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Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach
optimum results, such systems require an efficient correction method. This paper presents a fast wavefront cor-
rection approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast
closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deform-
able mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm
combined with the influence function of the DM. A large number of phase screens under different turbulence
strengths are simulated to test the performance of the proposed method. The numerical simulation results show
that the method has fast convergence rate and strong correction ability, a few correction times can achieve
good correction results, and can effectively improve the imaging quality of the system while needing fewer
measurements of CCD data. © 2018 Optical Society of America

OCIS codes: (110.1080) Active or adaptive optics; (220.1000) Aberration compensation; (110.0115) Imaging through turbulent

media; (010.7350) Wave-front sensing.

https://doi.org/10.1364/AO.57.001650

1. INTRODUCTION

Conventional adaptive optics (AO) systems usually utilize a
wavefront sensor to detect the distorted wavefront phase infor-
mation and a wavefront corrector such as a deformable mirror
(DM) to correct the incoming aberrated wavefront [1,2]. The
Shack–Hartmann wavefront sensor is widely used in conven-
tional AO systems due to its fast speed and high precision.
However, with the extension of AO application fields, such
as free-space optical communication, extended target imaging,
laser cavity aberration correction, and non-coherent beam
imaging [3,4], the ability of conventional adaptive optics is
gradually limited; wavefront sensorless (WFSless) AO technol-
ogy has become a research hotspot.

The WFSless AO system directly takes the control signal
required by the wavefront corrector as the optimization param-
eters and the system performance index, such as imaging clarity
or receiving light energy, as the objective function of the control
algorithm, and then obtains the ideal correction results by
optimization methods. For now, the WFSless AO system
can be divided into non-model algorithm systems or model-
based algorithm systems according to different optimization
methods. The non-model-based system takes the various blind

optimization algorithms, such as the stochastic parallel gradient
descent algorithm [5,6], simulated annealing [7], genetic algo-
rithm [8], and hill-climbing algorithm [9], as the system con-
trol algorithm in contrast to the model-based system. The slow
convergence speed is the largest defect of the non-model AO
system. The model-based WFSless AO system first establishes a
system model based on certain principles, such as the model
method [10,11], the non-linear optimization method [12],
or the geometrical optics principle [13], then determines to take
the corresponding system control algorithm. It has a relatively
fast convergence rate, but needs to define different types of
basis functions or establish the non-linear equation model
for input and output of the system and clear out the system
aberration before correction.

In order to reach optimum results for the WFSless AO sys-
tem, an efficient correction method is needed. This paper
presents a fast wavefront correction method for the WFSless
AO system based on the linear phase diversity (PD) technique.
It mainly focuses on establishing the linear analytic model be-
tween the far-field distortion images obtained by CCD cameras
and the drive voltage of the DM to realize the fast wavefront
correction. The paper is organized as follows. In Section 2, we
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give the structure of the WFSless AO system and briefly intro-
duce the working principle of the method. The detailed closed-
loop control algorithm and correction process are presented in
Section 3. A large number of simulations are performed in
Section 4 to verify the convergence speed and the correction
ability of the proposed method. In the last section, we summa-
rize our work and give the conclusion.

2. SYSTEM STRUCTURE AND WORKING
PRINCIPLE

The structure of the WFSless AO system based on the linear
PD technique is shown in Fig. 1. It consists of a host control
computer, a DM, an imaging system, a linear PD algorithm
module, and a wavefront corrector drive control circuit module.
Since the PD algorithm needs a pair of simultaneously collected
images to reconstruct the wavefront [14,15], it is necessary to
add an extra camera to the imaging system to acquire the other
out-of-focus image. Therefore, the imaging system is composed
of a beam splitter prism, two imaging lenses, and two CCD
cameras, which are used to collect the distorted images in
the focal plane and out-of-focal plane, respectively.

