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The phase diversity (PD) technique needs optimization algorithms to minimize the error metric and find the
global minimum. Particle swarm optimization (PSO) is very suitable for PD due to its simple structure, fast
convergence, and global searching ability. However, the traditional PSO algorithm for PD still suffers from
the stagnation problem (premature convergence), which can result in a wrong solution. In this paper, the stag-
nation problem of the traditional PSO algorithm for PD is illustrated first. Then, an explicit strategy is proposed
to solve this problem, based on an in-depth understanding of the inherent optimization mechanism of the PSO
algorithm. Specifically, a criterion is proposed to detect premature convergence; then a redistributing mechanism
is proposed to prevent premature convergence. To improve the efficiency of this redistributing mechanism, ran-
domized Halton sequences are further introduced to ensure the uniform distribution and randomness of the
redistributed particles in the search space. Simulation results show that this strategy can effectively solve the
stagnation problem of the PSO algorithm for PD, especially for large-scale and high-dimension wavefront sensing
and noisy conditions. This work is further verified by an experiment. This work can improve the robustness and
performance of PD wavefront sensing. © 2018 Optical Society of America

OCIS codes: (010.7350) Wave-front sensing; (100.5070) Phase retrieval; (000.3860) Mathematical methods in physics; (220.1080)

Active or adaptive optics.
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1. INTRODUCTION

Phase diversity (PD) is a well-known image-based technique
that can jointly estimate the object and phase aberrations simul-
taneously [1–3]. Compared to traditional wavefront sensors,
PD offers several advantages, such as a low requirement for op-
tical hardware and feasibility of both point source and extended
objects. Therefore, since the inception of PD about three dec-
ades ago, this technique has been widely used in various do-
mains, such as wavefront sensing in adaptive and active
optics [4–7], biological microscopy imaging [8], and quality
control of laser beams [9].

One key point of PD is to develop a suitable optimization
algorithm to minimize the error metric (objective function).
This error metric is built by evaluating the deviation between
the actually obtained intensity images (with a known diversity
phase between them) and the theoretical intensity images with
the theory of Fourier optics. Then the problem of reconstruct-
ing aberration coefficients of the wavefront phase is transferred
to searching the coefficient set for which the error metric is a
global minimum. Many standard gradient-based nonlinear

optimization algorithms [10–13] have been used by researchers
to complete this work, such as steepest decent (SD) algorithm
[10,11], conjugate-gradient (CG) algorithm [5], and quasi-
Newton algorithm (BFGS) [12,13], etc. However, the search
of the optimal parameter set with these gradient-based optimi-
zation algorithms can easily be trapped in a local minimum that
is not the true solution. The main reason for this is that the
searching direction of them mainly depends on the derivative
information of the error metric.

From this perspective, population-based optimization algo-
rithms are more suitable for PD than those gradient-based op-
timization algorithms [14,15], for they rely directly upon
objective function values rather than derivative information.
Also, various randomly initialized agents are dispersed through-
out the search space, which allows for searching the optimal
parameter set in multiple regions of the search space simulta-
neously. Compared to other population-based optimization al-
gorithms, such as the genetic algorithm (GA) [16,17] and
simulated annealing (SA) [18,19], the particle swarm optimi-
zation (PSO) algorithm has simple structure, high convergence
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efficiency, and fast searching ability due to its parallel search
mechanism [20–23]. Therefore, the PSO algorithm is very suit-
able for PD, which is essentially a multi-dimensional complex
optimization problem and has a requirement for searching
efficiency. Recently, PSO has been introduced to the area of
adaptive optics (AO) microscopy [24] and PD [25] as a global
optimization algorithm.

However, we should note that the traditional PSO algorithm
for PD still suffers from the stagnation problem (premature
convergence) [26,27]. This problem will become even more
severe with the increase in the noise level and the scale and
dimension of the aberration coefficients set to be searched.
In these cases, the objective function values of the local opti-
mum solution (a solution that is optimal within a neighboring
set of candidate solutions) and global optimum solution (the
optimal solution among all possible solutions) can be similar
(due to noise) and spatially distant from each other (due to
the large scale and high dimension of the search space). If ran-
dom initial conditions bring the search closer to the local op-
timum solution, the individual particle optima (the optimal
solution for an individual particle) and group optima (the op-
timal solution for all particles) will converge towards the local
optimum solution when using the traditional PSO algorithm
and a wrong optimization result will be obtained. While the
PSO algorithm has been introduced to the area of PD wave-
front sensing in Ref. [25], the emphasis is placed only on the
efficiency, and the stagnation problem has been neglected.

