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A B S T R A C T

We propose a non-null subaperture stitching method to measure the convex aspheric surfaces. In the method, the
non-null configuration avoids the introduction of auxiliary optical elements which must be specially designed
and customized, and their compensating effects cannot be independently measured. In order to obtain the full
aperture result, a non-null stitching algorithm based on ray tracing method and least square method is developed
to stitch all phase data together. Both simulation and experimental results justify the proposed method.

1. Introduction

Aspheric optical surface has broad applications for its capability
in correcting aberrations, improving image quality and reducing the
size and weight of the system [1]. Precise and efficient measure-
ment of aspheric optical surface is necessary. Among different sur-
face characterization techniques, interferometry is playing a more and
more important role. In interferometry, null testing using null lens or
computer-generated hologram (CGH) is an efficient test configuration
for small-aperture optical surfaces [2–7]. However, for testing large-
aperture optics, especially convex aspheric surfaces, the null testing to
the aspheric surface is hard because it is difficult and time consuming to
manufacture required large aperture auxiliary elements such as null lens
or computer-generated hologram. Instead, the sub-aperture stitching
(SAS) testing and the non-null testing can be combined to accomplish
the interferometry of the convex aspheric surfaces.

SAS testing has been developed to overcome the aperture size lim-
itations of interferometers. It can obtain the full aperture map without
testing the whole mirror at one time, thus it is widely used in measuring
large flat mirrors, large convex surfaces and aspheric surfaces exceeding
the vertical range of the interferometer. The SAS testing method was
first proposed by Kim in 1982, and significantly expanded the dynamic
range of an interferometer [8]. According to the testing region shape
of the subaperture, there are two major stitching methods: one is the
annular stitching method which is widely used in the stitching testing
for concave rotational symmetric aspheric surfaces [9–12], and the other
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one is the circular stitching method which has better generality and
expandability [13,14].

In this paper, we propose a simple, efficient non-null stitching tech-
nique with circular subapertures to test convex aspheric surfaces. With
the proposed method, we characterized a 𝜙 260 mm convex hyperboloid
surface. The stitching accuracy can be evaluated by the simulation and
the experimental results. The paper is organized as follows. In Section 2,
the basic theory of the stitching technique involving the retrace error
calculation and the stitching algorithm is introduced. In Section 3, the
effectiveness of our method is shown in simulation. In Section 4, we
demonstrate the technique by testing a 𝜙 260 mm convex hyperboloid
surface. Finally, the conclusion is given in Section 5.

2. Theory

2.1. The principle of the retrace error correction

The retrace error in the non-null testing can be calculated with ray
tracing method. Unlike the null testing, the testing rays in the non-
null testing follow different paths from the reference rays. The resulting
extra aberration between the measured and the real surface maps is the
retrace error. The retrace error should be corrected before stitching as
it is not manufactory surface error but an artificial extra aberration due
to the non-null testing.
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Fig. 1. Retrace error for rotational symmetric subapertures.

The wavefront tested by the interferometer includes both the surface
error of the testing aspheric surface and artifacts such as the retrace
error, the alignment error, and the retrace coordinate error [15,16]. So
the wavefront obtained from the interferometer can be expressed as:

𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = 𝑊𝑟𝑒𝑡𝑟𝑎𝑐𝑒 ⊕𝑊𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ⊕𝑊𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ⊕𝑊𝑡𝑒𝑠𝑡 (1)

where 𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 is the measured wavefront from the interferometer,
𝑊𝑟𝑒𝑡𝑟𝑎𝑐𝑒 is the retrace error, 𝑊𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is the alignment error between
interferometer and the testing aspheric surface and 𝑊𝑡𝑒𝑠𝑡 is the surface
error of the testing aspheric surface. Note that ‘‘⊕’’ in Eq. (1) denotes
the variables not simply added up. Thus, the total interferometer error
𝑊int𝑒𝑟𝑓𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 depends on all of the retrace error, the alignment error, the
retrace coordinate error and the surface error of the aspheric surface.