When it works, the wavefront to be corrected is reflected to
the beam splitter prism by the DM, and the beam splitter prism
divides it into two beams, and then the imaging lens focuses
them into their respective CCD cameras. The images in the
focal plane and out-of-focal plane obtained by the CCD cam-
eras are collected to the host control computer by the image
acquisition card in high speed. Based on the linear PD algo-
rithm and combined with the influence function of the DM,
the linear relationship model of the far-field images and drive
voltage of the wavefront corrector is established in advance.
Then the corresponding drive control voltage is directly com-
puted according to the established linear relationship model
and output the control computer. The drive circuit applies
the output voltage to the DM to generate the compensation
amount for the aberrated wavefront, then the fast wavefront
correction is realized and the ideal imaging effect can be
obtained in the end.

3. CLOSED-LOOP CONTROL ALGORITHM

When the incident beam is not ideal, the image acquired by the
imaging system is distorted, which contains the wavefront
aberration information. The PD algorithm is the kind of tech-
nology that utilizes the far-field images to reconstruct the wave-
front. In our work, a fast closed-loop algorithm is proposed
based on the linear PD technology and combined with the in-
fluence function of the DM. The overall closed-loop control
flow chart is shown in Fig. 2, which mainly includes the
DM module and linear PD algorithm module. The DM mod-
ule is about establishing the linear relationship between the
wavefront aberration and the drive voltage of the wavefront
corrector, and the linear PD algorithm module focuses on
constructing the linear analytic model between the far-field
images and the drive voltage based on the DM module.
The following part will give a detailed description for the pro-
posed closed-loop control algorithm mainly based on these two
modules.

A. DM Module
According to the working principle of the wavefront corrector,
the shape change of the DM can be expressed by the linear
combination of each actuator’s influence function, shown in
Eq. (1):

Δϕ�r� �
XN

i

uiSi�r�; (1)

where Si�r� is the influence function of the ith actuator, ui is
the drive voltage applied to the ith actuator, Δϕ�r� denotes the
deformation amount of the mirror, and N is the number of
actuators. In our simulation, a 140-element DM is used and

Fig. 1. Block diagram of WFSless AO system based on linear PD
technique.

Fig. 2. Overall flow chart of the closed-loop control algorithm.
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the influence function of each actuator of the DM can be mea-
sured by a ZYGO interferometer.

Meanwhile, the wavefront can be fitted by Zernike polyno-
mials, so the shape change of the DM can also be expressed as
Eq. (2):

Δϕ�r� �
XM

j

αjZ j�r�; (2)

where M is the number of the Zernike order, and αj is the jth
order Zernike coefficient.

In order to establish the relationship between the influence
function of the DM and the Zernike polynomial, each actua-
tor’s influence function can be written in the form of Zernike
polynomials, shown as Eq. (3):

Si�r� �
XM

j

αijZ j�r�; (3)

where αij is the jth order Zernike coefficient of the ith actua-
tor’s influence function.

Combining Eq. (1) with Eq. (3) and taking the result into
Eq. (2), we get the following equation:

XM

j

αjZ j�r� �
XN

i

XM

j

uiαijZ j�r�: (4)

Getting rid of Z j�r� on both sides of Eq. (4) and writing the
result in matrix form, we get Eq. (5):

α � Czv • u; (5)

where Czv denotes the correlation matrix between the influence
function and Zernike coefficients, u represents the drive voltage
matrix of the DM, α represents the Zernike aberration
coefficient matrix, and • represents a matrix multiplication;
see [16,17].

Thus, the linear relationship model of the drive voltage
of the DM and wavefront aberration coefficients can be
established directly, shown as Eq. (6):

u � C†
zv • α; (6)

where •† stands for the pseudoinverse of the matrix. It can be
seen from Eq. (6) that the variables to be solved have been
transferred from the Zernike coefficients directly to the DM
driver control voltage. As the DM is determined, the above
matrices are prior known quantities and can be saved as
known matrices to be used directly during the wavefront
corrections in the later.

