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1. Introduction

In recent decades, superhydrophobic surfaces, which are
surfaces with water droplet contact angles (CAs) greater than
150� and sliding angles (SAs) smaller than 10�, have attracted great
attention both in academia and in industry due to their unique
characteristics, such as water repellence and self-cleaning. These
unique characteristics of superhydrophobic surfaces are formed by
low surface energies and unique structures, such as nano-micro
hierarchical structures or micro unitary structures, on a surface.
Superhydrophobic surfaces have been fabricated on a variety of
polymer, metal, silicon, and ceramic substrates by using various
processes, including chemical vapor deposition (CVD), silanization,
laser beam machining, molding, and photolithography [1–5].

Among these materials, ceramic materials have good thermal
stability and chemical inertness, and superhydrophobic surfaces on
ceramic substrates have been heavily investigated owing to their
application in self-cleaning, anti-fogging, and capturing of harmful
CO2 or volatile organic compounds. Coatings or chemical treatments
have been widely utilized to realize super-hydrophobicity on
ceramics [6–10]. Unfortunately, current chemical coating techniques
are harmfultotheenvironment and ineffective overextended periods
of time; the processes utilize toxic chemicals and the coating layers
canbeeasilydegradedasafunctionoftimeandheat,especiallyathigh
temperatures [11]. The limitations of the current research prohibit
widespread manufacturing of superhydrophobic ceramic surfaces.

wetting state of Al2O3 from hydrophilic to nearly superhydropho
superhydrophobic [14]. However, it is difficult to take advantag
the performance of this surface for self-cleaning applications. Ot
researchers have used laser beam machining, but they have u
additional chemical coating to improve the performance of su
hydrophobic surfaces in real applications [15,16].

Recently, in our previous research, we proposed a simple 

environmentally friendly technique that uses laser beam abla
and heat treatment to manipulate metals and metal alloys [
19]. Here, in this research, transparent superhydrophobic sapp
was developed by using the same laser surface ablation and h
treatment technique. Inadditionto pure metalsandmetal alloys,
technique was demonstrated to be applicable to ceramic mater
which play an important role in many engineering fields and 

applications. Additionally, the initial transparency of the sapp
was maintained after laser beam ablation by controlling laser po
and laser beam path. The effects of the laser power and laser be
path on the superhydrophobicity and transparency were investi
ed. Moreover, the mechanism was explained by utilizing vari
surface characteristic techniques, such as scanning elect
microscopy (SEM), 3D confocal microscopy, energy-dispersive
ray spectroscopy (EDS), X-ray diffraction (XRD), and Fou
transform infrared spectroscopy (FTIR). The transparent su
hydrophobic sapphire showed good performance in terms o
superhydrophobicity and transparency. Furthermore, the stabilit
superhydrophobic surface was evaluated after 15 days in 
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A B S T R A C T

Sapphire isawidelyusedhardtransparentmaterial foropticsandprotectivewindows,andasuperhydroph
coating on sapphire can prevent contamination by self-cleaning. However, the coating can be easily degra
according to time and heat. In this research, transparent superhydrophobic sapphire surfaces were fabric
via laser surface ablation, without coating, for good stability and heat resistance. The laser ablated sur
showed hydrophilic initially, but the wettability transition to superhydrophobic was achieved afte
additional simple heat treatment. Contact angle and transmittance were measured to confirm
superhydrophobicityandtransparency,andsurfaceanalysiswasperformedtoexplainthewettingmechan
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To produce a superhydrophobic ceramic surface, a laser beam
machining has been developed; this is advantageous due to its
reproducibility, precision, and relatively low surface contamination
[12,13]. Jagdheesh used picosecond laser ablation on Al2O3 and
stored the ablated substrate in air for three days to progress the
ser
 the

* Corresponding author.
E-mail address: dmchun@ulsan.ac.kr (D.-M. Chun).

https://doi.org/10.1016/j.cirp.2018.04.085
0007-8506/© 2018 Published by Elsevier Ltd on behalf of CIRP.
ambient air and over 10 times cycles of heat treatment.

2. Experiment

2.1. Fabrication of transparent superhydrophobic sapphire

A Q-switched Nd:YAG 355 nm UV nanosecond pulse la
system was set up, as shown in Fig. 1. A laser source provided
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r beam and mirrors were used to orient the beam. The
nuator controlled the laser beam power, while a beam
nder was used to increase the laser beam diameter. The laser

 was converged by a focusing lens to ablate on the substrate,
ch was placed on a 3-axis translation stage. A grid pattern
gn as the laser beam path with different step sizes or pitches

 used in this research; this design shows isotropic wetting in all
rvation directions [20,21].
 0.43-mm-thick sapphire wafer (Al2O3 C-Plane, 4science,
a) was used to investigate the effect of the laser power on the
rhydrophobicity and transparency. The fabrication parame-