Assuming an aspheric mirror to be characterized has a subaperture
aperture of 𝐷𝑠𝑢𝑏 and a vertex radius of 𝑅, the 𝐹 number of the standard
lens should be:

𝐹 ≥ 𝑅
𝐷𝑠𝑢𝑏

(2)

According to the designed optical testing path, the retrace error can
be calculated in the optical simulation tools such as Zemax or Code V
with ray tracing method.

For rotational symmetric subapertures, the retrace error behaves like
a combination of power and spherical aberrations as shown in Fig. 1. For
the off-axis subapertures, the behavior of the retrace error is shown in
Fig. 2.

After calculating the retrace error of each subaperture with the ray
tracing method, the retrace error and the retrace coordinate error can be
removed from the subaperture testing map at the same time [15,16]. The
alignment error of each subaperture will be separated with the stitching
algorithm introduced in Section 2.2.

2.2. Stitching algorithm

In order to obtain a full aperture map, a stitching algorithm is
developed to stitch each subaperture map together to a whole map.

Currently there are several types of stitching algorithms such as
maximum likelihood estimation method, the least square method, and
the iteration method. The maximum likelihood estimation method is
mainly used in flat mirror stitching, and can calculate the test map and
the reference map simultaneously [17]. In the least square method, the

Fig. 2. Retrace error for off-axis subapertures.

full aperture map is reconstructed by compensating the alignment error
of each subaperture [18,19]. The iteration method is based on the three-
dimensional coordinate transformation [20,21].

Different from the above methods, we propose an algorithm combin-
ing the iteration calculation and the least square method.

Our proposed stitching algorithm shown in Fig. 3 is based on the least
square method [18,19]. First according to the subaperture arrangement,
each subaperture is tested with interferometer and non-null errors are
calculated according to the parameters of the vertex radius and the aper-
ture of each subaperture. With the method introduced in Section 2.1,
non-null errors can be removed from each subaperture testing result
and all the coordinates of each subaperture can be unified in a global
coordinate at this time. Then stitching coefficients of each subaperture
except the standard one can be calculated with the stitching algorithm
discussed in Section 2.2. To improve the stitching accuracy, the residual
map of every two adjacent maps is calculated after stitching. If the
RMS of the residual map satisfies the criteria, stitching is accomplished.
If not, two-dimensional cross-correlation between every two adjacent
subapertures is calculated to get a more accurate positioning of each
subaperture and the stitching coefficients of each subaperture will be
recalculated until the residual meets the requirement.

Assuming there are 𝑁 subapertures in the measurement. We take
the 𝑁th subaperture as a reference, then the 𝑖th subaperture can be
expressed as:

𝛷
′
𝑖 (𝑥, 𝑦) = 𝛷𝑖(𝑥, 𝑦) +

𝐿
∑

𝑘=1
𝑎𝑖𝑘𝑓𝑘(𝑥, 𝑦) (3)

where 𝛷𝑖(𝑥, 𝑦) is the 𝑖th subaperture testing map, 𝑓𝑘(𝑥, 𝑦) can be any
predefined functions, 𝑎𝑖𝑘 is the stitching coefficient and 𝐿 is the term
number to be fitted. In the non-null stitching, the term number to be
fitted between subapertures is nine and the function 𝑓𝑘(𝑥, 𝑦) can be
written as:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑓1(𝑥, 𝑦) = 𝑥
𝑓2(𝑥, 𝑦) = 𝑦
𝑓3(𝑥, 𝑦) = 𝑥2 + 𝑦2

𝑓4(𝑥, 𝑦) = 𝑥𝑦
𝑓5(𝑥, 𝑦) = 𝑥2 − 𝑦2

𝑓6(𝑥, 𝑦) = 𝑥(𝑥2 + 𝑦2)
𝑓7(𝑥, 𝑦) = 𝑦(𝑥2 + 𝑦2)
𝑓8(𝑥, 𝑦) = (𝑥2 + 𝑦2)2

𝑓9(𝑥, 𝑦) = 1

(4)
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Fig. 3. Flow chart of stitching algorithm.