B. Linearized PD Algorithm Module
The PD technique uses the images in the focal and the out-
of-focal planes to calculate the wavefront aberrations. Based
on the Fourier optical imaging principle, the images in the
focal and the out-of-focal planes can be gained by Eq. (7):

if �u; v� � o � psf f �u; v� � n�u; v�;
id �u; v� � o � psf d �u; v� � n�u; v�; (7)

where if and id are the images in the focal and the out-of-focal
planes, respectively; o stands for the observation target; psff
and psfd represent point spread function (PSF) of the focal

and the out-of-focal channels, respectively; n�u; v� is the noise
term of the CCD camera; and � represents convolution
operation. The image obtained on the far-field imaging plane
can be simplified as the PSF of the system when the observation
target is the non-extended target, such as the point source.

According to the Fourier optics principle, the relationship
between the system PSF and the incident wavefront phase
can be expressed by Eq. (8):

psf �u; v� � jI�A exp�iϕ�r���j2; (8)

where I stands for the Fourier transform operation, A
represents the pupil shape function, ϕ�r� is the phase of
the incident beam which is fitted by Zernike polynomials
ϕ�r� � PM

i αiZ i�r�, and α stands for the Zernike coefficients.
The system PSF can be linearly approximated based on the

first-order Taylor expansion at 0 aberration, shown in Eq. (9):

psf �α� � h0 � h1 · α� Okαk2; (9)

where h0 � psf �α�jα�0, h1 � ∂psf
∂α jα�0

, and Okαk2 is the
second-order Lagrange residue. When the phase is very small,
the second-order residue can be ignored.

Based on the least-squares principle, a cost function can be
constructed utilizing the difference between the actual spot im-
ages obtained by the CCD cameras and that we rebuilt by linear
approximation; the smaller the difference is, the more accurate
the rebuilt wavefront aberration is [15]. In order to suppress the
influence of CCD camera noise on the accuracy of wavefront
reconstruction, we introduce a Tikhonov regularization model
to optimize the cost function at the same time. Then the final
constructed cost function is given in Eq. (10):

E � kpsf f �α� − if k22 � kpsf d �α� − idk22 � λkLiαk22; (10)

where λkLiαk22 is the introduced Tikhonov regularization
parameter term, λ is the non-negative regularization parameter
related with CCD noise, and Li is the ith differential operator.

Taking the linearized PSFs of the focal and out-of-focal
planes to Eq. (10) and ignoring the second-order residue,
we get

E �kh1;f ·α� h0;f − if k22�kh1;d ·α� h0;d − idk22� λkLiαk22;
(11)

where h0;f and h1;f are the h0 and h1 of the focal plane, and h0;d
and h1;d are the h0 and h1 of the out-of-focal plane, respectively.

In order to find the minimum value of the cost function we
make ∂E∕∂α � 0; the calculation result is shown in Eq. (12):

UT
1 U 1α − UT

1 W 1 � UT
2 U 2α − UT

2 W 2 � λLTi Liα � 0;
(12)

among which, U 1 � h1;f , U 2 � h1;d , W 1 � if − h0;f ,
and W 2 � id − h0;d .

Using the least-square method to solve Eq. (12), the wave-
front aberration of the system can be obtained:

α̂ � �R�UT
1 U 1 �UT

2 U 2 � λLTi Li��†�R�UT
1 W 1 �UT

2 W 2��;
(13)

where R represents the real part operator, •† is the generalized
inverse of a matrix, and •T denotes the matrix transposition.
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Simplifying Eq. (13) into matrix form, we get the linear
relationship model between aberrations and acquired images
in Eq. (14):

α̂ � H • �iTf ; iTd �: (14)

Combined with Eq. (6), a direct linear relationship between
the acquired images and the drive voltage of the DM can be
established, as shown in Eq. (15):

u � C†
zv •H • �iTf ; iTd �: (15)

Let D � C†
zv •H, the above formula can be finally

written as

u � D • �iTf ; iTd �; (16)

where D is our proposed image-voltage matrix. Thus, we
can directly output the drive voltage of the DM by the input
distorted far-field images of the system.

C. Correction Process of the Control Algorithm
The correction process of the control algorithm can be divided
into the preprocessing step and the iteration step. The prepro-
cessing step includes two parts: calculating the correlation
matrix between the influence function and Zernike coefficients
Czv by fitting the influence function of each actuator using
Zernike polynomials, and computing the PSFs of the focal
plane and the out-of-focal plane and their corresponding first
derivative values at 0 aberration. Since all these values are in-
dependent of the system wavefront aberration to be corrected,
they can be precalculated and saved as known matrices to be
called directly during the subsequent calibrations.

