2. Comparison between the astigmatic (C5/C6) and coma (C7/C8) aberration 
coefficients measured by interferometer (A) and those recovered using the proposed 

approach (B) 

Index Type C5 C6 C7 C8 Mean Error 

1 
A 0.4095 0.0206 -0.0311 0.0007 

0.0214 
B 0.3741 0.0068 -0.0114 0.0002 

2 
A -0.3593 -0.0282 -0.1206 0.0283 

0.0333 
B -0.4156 -0.0064 -0.0982 0.0115 

3 
A -0.5594 -0.0379 -0.1039 0.0106 

0.0176 
B -0.5382 -0.0306 -0.1110 -0.0157 

4 
A -0.1025 -0.0277 -0.0752  0.0061 

0.0233 
B -0.0873  -0.0488 -0.0380  -0.0046 

5 
A 0.1147 -0.0230 0.0661 0.0021 

0.0241 
B 0.0727 -0.0381 0.0507 -0.0075 

6 
A -0.3747 0.0339 0.0487 -0.0019 

0.0204 
B -0.3541 0.0080 0.0585 -0.0236 

7 
A -0.5887 0.0464 0.0993 0.0038 

0.0291 
B -0.5482 0.0309 0.1123 -0.0327 

8 
A 0.6683 -0.0535 0.1154 -0.0075 

0.0301 
B 0.6206 -0.0624 0.1510 -0.0112 

9 
A 0.4222 -0.0926 -0.0993 0.0174 

0.0413 
B 0.3409 -0.0912 -0.0855 0.0145 

10 
A 0.2765     0.1906  0.0682     0.0485 

0.0432 
B 0.2122 0.1381 0.0764 0.0263 

11 
A 0.2189     0.2851     0.0759     0.0594 

0.0506 
B 0.1567 0.2103 0.0889 0.0348 

12 
A -0.0929  0.4374     0.0954     0.0730 

0.0500 
B -0.0615 0.3436 0.0927 0.0580 

13 
A 0.2273  -0.2208     0.0704    -0.0460 

0.0244 
B 0.1819 -0.2204 0.087 -0.0398 

14 
A 0.1768   -0.3173     0.0638   -0.0637 

0.0137 
B 0.1538 -0.3269 0.0577 -0.0539 

15 
A -0.0505    -0.6406     0.0641    -0.1176 

0.0241 
B -0.0740 -0.6062 0.0832 -0.1024 

16 
A -0.1815   -0.7597     0.0776    -0.1459 

0.0536 
B -0.1924 -0.6551 0.0868 -0.1645 

17 
A 0.4486 -0.0006 -0.0875 0.0127 

0.0413 
B 0.3679 -0.0103 -0.0752 0.0039 

18 
A 0.4360 -0.2481 -0.1095 0.0206 

0.0283 
B 0.3909 -0.2436 -0.1027 0.0537 

19 
A 0.3914 0.2134 -0.1043 -0.0144 

0.0157 
B 0.3715 0.2002 -0.0869 -0.0253 

20 
A 0.4314 -0.1113 -0.0851 0.0357 

0.0301 
B 0.4507 -0.1260 -0.1399 0.0419 

 
In Fig. 7, there are 20 images, and each image includes the collected in-focus (up-left) and 

defocus (up-right) PSF images as well as the generated in-focus (down-left) and defocus 
(down-right) PSF images. We can easily recognize that the collected PSF images bear strong 
similarities with those regenerated PSF images, which can qualitatively validate the 
effectiveness of the proposed approach. 
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On the other hand, the interferometer can also directly measure the wavefront of the 
optical system, the result of which will serve as the reference data to quantitatively evaluate 
the accuracy of the neural network. Note that the focus of the interferometer and the detector 
used to collect PSF images are generally located at different axial positions (or focal planes), 
and therefore the interferometer cannot validate the accuracy of those rotationally symmetric 
aberrations (focus and spherical aberration) which are sensitive to axial position. However, 
the non-rotationally symmetric aberrations (astigmatism and coma) are not sensitive to this 
position (the non-path error induced by the splitter should be considered and calibrated in 
advance). The comparison between the astigmatism (C5/C6) and coma (C7/C8) measured by 
interferometer and those recovered using the proposed approach (corresponding to the 20 
pairs of PSF images in Fig. 7) are shown in Table 2. 

In Table 2, for a better shown of the accuracy of the proposed approach, if the deviation 
between the 4 measured coefficients and recovered coefficients is larger than 0.03 waves, we 
mark it with red color and if the deviation is larger than 0.05 waves, we further make it in 
bold. We can see that for most cases the error of each recovered coefficient is smaller than 
0.03 waves. Besides, “Mean Error” represents the root mean square error between the 4 
measured coefficients using interferometer and the 4 recovered coefficients using the 
proposed approach. The average value of the “Mean Error” for the 20 sets of experiment is 
0.031 waves, which can definitely demonstrate the effectiveness and accuracy of the proposed 
approach. 