 are summarized in Table 1. After laser ablation, the surfaces of
r-machined samples with different selected laser powers were
rved as shown in Fig. 2. The confocal images show a clear grid
ern design. When the laser beam ablated the surface, lots of
ll debris was formed. The debris was concentrated significantly
g the fabricated path to form micro-burr structures, while less
is was found on the flat areas between the fabricated paths.
n the laser power was increased, the micro burr heights also
eased. The average values, which were measured 10 times for

 sample via confocal microscopy, were 0.85, 2.07, 3.00, 3.04,
, 5.60, and 6.95 mm for laser powers of 0.1, 0.25, 0.5, 0.75, 1, 1.5,
2 W, respectively. When the laser power increased from

 W, the laser ablation induced debris covered almost the entire
area between the fabricated paths. However, when the laser
er was reduced to 0.1 W, the power was not strong enough
clear, flat, square-shaped areas with a brighter color appeared

(in Fig. 2a). These areas appear to include the flat bare sapphire
substrate and a small quantity of debris. The formation of the micro
burr structure and debris may affect the wetting state and
transparency of the sapphire surface. After laser surface ablation,
all samples were put in a commercial oven for six hours at 200 �C.
The samples were then removed and cooled at room temperature
to investigate their wettability and transmittance.

2.2. Effect of laser power on wettability

The wettability of samples was evaluated with 10-mL water
droplets with a contact angle meter (SmartDrop, FemtoFab, Korea).
The unprocessed flat sapphire wafer showed hydrophilic character
(83�). After laser ablation, sapphire substrates treated with
different laser powers showed increased hydrophilicity, with
CAs smaller than 40� and no SAs, as shown in Fig. 3. The error bars
represent the maximum and minimum values. However, after heat
treatment, all samples became superhydrophobic. Samples treated
with laser powers greater than 0.1 W showed high CAs (>170�) and
small SAs (<10�), which are good for self-cleaning applications.
Samples treated with 0.1 W had CAs of approximately 160�, which
are smaller than the other samples. Additionally, these 0.1 W-
treated samples had no SAs. The water droplet might be contacting
the flat, square areas (with brighter colors in Fig. 2a), which
included the flat bare sapphire and very small quantities of the
debris. The flat sapphire between fabricated paths was hydrophilic
and strongly attracted water droplets. Therefore, the water droplet
could not roll off the surface and no SA was observed.

Superhydrophobic sapphire samples treated with different
laser powers were stored in ambient air after heat treatment. The
wettability (CA, SA) was evaluated again after 15 days to
investigate the stability of the superhydrophobicity. All samples
maintained their superhydrophobicity and typical CA images are
shown in Fig. 4. The sample treated at 0.25 W showed hydrophilic
character after laser ablation but became superhydrophobic after
heat treatment; it maintained this property for well over 15 days.
Fig. 4d shows the SAs of samples treated at 0.25 W (4�) with a
tilting speed of 0.8�/s.

As shown in Fig. 5, the contact angle hysteresis (CAH) was
measured using the captive bubble method to confirm the
performance of superhydrophobicity. All samples showed small

Fig. 1. Laser surface ablation system and pattern design.

 1
cation parameters of laser surface ablation.

me of parameter Value

er (W) 0.1; 0.25; 0.5; 0.75; 1; 1.5; 2
se frequency (Hz) 20
se duration (ns) 20
ge speed (mm/s) 1
p size or pitch (mm) 100
ber of samples Six for each power

Fig. 3. (a) Contact angles and (b) sliding angles of sapphire treated with different
laser powers before heat treatment, after heat treatment, and after being stored in
air for 15 days after the heat treatment.
. Confocal microscope images of laser-ablated surfaces with different laser
rs: (a) 0.1 W, (b) 0.25 W, (c) 1 W, and (d) 2 W.

Fig. 4. Water droplet images on the 0.25 W laser-ablated sample: (a) just after laser
ablation, (b) after heat treatment, (c) after being stored in air for 15 days after heat
treatment, and (d) sliding angle after heat treatment.
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CAH (from approximately 10� to less than 20�), except for samples
treated at 0.1 W. Among the investigated laser power values, samples
treated with 0.25 W showed the best superhydrophobicity.

2.3. Effect of laser power on transparency

The transmittance values of the surfaces treated with different
laser powers were measured with a UV–vis-NIR spectro-photom-
eter in the visible spectrum range from 380 nm to 750 nm, as
shown in Fig. 6. When the laser power increased, the transmittance
of the sapphire decreased because of the increased burr formation.
Among them, the samples treated at 0.25 W, which had the best
superhydrophobicity, showed a small average transmittance drop
(approximately less than 10%) relative to the unprocessed smooth
sapphire and less than 1% deviation in transmittance on five
different samples.