Then least squared method is applied:

min =
∑

𝑖=1…𝑁

𝑖∩𝑗
∑

𝑗=1,…,𝑁
𝑗≠𝑖

[(𝛷𝑖(𝑥, 𝑦) +
𝐿
∑

𝑘=1
𝑎𝑖𝑘𝑓𝑘(𝑥, 𝑦))

− (𝛷𝑗 (𝑥, 𝑦) +
𝐿
∑

𝑘=1
𝑎𝑗𝑘𝑓𝑘(𝑥, 𝑦))]2 (5)

For Eq. (5), it can be transformed to a group of linear equation:

𝑃 = 𝑄 ⋅ 𝑅 (6)

where 𝑃 , 𝑄 and 𝑅 are defined as follows:
1. 𝑃 is a vector in length of (𝑁 −1)×𝐿 row. For the ((𝑗 −1) ⋅𝐿+𝑘)th

row of the vector element, it can be expressed as:

𝑃(𝑗−1)⋅𝑘 =
𝑁
∑

𝑖=1
𝑖≠𝑗

∑

𝑖∩𝑗
𝑓𝑘(𝑥, 𝑦)(𝛷𝑗 (𝑥, 𝑦) −𝛷𝑖(𝑥, 𝑦)) (7)

2. 𝑄 is a matrix in size of (𝑁 − 1) × 𝐿. For the element in the row
((𝑗 −1) ⋅𝐿+𝑘), column ((𝑙−1) ⋅𝐿+ 𝑘′ ) of the matrix, it can be expressed
as:

𝑄((𝑗−1)⋅𝑘)((𝑙−1)⋅𝑘′ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝑁
∑

𝑖=1
𝑖≠𝑗

∑

𝑖∩𝑗
𝑓𝑗 (𝑥, 𝑦) ⋅ 𝑓𝑘(𝑥, 𝑦) 𝑗 = 𝑙

∑

𝑗∩𝑙
𝑓𝑗 (𝑥, 𝑦) ⋅ 𝑓𝑘(𝑥, 𝑦) 𝑗 ≠ 𝑙

(8)

3. 𝑅 is a column vector in length of (𝑁−1)×𝐿. For the ((𝑗−1)⋅𝐿+𝑘)th
row of the vector, it can be expressed as:

𝑅(𝑗−1)⋅𝑘 = 𝑎𝑗𝑘 (9)

After calculating the stitching coefficients with Eqs. (3)–(9), the
alignment errors of each subaperture can be removed and the full
aperture surface can be obtained. However, the accuracy of relative
positions between subapertures is usually limited by the mechanical
precision. So the alignment accuracy between subapertures may not
meet the stitching requirements. To achieve better stitching accuracy,

Fig. 4. Full aperture surface of hyperboloid mirror.

Fig. 5. Subapertures arrangement.

the two-dimensional cross-correlation calculation is introduced in the
stitching algorithm.

Theoretically, the phase data should be consistent at the overlapping
areas between every two adjacent subapertures. So it can justify the
alignment accuracy between neighboring subapertures in order to meet
the stitching requirement.

If it meets the requirement, the full map is obtained after removing
the effects of adjustment errors. If not, the relative position relationship
between adjacent subapertures can be described as:
{

𝑥1 = 𝑥2 + 𝑑𝑥 + 𝛥𝑥
𝑦1 = 𝑦2 + 𝑑𝑦 + 𝛥𝑦

(10)

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the pixel coordinates of two neighboring
subapertures respectively, (𝑑𝑥, 𝑑𝑦) is the relative coordinate relationship
between these two subapertures, and it is obtained by mechanical
reading. (𝛥𝑥, 𝛥𝑦) is the accurate position relationship between the above
two subapertures which is to be calculated.