Based on the preprocessing step, the iteration step is carried
out as below. According to Eq. (16), the initial correction voltage
u0 can be obtained directly using the spot images captured in the
focal plane and the out-of-focal plane for the first time. Then
drive the DM to generate the compensation wavefront u0�r�,
and the corrected residual wavefront is ϕ1�r� � ϕ0�r� − u0�r�,
where ϕ0�r� stands for the original wavefront. Then, we acquire
the spot images after correction again as the new pair of far-field
images, and repeat the above steps to get a new correction voltage
and drive the DM to correct the residual aberration repeatedly.
Supposing that the kth correction voltage is uk and the corre-
sponding compensation wavefront is uk�r�, then the residual
wavefront after kth correction is ϕk�1�r� � ϕk�r� − uk�r�.
When the calculated drive voltage approaches zero, the
wavefront closed-loop correction process is finished.

The reason that our method takes a few iterations to correct
the wavefront is that we ignore the second-order Lagrange res-
idue in Eq. (9) in order to establish the linear model in Eq. (13),
while the neglect is only allowed when the phase is small. This
leads to the calculated u�r� having a relatively large deviation
from the actual wavefront, and thus iterative wavefront correc-
tion is needed. It should be noted that, in our work, it is as-
sumed that the DM can generate the aberration compensation
amount very fast and can completely correct the aberration;
meanwhile, the CCD camera can complete the image acquis-
ition in high speed, and all the required matrix information
has been calculated in advance. Thus, the time overhead is only
cost on solving the drive voltage by the images. Although

iterative correction is required, each iteration is directly calcu-
lated by the analytical matrix, so the algorithm is quite fast.

4. SIMULATION RESULTS AND ANALYSIS

In our simulation experiment, the Kolmogorov model [18] is
used to simulate the phase screens of the atmospheric turbu-
lence. The phase is composed by 3rd–21st-order Zernike poly-
nomials, and there is no correlation between different phase
screens. The magnitude of turbulence strengths is indicated
by D∕r0, where D represents the optical system caliber and
r0 is for atmospheric coherence length. The larger the value
ofD∕r0, the worse the atmospheric conditions and the stronger
the strengths of atmospheric turbulence. The relevant param-
eters of the optical system in the simulation experiment are as
follows. The diameter of the optical system is 2m, the F # of the
system is 14, the size of the CCD pixel is 8 μm, the sampling
grid of the image plane is 64 × 64, and the number of sampling
grids of the pupil plane is 32 × 32 to satisfy the Nyquist sam-
pling criterion. The noise of the CCD camera is 10 dB, and the
defocus distance is set as 1 mm. The host control computer we
used is Intel Core i7-4790K, and the frequency is 4.00 GHz.
Different values of atmospheric coherence length are generated
to simulate the atmospheric turbulence of different strengths.
Here we choose three situations: r0 � 10 cm, r0 � 15 cm,
and r0 � 20 cm, respectively. Then, the corresponding values
of D∕r0 are 20, 13, and 10, respectively.

Figure 3 shows the wavefront variations under the three
atmospheric turbulence strengths with respect to the number
of correction steps during the calibration process. The detailed
wavefront RMS variation values are given in Table 1. It can be
seen that when D∕r0 � 20, the wavefront aberration was
corrected from 0.6764λ RMS to 0.0098λ RMS by driving the
DM seven times through the closed-loop algorithm. When
D∕r0 � 13, after five adjustments of the DM, the wavefront
aberration was corrected from 0.4959λ RMS to 0.0031λ RMS.
When D∕r0 � 10, the wavefront aberration was corrected
from 0.3229λ RMS to 0.0011λ RMS after only four times
adjustment.