We should also explain why the magnitude of C8 is usually smaller than C7 in the 
experiment. The optical system is composed by only one lens and an aperture stop. This lens 
can be decentered in two directions while it can only be tilted in one direction (only the 
azimuth angle can be adjusted and pitching angle cannot be adjusted) in this experiment. The 
coma of the system is sensitive to the tilt of the lens and the change of azimuth angle mainly 
introduces a coma in x direction which corresponds to 7th Fringe Zernike coefficients. The 
decenter of lens relative to the aperture stop can introduce a coma in y direction. On the other 
hand, the training of neural network does not take this fact into consideration and there are 
several cases which have a relatively large coma in y direction (15th and 16th experiment in 
Table 2). Therefore, the experiment is enough for us to validate the effectiveness of the 
proposed approach. 

4.3 Other discussions 

This subsection further presents some discussions concerning the contradiction between the 
accuracy and capture range of the proposed approach. We can see from Table 2 that the 
accuracy of the recovered coma aberration coefficients (C7/C8) is higher than the recovered 
astigmatic aberration coefficients (C5/C6). The main reason for this is that the range of 
astigmatism considered in Table 1 is larger than the range of coma. A larger capture range 
can generally means a sacrifice in non-linear fitting accuracy. 

Here we will present some suitable simulations to demonstrate this statement. Another 
case with smaller ranges of aberration coefficients (C4-C9) are considered, which are shown 
in Table 3. 

Table 3. Another case with a different range of aberration coefficients 

Coefficient C4 C5 C6 C7 C8 C9 
Range [-0.25,0.25] [-0.35,0.35] [-0.35,0.35] [-0.15,0.15] [-0.15,0.15] [-0.1,0.1] 

These Fringe Zernike coefficients are in λ ( 632.8nmλ = ) 

For this case, 100000 sets of aberration coefficients are randomly generated for training 
the neural network, as mentioned before. Apart from the range of aberration coefficients, 
other conditions are the same for these two cases (those shown in Table 1 and Table 3), 
including the noise level and range of error in defocus distance. We can then obtain another 
neural network corresponding to this case, and the fitting error of each network can be 
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illustrated with a histogram, which shows the error distribution in detail. The result is shown 
in Fig. 8. 

 

Fig. 8. Distribution of the error between the targets and the actual outputs of the network in the 
form of histogram for the case shown in Table 3. 

We can recognize that the fitting error shown in Fig. 8 is much smaller than that shown in 
Fig. 6. Specifically, the root mean square errors between the targets and outputs of the 
network in the training set, validation set and testing set are 0.0053 waves, 0.0054 waves, and 
0.0054 waves, respectively (the mean squared errors between the targets and outputs are 
2.82e-5, 2.87e-5, and 2.89e-5, respectively). Besides, we will also apply this new neural 
network to the images obtained in the experiment to further demonstrate its accuracy in 
practical condition. The 4th, 5th, 10th, 11th, and 13th sets of PSF images in Table 2 are used 
here, for these cases are within the capture range of the new neural network (shown in Table 
3). The results are shown in Table 4, where the line C represents the recovered aberration 
coefficients with the new network. 

Table 4. Demonstration for accuracy of the new neural network with a smaller capture 
range 

Index Type C5 C6 C7 C8 Mean error 

4 
A −0.1025 −0.0277 −0.0752 0.0061 

0.0151 
C −0.0820 −0.0202 −0.0871 0.0233 

5 
A 0.1147 −0.0230 0.0661 0.0021 

0.0233 
C 0.0912 −0.0291 0.0308 0.0204 

10 
A 0.2765 0.1906 0.0682 0.0485 

0.0218 
C 0.2496 0.1768 0.0464 0.0712 

11 
A 0.2189 0.2851 0.0759 0.0594 

0.0168 
C 0.1898 0.2729 0.0648 0.0617 

13 
A 0.2273 −0.2208 0.0704 −0.0460 

0.0191 
C 0.2056 −0.2151 0.0962 −0.0625 

The Fringe Zernike coefficients (C5~C8) are in λ ( 632.8nmλ = ) 

Comparing Table 4 with the corresponding cases in Table 2, we can recognize a parent 
decrease in “Mean Error”. Besides, the magnitude of this decrease is much larger than the 
deviation between Fig. 8 and Fig. 6 (these two figures are obtained through software 
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simulation), which further indicates that the new trained network is more robust to non-ideal 
practical measurement environment for those cases within its capture range. 

On the other hand, while the new trained neural network (with a smaller capture range) is 
more accurate for those cases within its capture range, the accuracy of it may decrease to a 
large extent for those cases that go beyond its capture range. The results of applying the new 
neural network to several cases in Table 2 beyond its capture range (the 2th, 3th, 7th, 8th, 
15th, 16th, 17th, 18th, 19th, and 20th cases) are shown in Table 5. We can draw the following 
conclusions from Table 5: 

(1) On one hand, the new neural network still has the ability of recovering the aberration 
coefficients for the cases beyond its capture range (defined by Table 3). We can see 
that the network can still output a rough solution for the cases in Table 5. 