(𝛥𝑥, 𝛥𝑦) can be calculated with the two-dimensional cross-correlation
algorithm using the phase data from adjacent subapertures as 𝐹 ∗∗ 𝐺
where the position of the peak in the calculation is (𝛥𝑥, 𝛥𝑦).

3. Simulation

To prove the concept, we simulate the proposed non-null stitching
method to the convex aspheric surface characterization. For a convex
hyperboloid surface whose conic constant k is −1.8 in 4000 mm radius
of curvature and 300 mm diameter, the original surface in full aperture
is shown in Fig. 4.
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Fig. 6. Retrace errors of subapertures. (a) retrace error for central subaperture (b) retrace error for the off-axis subaperture in the first ring 𝑑 = 60 mm (c) retrace
error for the off-axis subaperture in the second ring 𝑑 = 130 mm.

Fig. 7. Stitching map.

The convex full aperture is covered by fifteen subapertures, including
a central subaperture and 14 off-axis subapertures consist of two rings,
as shown in Fig. 5.

In the testing, a 150 mm interferometer with an F#30 standard
transmission sphere is chosen to test each subaperture. For the central
subaperture and two rings of off-axis subapertures in the testing, the
performances of the retrace error are shown in Fig. 6 (a–c) respectively.

By adding the alignment errors such as tip/tilt to each subaperture
and considering the 2 μm alignment accuracy along 𝑋, 𝑌 and 𝑍
directions, the non-null stitching algorithm yields the full-aperture map
as shown in Fig. 7. In the simulation, the stopping criterion of the
stitching is that the RMS of the residual map between every two
adjacent subapertures is less than 3 nm. After 3 circles of iteration, the
relative stitching is accomplished. In order to evaluate the performance
of the non-null stitching algorithm, the residual map is calculated by
subtracting the data between the stitching map and the original full
aperture map point by point, as shown in Fig. 8.

It can be seen from Figs. 4 and 7 that the stitching map is in consistent
with the original full aperture map. The PV and RMS of the residual map
between them (Fig. 8) is 0.045𝜆 and 0.005𝜆 (𝜆 = 632.8 nm) respectively
which means that the stitching can be accomplished with our proposed
non-null subaperture stitching method very well.

4. Experimental verification

In the experiment, the effective aperture of the convex hyperboloid
mirror is 260 mm while the aperture is 300 mm. The conic constant k is

Fig. 8. Residual map.

Table 1
Description of 5-dof platform.

Axis Range of movement accuracy

𝑋 1000 mm 0.01 mm
𝑌 500 mm 0.01 mm
𝑍 800 mm 0.02 mm
𝐴 90◦ 4′′

𝐶 360◦ 10′′

−2.2 and the vertex radius of the convex mirror is about 4100 mm. A 5-
dof platform and a 150 mm interferometer with an F#30 standard trans-
mission sphere are applied for the stitching testing as shown in Fig. 9.
5-dof platform include the 𝑋, 𝑌 ,𝑍,𝐴 and 𝐶 axis. The range of movement
and relative accuracy of each axis can be found in Table 1. Considering
the parameters of test mirror and standard transmission sphere used
in the experiment, the approximate aperture of the subapertures can
be calculated with Eq. (11). According to the size relationship between
subapertures and full-aperture, nine subapertures are designed to cover
the effective aperture of the mirror as shown in Fig. 10 and the measured
subapertures are shown in Fig. 11.

𝐷sub ≈
𝑅
𝐹 # = 4100

30
≈ 137 mm (11)

In the testing, for the central subaperture, the retrace error behaves
like a combination of power and spherical aberrations which is added
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Fig. 9. Experimental setup.

Fig. 10. Subapertures arrangement.

Fig. 11. Measured subapertures.

to the testing map as shown in Fig. 12. For the off-axis subaperture, the
behavior of the retrace error is shown in Fig. 13.