If the ability to search the global optimum solution cannot
be guaranteed, the fast convergence efficiency of PSO for PD
will lose its sense. To solve the stagnation problem of PSO for
PD, an explicit strategy is proposed in this paper based on a
deep understanding of the inherent optimization mechanism
of the PSO algorithm. One basic character of the PSO algo-
rithm is that the particle swarm will gravitate towards the op-
timum solution (may be a local minimum), instead of
randomly looking for the solution individually. With this
knowledge, we first propose a criterion to detect the stagnation
problem (premature convergence). Then we introduce a redis-
tributing mechanism to liberate the particles from the local
minimum (i.e., to prevent premature convergence). To make
the redistributed particles cover the search space more effi-
ciently and improve the efficiency of the redistributing mecha-
nism, randomized Halton sequences are further introduced to
ensure the uniform distribution and randomness of the initial
particles and the redistributed particles in the search space.
Halton sequences are a kind of low-discrepancy sequence.
The quasi-random numbers generated by low-discrepancy
sequences can cover the domain of interest quickly and evenly
[28]. Simulation results show that this strategy can effectively
prevent premature convergence and solve the stagnation prob-
lem of the PSO algorithm for PD, especially for large-scale and
high-dimension wavefront sensing and noisy conditions. This
work is further verified by an experiment.

This paper is organized as follows. In Section 2, the principle
of the PD is reviewed. In Section 3, the traditional PSO algo-
rithm is reviewed, and the stagnation problem of it for PD is
illustrated. Then an explicit strategy is proposed to solve the
stagnation problem of PSO for PD in Section 4. In

Section 5, simulations and the experiment are performed to
demonstrate the effectiveness of the introduced strategy. In
Section 6, this paper is concluded.

2. REVIEW OF PHASE DIVERSITY TECHNIQUE

In this section, we will review the principle of the PD technique
[1–3]. Let us suppose that the object is illuminated with non-
coherent quasi-monochromatic light, and the imaging system is
a linear shift-invariant system. The intensity distribution of the
image plane with Gaussian noise can be modeled as

dk�r� � o�r� � sk�r� � nk�r�, (1)

where � denotes the convolution operation, r is a two-dimen-
sional position vector in the image plane, o�r� is the object,
dk�r� is the kth detected diversity image, sk�r� is the kth
point-spread function (PSF), and nk�r� is the Gaussian noise
in the kth image. With the condition of near field, the PSF
associated with the kth diversity image is given by

sk�r� � jF −1fP�ρ� exp�iφk�ρ��gj2, (2)

where F −1 denotes the inverse Fourier transform, ρ is a two-
dimensional position vector in the pupil plane, P�ρ� is the
binary aperture function with values of 1 inside the pupil
and 0 outside, and φk�ρ� represents the wavefront phase asso-
ciated with the kth intensity measurements. In the current PD
algorithm, φk�ρ� can further be expressed as

φk�ρ� � ϕ�ρ� � Δk�ρ�, (3)

where ϕ�ρ� is the unknown wavefront aberration to be esti-
mated, and Δk�ρ� is the deliberately introduced kth PD, which
is usually known to us.

To evaluate the difference between the diversity images pre-
dicted by the imaging model of the optical system and those
directly collected, an error metric can be defined as

E �
XK
k�1

X
r

�dk�r� − o�r� � sk�r��2: (4)

According to the convolution theorem and the Parseval
theorem, this error metric can be rewritten in the frequency
domain as

E �
XK
k�1

X
u

�Dk�u� − O�u� � Sk�u��2, (5)

where u is a two-dimensional spatial frequency coordinate, and
Dk�u�, O�u�, and Sk�u� denote the Fourier transforms of
dk�r�, o�r�, and sk�r�, respectively.