In order to test the effectiveness and validity of the closed-
loop algorithm, under the three coherence lengths of atmos-
phere, we repeat 128 experiments for each situation to generate
384 sets of wavefront aberrations in total randomly. The stat-
istical results are shown in Fig. 4, given in the form of error
bars. The RMS of residual wavefront aberration after correction
is used as an evaluation standard. The smaller residual error, the
better the correction effect. For each error bar, the middle part
represents the statistical mean value, the edge represents the
maximum and minimum values after the outliers are discarded,
and the value greater than or equal to twice the original mean
value is defined as the outliers. In Fig. 4, the statistical results of
the residual aberrations varying with the correction steps are
given. WhenD∕r0 � 20, the mean value of residual aberration
is approaching 0 after 6–7 times closed-loop correction; when
D∕r0 � 13, most aberrations can be completely corrected after
4–5 iterations; when D∕r0 � 10, after 3–4 times of correction,
the mean value of residual aberration is close to 0. The appear-
ance of the outliers is due to the fact that the randomly gen-
erated wavefront aberrations are too large to be completely
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corrected in seven calibrations and need more iteration times. It
can be seen from the figure that the wavefront correction range
is quite wide, and after a few number of calibration steps, we
can achieve a good wavefront correction effect.

In order to verify the convergence speed of the algorithm,
the statistical results of the time required for complete correc-
tion of 384 sets of wavefront aberrations, 128 sets for each sit-
uation, are given in Fig. 5. The run time of the algorithm is
obtained on the host control computer Intel Core i7-4790K,

4.0 GHZ. Figure 5(a) shows the time needed for completely
correcting the wavefront aberrations for the three situations
in the form of a scatter plot and Figs. 5(b)–5(d) give the histo-
grams of the time consumed in each case. From Fig. 5(a), we
can see that the cost time of all experiments is of the order of
10−2 s and as the strength of atmospheric turbulence increases,
the wavefront aberrations get larger, and the correction time is

Table 1. Wavefront RMS Values (λ) Varying with the Number of Correction Steps Under the Three Typical Atmospheric
Coherence Lengths

D∕r0
Iterations

0 1 2 3 4 5 6 7

20 0.6764 0.4715 0.4067 0.3292 0.2302 0.1705 0.0637 0.0098
13 0.4959 0.3932 0.2856 0.1973 0.1016 0.0031 0.0008 0.0001
10 0.3229 0.2118 0.1128 0.0027 0.0011 0.0000 0.0000 0.0000

Fig. 4. Residual errors under three atmospheric turbulence
strengths varying with the correction steps.

Fig. 3. Wavefront variations under the three atmospheric turbulence strengths with respect to the number of correction steps.

Fig. 5. Time consumed for complete correction of 384 (128 × 3)
sets of wavefront aberrations.
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longer. Figure 5(b) shows that when D∕r0 � 20, 4.7% out of
128 simulations the wavefront correction time is 0.005–0.01 s;
82% out of 128 simulations the correction time is 0.01–0.02 s;
the longest correction time is 0.07 s; and the statistical mean,
median, and standard deviations of the correction time for these
128 simulations are 0.0179 s, 0.0149 s, and 0.0113 s, respec-
tively. Figure 5(c) shows the results ofD∕r0 � 13: 5.5% of 128
simulations the wavefront correction time is 0.005–0.01 s;
85.9% the correction time is 0.01–0.02 s; the longest correc-
tion time is 0.055 s; and their mean, median, and standard
deviations of the correction time are 0.0147 s, 0.013 s, and
0.0069 s, respectively. While, in Fig. 5(d), 22.7% of 128 sim-
ulations the wavefront correction time is 0.005–0.01 s; 71.8%
the correction time is 0.01–0.02 s; the longest correction time
is 0.039s for D∕r0 � 10; and the mean, median, and standard
deviations of the correction time under this condition are
0.0125 s, 0.0115 s, and 0.0042 s, respectively. From the sim-
ulation results, we can see that the algorithm is quite fast. It
should be noted that convergence speed of the algorithm is re-
lated to the size of the collected images; in our case, the size of
the images is 64 × 64 pixels. The smaller the size of the images,
the faster the algorithm. Therefore, we can intercept the images
to shrink the size to improve the algorithm speed, but the
images must be registered. The specific registration method
can refer to [19].