After removing the retrace error and retrace coordinate error from
each subaperture testing map, the full aperture stitching map can be
achieved according to the algorithm described in Section 2.2, as shown
in Fig. 14. In the experiment, the stopping criterion of the stitching
is that the RMS of the residual map between every two adjacent
subapertures is less than 5 nm. After 6 circles of iteration, the relative
stitching is accomplished.

Usually the stitching accuracy can be evaluated by comparing the
stitching result with the full aperture testing result. However, it is

Fig. 12. Retrace error for rotational symmetric subaperture.

Fig. 13. Retrace error for off-axis subapertures.

Fig. 14. Stitching map.

108



D. Zhu et al. Optics Communications 428 (2018) 104–109

Fig. 15. Self-examine subaperture.

Fig. 16. Residual map.

difficult to get the full map simultaneously for flat or convex mirrors
with large apertures. In this case, to evaluate the stitching accuracy,
another set of subaperture different from the ones used for stitching is
chosen for self-examination, as shown in Fig. 15. The residual map is
calculated by subtracting the data between the stitching result and the
self-examine subaperture result, as shown in Fig. 16.

It is shown that there is no low order aberration in the residual map
and the PV and RMS errors of the residual map are 0.05 𝜆 and 0.006 𝜆
respectively (𝜆 = 632.8 nm). Considering the alignment accuracy in 𝑋
and 𝑌 direction in the testing and the environmental effect, the residual
is acceptable and the non-null stitching is feasible in the aspheric surface
stitching testing.

5. Conclusion

A non-null stitching testing method is proposed to measure convex
aspheric surfaces in a non-null configuration. The retrace error in the
non-null aspheric testing is analyzed based on the ray tracing method.
A stitching algorithm based on the two-dimensional cross-correlation
algorithm and the least square method for non-null stitching testing is
developed. Computer simulation results show that the non-null stitching
testing is feasible in testing convex aspheric surfaces. To further justify
our stitching model, we have tested a convex hyperboloid surface in a
comparison experiment. So far the experimental study is only for mild
aspheric surfaces. It is expected that the proposed method can also test
strong convex aspheric surfaces and freeform surfaces.

References

[1] D. Malacara, Optical Shop Testing, Wiley, 2007.
[2] S. Tomoyoshi, M. Michal, N. Yuki, et al., Color computer-generated hologram

generation using the random phase-free method and color space conversion, Appl.
Opt 55 (15) (2016) 4159–4165.

[3] Jing Wang, Yunlong Sheng, Design quadrilateral apertures in binary computer-
generated holograms of large space bandwidth product, Appl. Opt 55 (27) (2016)
7636–7644.

[4] R. Alata, G. Pariani, F. Zamkotsian, et al., Programmable CGH on photochromic
plates coded with DMD generated masks, Opt. Express 25 (6) (2017) 6945–6953.

[5] M.W. Richard, L.W. Gavin, J.C. Joshua, et al., High-contrast pattern reconstructions
using a phase-seedd point CGH method, Appl. Opt 55 (7) (2016) 1703–1712.

[6] Han Gu Kim, Yong Man Ro, Ultrafast layer based computer-generated hologram
calculation with sparse template holographic fringe pattern for 3-D object, Opt.
Express 25 (24) (2016) 30418–30427.

[7] M. Deniz, U. Erdem, U. Hakan, Non-iterative phase hologram computation for low
speckle holographic image projection, Opt. Express 24 (5) (2016) 4462–4476.

[8] C.J. Kim, J.C. Wyant, Subaperture test of a large flat or a fast aspheric surface, J.
Opt. Soc. Amer. 71 (1981) 1587.

[9] X. Hou, F. Wu, L. Yang, et al., Experimental study on measurement of aspheric
surface shape with complementary annular subaperture interferometric method,
Opt. Express 15 (20) (2007) 12890–12899.

[10] H.Y. Xu, H. Xian, Y.D. Zhang, Comparison of two stitching algorithms for annular
subaperture hartmann shack testing method, Proc. SPIE 7849 (2010) 78491Q-1–
78491Q-7.