In order to reduce the dimensions of the parameter space
over which a numerical optimization is performed, the partial
differential of the error metric E with respect to the object fre-
quency spectrum O is set to zero. In this case, we can obtain

O�u� �

XK
k�1

Dk�u�S�k �u�

XK
k�1

jSk�u�j2
,

XK
k�1

jSk�u�j2 ≠ 0: (6)

S�k �u� in Eq. (6) represents the complex conjugate of Sk�u�.
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Substitution of O�u� into E yields

E �
XK
k�1

X
u

jDk�u�j2 −
X
u∈χ

����XK
k�1

Dk�u�S�k �u�
����
2

XK
k�1

jSk�u�j2
, (7)

where χ represents a set of spatial frequencies u,

χ �
�
u
����XK
k�1

jSk�u�j2 ≠ 0

�
: (8)

The unknown wavefront aberration is usually expanded on a
finite set of fringe Zernike polynomials,

ϕ�ρ� �
XN
j�4

CjZ j�ρ�: (9)

The coefficients C1–C3 stand for piston, tip, and tilt of the
wavefront aberration, which have no effect on the quality of the
image. The error metric E is therefore defined on a multidi-
mensional parameter space:

a � �C4,C5,…,CN �: (10)

For a group of given parameters a, the error metric E�a� can
be calculated. The problem of reconstructing aberration coeffi-
cients of the wavefront phase can be transferred to searching the
coefficient set for which the error metric presented by Eq. (7) is a
global minimum. In other words, one of the key points in PD is
to develop a suitable optimization algorithm to minimize the
error metric and find the global optimum solution.

3. STAGNATION PROBLEM OF THE
TRADITIONAL PSO ALGORITHM FOR PHASE
DIVERSITY

A. Review of the Traditional PSO Algorithm
PSO was first proposed by Kennedy and Eberhart in 1995 [20].
The PSO search procedures are based on the swarm concept,
which is a group of individuals that are able to optimize a cer-
tain objective function. Each individual can send information
to another and ultimately allow the entire group to move
towards the same object or in the same direction. It is a
way to simulate the behavior of individuals of the species
who work for the benefit of the entire group.

The basic model of PSO calculation is shown below. A par-
ticle swarm is randomly initialized and dispersed throughout
the search space. Each particle logically chooses the method
it will move itself by referring to the individual’s best experience
and the group’s best experience. In this paper, the “traditional
PSO algorithm” particularly refers to the variant of the PSO
algorithm proposed by Clerc [22], for this variant seems more
widely applied at present. This variant of PSO mainly includes
two parts, which are shown below.

1. Velocity Update
The velocity of each particle is updated by the following equation:

vk�1
i � w�vki � c1r1�Pk

i − ski � � c2r2�Gk − ski ��, (11)

where c1 and c2 are learning factors of PSO, r1 and r2 are uni-
formly distributed random numbers between 0 and 1, Pk

i and Gk

are individual best optima for particle i and group optima after k
iterations, respectively, ski represents the position of particle i in
iterative k, vki and vk�1

i are velocities of particle i in iterative k
and k � 1, respectively, and w is weighting factor, which can fur-
ther be expressed as

w� 2���2−K −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2 −4 K

p ��� , K � c1� c2, K > 4: (12)

2. Position Update
The position of each particle is updated by the following
equation:

sk�1
i � ski � vk�1

i : (13)

After continuous iterations, the particle swarm will gravitate
towards the optimum solution (instead of randomly looking for
the solution). The optimization process will terminate when
the stop criterion is satisfied.

B. Illustration of the Stagnation Problem of the
Traditional PSO Algorithm for PD
In this section, we will reveal the problem of the traditional
PSO algorithm when it is applied to solving the PD problem,
especially in the noisy condition. Specifically, we will show that
the accuracy of this algorithm is very sensitive to noise and at a
certain noise level, this algorithm can become invalidated and
no longer be used for PD.

We can see from Section 3.A that there is not a mechanism
for preventing being trapped in a local minimum in the tradi-
tional PSO algorithm. The objective function of the local op-
timum solution and global optimum solution can be similar
and spatially distant from each other. In this case, if random
initial conditions bring the search closer to the local optimum
solution, the individual particle optima and group optima will
converge towards the local optimum solution and cannot jump
out, therefore losing its ability to search for a global optimum
solution. This problem will become even more severe with the
increase in the noise level and the scale and dimension of the
aberration coefficients set to be searched.