In order to verify the image quality of the system during the
calibrations and illustrate the method’s correction capability in
a more vivid way at the same time, a successive of six spot im-
ages collected in the focal plane from the first to sixth iterations
are shown in Fig. 6 under the condition D∕r0 � 20. The
Strehl ratio (SR) is adopted to evaluate the images, and the
SR is defined as

SR � P�I�x; y��
P�I 0�x; y��

; (17)

where P� � is an operation that calculates the peak intensity, I is
the actual intensity distribution, and I 0 is the intensity distri-
bution when no aberrations are present. The closer the SR
value is approaching to 1, the better the spot quality is and
the more ideal correction effect is gained. The SR values of
the six images from Figs. 6(a)–6(f ) are 0.0579, 0.2312,
0.4628, 0.7125, 0.8024, and 0.9302, respectively. It can be

seen from the results that during the calibration process, the
spot energy becomes more and more concentrated. Thus,
the system can continually correct wavefront aberrations and
gain the ideal imaging results ultimately.

In order to test the performance of the presented method
more fully, we compare our method with the model-based
wavefront correction method proposed by Yang et al. [20] to
observe unresolved point source under four different turbu-
lence strengths, namely D∕r0 � 5; 10; 15; 20. For each turbu-
lence strength, 128 frames of phase screens are generated
randomly to test Yang’s and our method at the same time. The
averaged RMS of the 128 sets of residual wavefronts are used to
compare the correction capability of the two methods. The
smaller the RMS value is, the better correction capability
the method has. The averaged RMS of the two methods vary-
ing with the number of iterations is shown in Fig. 7. The icons
“Method 1” and “Method 2” in the figure correspond to the
method proposed by Yang et al. and our method, respectively.

From the averaged curves in Fig. 7, we can see that Yang’s
method basically needs only one iteration to converge but the
convergence accuracy is not as high as our proposed method. In
fact, the convergence speed of Yang’s method only depends on
the number of actuators of the DM and is independent of the
turbulence strength, and the total measurements of the CCD
data for one iteration is N � 1, where N is the number of ac-
tuators of the DM. It means that N � 1 measurements of the
CCD data are needed at least for Yang’s method. However, un-
like Yang’s, our method only depends on the turbulence
strength and for each iteration only one measurement of the
CCD data is needed. It seems we need more iterations to get
higher convergence accuracy, but in fact, the times of detector
measurements are much less than Yang’method. From the sim-
ulation results shown in Fig. 7, it needs 7–8 detector measure-
ments on average to get higher convergence accuracy even for
quite strong turbulence strength, while Yang needs 62 measure-
ments since they use 61-element DM in [20]. Thus, our

Fig. 6. Successive images collected in focal plane from the first
to sixth iterations during wavefront aberration corrections when
D∕r0 � 20.

Fig. 7. Averaged RMS of the Yang’s (Method 1) and our methods
(Method 2) varying with the number of iterations under four different
turbulence strengths.
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method needs fewer measurements of CCD data and gets
higher convergence accuracy in the end.

5. CONCLUSION

In order to reach optimum results for the WFSless AO system,
an efficient correction method is needed. A fast wavefront cor-
rection method for the WFSless AO system mainly based on
the linear PD technique is presented in this paper. Combined
with the influence function of the DM, we utilize the linear PD
technique to establish the linear relationship model between
the drive voltage of the DM and the far-field images of the sys-
tem, and then the fast correction of wavefront aberrations is
realized according to the established linear relationship model.
Random wavefront aberrations are generated under different
turbulence strengths and a large number of closed-loop correc-
tion simulations are carried out.

From the simulation results, it can be seen that the proposed
method has a fast convergence rate and strong correction abil-
ity, a few correction times can fulfill good correction results,
and can effectively improve the imaging quality of the system.
It is also simple in implementation since the fast wavefront cor-
rection is realized only by using the far-field images. When
comparing with the model-based wavefront correction method,
the presented method has higher convergence accuracy and
needs fewer measurements of CCD data.

Funding. National Natural Science Foundation of China
(NSFC) (51505078).
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