[11] Y.F. Wen, H.B. Cheng, Hon-Yuen Tam, et al., Modified stitching algorithm for an-
nular subaperture stitching interferometry for aspheric surfaces, Appl. Opt. 52 (23)
(2013) 5686–5694.

[12] Yongfu Wen, Haobo Cheng, Further investigations of stitching model for annular
subaperture interferometric testing based on Zernike annular polynomials, Optik
126 (2015) 2236–2241.

[13] Lei Zhang, Dong Liu, Yu Liu, Jingxiao Liu, Jingsong Li, Benli Yu, Validation of
simultaneous reverse optimization reconstruction algorithm in a practical circular
subaperture stitching interferometer, Opt. Commun. 403 (2017) 41–49.

[14] M. Otsubo, K. Okada, J. Tsujiuchi, Measurement of large plane surface shapes by
connecting small-aperture interferograms, Opt. Eng. 33 (1994) 608–613.

[15] Dong Liu, Yongying Yang, Chao Tian, Yongjie Luo, Lin Wang, Practical methods
for retrace error correction in nonnull aspheric testing, Opt. Express 17 (9) (2009)
7025–7035.

[16] Tu Shi, Dong Liu, Yuhao Zhou, Tianliang Yan, Yongying Yang, Lei Zhang, Jian Bai,
Yibing Shen, Liang Miao, Wei Huang, Practical retrace error correction in non-null
aspheric testing: a comparison, Opt. Commun. 383 (2017) 378–385.

[17] P. Su, J.H. Burge, R.E. Parks, Application of maximum likelihood reconstruction of
subaperture data for measurement of large flat mirrors, Appl. Opt. 49 (2010) 21–31.

[18] Zixin Zhao, Hong Zhao, Feifei Gu, Hubing Du, Kaixing Li, Non-null testing for
aspheric surfaces using elliptical sub-aperture stitching technique, Opt. Express
22 (5) (2014) 5512–5520.

[19] Lisong Yan, Xiaokun Wang, Ligong Zheng, Xuefeng Zeng, Haixiang Hu, Xuejun
Zhang, Experimental study on subaperture testing with iterative triangulation
algorithm, Opt. Express 21 (19) (2013) 22628–22644.

[20] S.Y. Chen, S.Y. Li, Y.F. Dai, et al., Experimental study on subaperture testing with
iterative stitching algorithm, Opt. Express 16 (7) (2008) 4760–4765.

[21] Shanyong Chen, Shuai Xue, Yifan Dai, Shengyi Li, Subaperture stitching test of large
steep convex spheres, Opt. Express 23 (22) (2015) 29047–29058.

109

http://refhub.elsevier.com/S0030-4018(18)30637-0/sb1
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb2
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb2
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb2
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb2
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb2
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb3
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb3
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb3
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb3
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb3
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb4
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb4
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb4
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb5
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb5
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb5
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb6
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb6
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb6
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb6
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb6
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb7
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb7
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb7
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb8
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb8
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb8
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb9
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb9
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb9
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb9
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb9
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb10
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb10
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb10
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb10
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb10
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb11
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb11
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb11
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb11
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb11
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb12
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb12
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb12
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb12
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb12
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb13
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb13
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb13
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb13
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb13
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb14
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb14
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb14
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb15
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb15
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb15
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb15
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb15
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb16
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb16
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb16
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb16
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb16
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb17
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb17
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb17
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb18
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb18
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb18
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb18
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb18
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb19
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb19
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb19
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb19
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb19
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb20
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb20
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb20
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb21
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb21
http://refhub.elsevier.com/S0030-4018(18)30637-0/sb21

	Experimental study on subaperture stitching testing of convex hyperboloid surface
	Introduction
	Theory
	The principle of the retrace error correction
	Stitching algorithm

	Simulation
	Experimental verification
	Conclusion
	References