In the following, we will perform some simulations to illus-
trate the stagnation problem of the traditional PSO algorithm
for PD. Here, we consider only the situation of point source.
Three cases will be considered in this simulation:

(1) In the first case, we consider five aberration coefficients,
i.e., C4–C8 of the fringe Zernike coefficients (corresponding to
defocus, astigmatism, and coma aberrations). We randomly in-
troduce 100 sets of coefficients within certain range. For each
set of aberration coefficients, we can use them to generate the
in-focus and defocus PSF images with Fourier optics. With
these two intensity images and the principle of the PD pre-
sented in Section 2, we can use the traditional PSO algorithm
to reconstruct the five aberration coefficients. In this case, two
noise conditions will further be considered. Specifically, a cer-
tain intensity of additive zero-mean Gaussian white noise will
be added to each PSF, where the noise is specified by the ratio
of the standard deviation of the noise to the peak value in the
noiseless PSF image [5]. The specific range of the coefficients
considered in this case is �−0.1λ, 0.1λ��λ � 500 nm�. The two
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noise ratios considered in this case are 0.003 and 0.01,
respectively.

(2) The second case considered here is the same as the first
case, except that the range of the aberration coefficients is in-
creased to �−0.5λ, 0.5λ�.

(3) The range of each aberration coefficient considered in
this case is �−0.3λ, 0.3λ�, a little smaller than the second case.
However, the number of coefficients considered is increased
to 8, i.e., C4–C11 of the fringe Zernike coefficients (corre-
sponding to defocus, astigmatism, coma, spherical, and trefoil
aberrations).

The root mean square error (RMSE) between the real aber-
ration coefficients and those recovered by the traditional PSO
algorithm is used to evaluate the accuracy of the method, which
is expressed as

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm�4−1
j�4 �C �1�

j − C �0�
j �2

m

s
, (14)

where m is the number of the aberration coefficients that are
considered, and C �1�

j and C �0�
j are the jth recovered and intro-

duced aberration coefficients, respectively. Here, we do not use
the value of the fitness function to evaluate the accuracy, for it
cannot give an intuitive impression on the accuracy of the re-
covered coefficients.

In the traditional PSO algorithm, the learning factors c1 and
c2 are usually set as c1 � c2 � 2.05 [21,25]. The population
size is 40, and the maximum number of iterations is 400. The
results of the three cases are shown in Fig. 1, where the “trial

number” represents the index of the simulations. We can draw
the following results from Fig. 1:

(1) The traditional PSO algorithm for PD is sensitive to
noise. We can see from Fig. 1(a) that in the absence of noise,
the accuracy is acceptable, which decreases apparently in the
presence of noise. We can also recognize an apparent decrease
in accuracy in Fig. 1(b) due to noise. The underlying reason is
that in the presence of noise, the distribution of the error metric
over the search space becomes more complicated, and the
algorithm becomes more likely to be trapped in the local
minimum.

(2) The traditional PSO algorithm for PD is sensitive to the
range of aberration coefficients. Comparing the noise-free cases
of Figs. 1(a) and 1(b) we can see that the accuracy decreases
apparently with the increase in the range. One of the under-
lying reasons is that it becomes harder to find the true global
minimum with the increase in the range of the search space,
and the algorithm becomes more susceptible to the stagnation
problem.

(3) The traditional PSO algorithm for PD is also very sen-
sitive to the dimension of search space. Comparing the noise-
free cases of Figs. 1(b) and 1(c), we can see that the accuracy
further decreases apparently with the increase in the dimension
of the search space.

Also, we may hardly recognize any difference when the noise
ratio increases from 0.003 to 0.01. The reason is that the tradi-
tional PSO algorithm for PD is very susceptible to noise. In
both cases, the traditional PSO algorithm for PD cannot find
the true global minimum, and therefore the results are similar.
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Fig. 1. Illustration of the stagnation problem of traditional PSO for PD under different conditions. In (a), the range of aberration coefficients to
be searched is �−0.1λ, 0.1λ��λ � 500 nm�, and the dimension is 5. In (b), the range is increased to �−0.5λ, 0.5λ�, and the dimension is still 5. In (c),
the range is �−0.3λ, 0.3λ�, while the dimension is increased to 8. Different noise conditions are also considered in each case. We can recognize that the
traditional PSO algorithm for PD is sensitive to noise and the range and dimension of the search space.
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4. EFFICIENT SOLUTION TO THE STAGNATION
PROBLEM OF THE TRADITIONAL PSO
ALGORITHM FOR PD

In this section, we will propose an explicit strategy to solve the
stagnation problem of the traditional PSO algorithm for PD,
based on a deep understanding of the inherent optimization
mechanism of the PSO algorithm. Specifically, we introduce
a redistributing mechanism to PSO to detect and prevent pre-
mature convergence. Also, to complement the redistributing
mechanism, randomized Halton sequences are further intro-
duced to ensure the uniform distribution and randomness of
the initial particles and the redistributed particles in the search
space. Some discussions are also presented to help understand
the strategy proposed in this section.