(2) On the other hand, the accuracy of the network can no longer be guaranteed for the 
cases beyond its capture range. It appears to vary considerably among these 
individual cases. On the whole, this accuracy shown in Table 5 is much lower than 
that shown in Table 2. 

Table 5. The results of applying the new neural network to some cases beyond its capture 
range 

Index Type C5 C6 C7 C8 Mean Error 

2 
A -0.3593 −0.0282 -0.1206 0.0283 

0.0389 
C -0.4105 −0.0141 -0.1759 0.0153 

3 
A -0.5594 −0.0379 −0.1039 0.0106 

0.0376 
C -0.4981 −0.0184 −0.1397 −0.0045 

7 
A -0.5887 0.0464 0.0993 0.0038 

0.0585 
C -0.4962 0.0912 0.0489 −0.0207 

8 
A 0.6683 −0.0535 0.1154 -0.0075 

0.0443 
C 0.6100 −0.0340 0.1548 -0.0576 

15 
A −0.0505 -0.6406 0.0641 −0.1176 

0.0487 
C −0.0279 -0.7000 0.0069 −0.1642 

16 
A −0.1815 -0.7597 0.0776 -0.1459 

0.0823 
C −0.1566 -0.6521 0.0369 -0.2611 

17 
A 0.4486 −0.0006 -0.0875 0.0127 

0.1358 
C 0.4270 −0.0131 0.1601 0.1213 

18 
A 0.4360 -0.2481 -0.1095 0.0206 

0.1943 
C 0.2754 -0.1960 0.2115 0.1603 

19 
A 0.3914 0.2134 −0.1043 -0.0144 

0.0429 
C 0.4235 0.2521 −0.0622 0.0409 

20 
A 0.4314 −0.1113 −0.0851 0.0357 

0.0222 
C 0.4094 −0.1305 −0.0542 0.0483 

The Fringe Zernike coefficients (C5~C8) are in λ ( 632.8nmλ = ). 

Therefore, we can see that there is a contradiction here between the capture range and 
accuracy of the neural network, i.e., to guarantee the robustness of the neural network and 
avoid the cases where the actual wavefront errors go beyond the capture range, we should 
increase the specified ranges of the aberration coefficients for training the neural network, 
while this can decrease the fitting accuracy of it. 

One possible solution to this contradiction is using two kinds of neural network, one for 
rough classification, and another one kind for fine fitting. Specifically, on one hand, we can 
use a neural network with a very large capture range to determine the rough RMS error and 
the dominant kind of aberrations for a certain case. On the other hand, we can train a series of 
neural networks corresponding to different ranges of RMS error or different kinds of the 
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dominant aberrations, and then we select a proper one for fine fitting according to the result 
of rough classification. 

5. Conclusion 
This paper proposes a novel phase retrieval mechanism using machine learning, where the 
phase retrieval problem is converted to a feature-based nonlinear fitting problem. The discrete 
orthogonal Tchebichef moments which do not involve numerical approximation of 
continuous integrals and coordinate space transformation are introduced to extract the 
features of the in-focus and defocus PSF images. Then the back-propagation neural network 
is utilized as the nonlinear fitting tool to establish the input-output mapping between the 
image features and the wavefront aberration coefficients of the optical system. Once well 
trained, the neural network can directly output the aberration coefficients of the optical 
system to a good precision with these image features serving as the input. Compared to the 
conventional iterative phase retrieval approaches, this feature-based approach is lower in 
computational load and higher in efficiency and robustness (free of stagnation problem). 
Compared to the current intensity-based phase retrieval approaches using machine learning 
which are complicated in structure and very hard to train, this feature-based approach is more 
convenient to train and more practical to use for average researchers in the area of optics. 
Besides, adequate experiments are implemented to demonstrate the effectiveness and 
accuracy of proposed approach while the current image-based wavefront sensing methods 
using machine learning are lacking in experimental validation. 

While the accuracy of this feature-based approach may be still a little lower than the 
conventional iterative phase retrieval approaches, it is acceptable for general cases. On the 
other hand, considering that the traditional iterative phase retrieval approaches are susceptible 
to the stagnation problem, especially when a bad initial value is selected, this feature-based 
approach can be used for providing a perfect initial value for the traditional iterative 
approaches, and a more accurate result can then be obtained easily. Besides, we point out and 
discuss the contradiction between the capture range and fitting accuracy of the proposed 
method. We also propose a possible solution to this problem, which is our future work. 

This work presents a feasible and easy-implemented way to improve the efficiency and 
robustness of the phase retrieval wavefront sensing and contributes to the application of 
machine learning methods to the area of image-based wavefront sensing. 
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