3. Discussion

3.1. Mechanism

The mechanism of superhydrophobicity was explained by
investigating the nano-micro hierarchical structures and low
surface energy. After laser ablation, clear micro burr structures
were formed along the fabricated paths (in Figs. 2 and 7).
Additionally, nanostructures were also created on the flat areas
between the fabricated paths; however, these structures were not
observed on the unprocessed smooth sapphire. Therefore, nano-
micro hierarchical structures were produced after laser surface

ablation. However, the appearance of nano-micro structures 

not enough to make the sapphire to become superhydropho
after laser ablation, all samples were still hydrophilic. It is clear 

another factor contributed to this mechanism.
After heat treatment, all samples became superhydropho

The crystalline structures before and after heat treatment did
change, as shown in Fig. 8a . However, a change in the sur
chemistry was found on the micro-burrs and nanostructures
shown in Table 2. The amount of carbon content on the structu
after heat treatment increased, especially on the micro burrs. 

carbon content comes from organic adsorption, as shown in Fig
After laser ablation, the –OH group of Al2O3 can adsorb orga
matter from ambient air, leading to the appearance of several w
hydrophobic groups (–CH3). Under heat treatment, this orga
adsorption was accelerated, causing the appearance of str
hydrophobic groups (–CH3) (low surface energy). Therefore, 

nano-micro structures, with their adsorbed strongly hydropho
bonding, caused sapphire to become superhydrophobic. 

organic adsorption has been found on the laser-ablated alumin
where aluminum oxide appeared after laser beam ablation [1

3.2. Heat resistance

Three superhydrophobic sapphire samples treated with a la
power of 0.25 W were prepared to evaluate the heat resista
properties. After heat treatment for six hours at 200 �C, sam
were stored in air for three days; this constitutes one cycle. T
cycle was repeated over 10 times, as shown in Fig. 9. All sam
maintained their superhydrophobicity for long heat treatment
a high temperature (200 �C).

Fig. 6. Transmittance results of unprocessed flat sapphire and laser-ablated
sapphire with different laser powers (from top to bottom curve: unprocessed, 0.1,
0.25, 0.5, 0.75, 1, 1.5 and 2 W).

Fig. 8. (a) XRD and (b) FTIR results of laser-ablated sapphire samples.

Fig. 5. Contact angle hysteresis of sapphire treated with different laser powers.

Table 2
EDS results.

Element Before heat treatment After heat treatment

At burr Flat areas
between
fabricated paths

At burr Flat areas
between
fabricated pa

C 9.0 7.8 15.8 8.6
O 66.2 67.5 64.9 69.7
Al 24.7 24.8 18.6 21.5
r of
ith

Fig. 7. FESEM images of laser-induced debris nanostructures on flat areas between
the fabricated paths on 0.25 W-treated sample.

Fig. 9. Heat resistance of superhydrophobic sapphire.
3.3. Effect of step size

The step sizes of sapphire samples treated with a laser powe
0.25 W were changed from 50 to 300 mm. All samples w
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rent step sizes showed high CAs (>160�), but only the samples
 step sizes smaller than 150 mm showed small SAs (<10�) as
n in Fig. 10. The samples with step sizes of 150, 200, and

 mm showed hydrophilic flat areas with no debris (brighter
r areas in the inset of Fig. 10(b)). When the step size increased,
transmittance of the sapphire increased because of the
ction of fabricated area as shown in Fig. 11. To fabricate a
sparent superhydrophobic ceramic material, using a laser
er of 0.25 W with a 100 mm step size is a good method.

Potential applications

n this study, the transmittance of surface is reduced when
cing the step size or increasing the laser power. Additionally,
ng fabrication parameters, samples showed the best super-
ophobic performance at 100 mm step size with 0.25 W. The
ormance of superhydrophobic sapphire is shown in
12. Samples showed low adhesion and the bouncing effect

 respect to water droplets. This demonstrates their high-
ity superhydrophobicity. Additionally, samples also showed
self-cleaning effect with the tilting angle of 4�. The obtained
aces can be used for self-cleaning, low-adhesion applications.

4. Conclusion

A transparent superhydrophobic ceramic can be produced by a
simple and environmentally friendly technique by using a
combination of laser surface ablation and heat treatment. Best
our knowledge, the transparent superhydrophobic ceramic has
been firstly fabricated on sapphire only with laser ablation and
heat treatment, without any chemical coatings. Laser-ablated
sapphire samples showed good superhydrophobicity (CA > 170�,
SA < 7�) and high transmittance over 75% in visible light.
Additionally, the surfaces were stable and demonstrated heat
resistance under high-temperature conditions. The mechanism
was also explained in terms of the laser-induced nano-micro
structures and surface chemistry (organic absorption). Several
potential uses, such as self-cleaning optics, protective windows,
and low water adhesion applications, were proposed.
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