A. Redistributing Mechanism for Detecting and
Preventing Premature Convergence
The redistributing mechanism contains two parts of contents,
i.e., when to redistribute the particles and how to redistribute
the particles. We redistribute some particles when we detect the
premature convergence. The goal of this redistributing mecha-
nism is to liberate particles from the state of premature conver-
gence, i.e., to prevent premature convergence.

Here, we first discuss how to detect the premature conver-
gence. According to the inherent optimization mechanism of
the PSO algorithm, there exists an information exchange
among different particles, and the particle swarm will gravitate
towards the optimum solution (may be a local minimum), in-
stead of randomly looking for the solution individually. All par-
ticles are pulled on all dimensions toward the optimum solution
via update equations, i.e., Eqs. (11) and (13). Therefore, after
enough times of iterations, the positions of the particles in the
search space will be clustered around the optimum solution. In
this case, the standard deviation of the error metric (objective
function) corresponding to the particles should be very small.
Therefore, we can detect the premature convergence of the
PSO algorithm by analyzing the standard deviation of the error
metric. Specifically, we can first set a proper threshold. If the
standard deviation of the error metric is smaller than this
threshold, we can assume that premature convergence has taken
place. This stagnation criterion can be expressed as�

YES, if σE < T ,
NO, if σE ≥ T ,

(15)

where “YES” means premature convergence or stagnation has
happened, “NO” denotes that no premature convergence hap-
pens, T is a threshold, and σE is the standard deviation of the
error metrics of the particles, which can be expressed as

σE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i�1

�Ei − E�2
vuut , (16)

where N is the number of the particles in the search space, Ei is
the error metric corresponding to particle i, and E is the mean
value of the error metrics of all the particles.

Also, we can also detect premature convergence by analyzing
the change of the mean value of the error metrics of all the
particles E between two iterations, for the mean value of

the error metrics of all the particles should become stable when
premature convergence happens. Therefore, we can have
another criterion for detecting premature convergence, which
can be expressed as

�
YES, if ΔE < T 1,
NO, if ΔE ≥ T 1,

(17)

where ΔE represents the change of the E between two itera-
tions, and T 1 is a threshold. Both of these two criteria can be
used to detect premature convergence.

After discussing how to detect premature convergence, we
will continue to discuss how to prevent premature convergence.
As mentioned before, the traditional PSO algorithm lacks a
mechanism to escape from the local minimum. If no particle
encounters a better solution over a period of time, the swarm
will continually move closer to the unchanged optimum solu-
tion (may be a local minimum). Here, we present a redistrib-
uting mechanism to liberate particles from the state of
premature convergence. Specifically, when we detect premature
convergence, we redistribute those particles close to the opti-
mum position in the search place while reserving the current
optimum solution.

Here, the Euclidean distance is used to measure the distance
between two particles in the search space, which can be ex-
pressed as

l�~xi, ~xj� � k~xi − ~xjk, (18)

where the two vectors, ~xi and ~xj, represent the positions of two
particles (particle i and j) in the search space, l�~xi, ~xj� represents
the Euclidean distance between these two particles, and k · k is
the Euclidean norm. The redistributing criterion for each par-
ticle can be express as

�
YES, if 0 < l�~xi, ~xOP� ≤ R,
NO, else,

(19)

where the vector ~xOP represents the position of the current op-
timum solution, “YES”means that this particle should be redis-
tributed, “NO” denotes that this particle can be reserved, and R
is the radius of the adjacent area of the optimum solution. The
particles in this area will be randomly redistributed, except the
particle representing the current optimum solution. This redis-
tributing mechanism for preventing premature convergence is
illustrated in Fig. 2 (we do not show how to detect premature
convergence).

One reason that the current optimum solution is reserved is
that if this solution is actually the true global optimum, we can
guarantee that the particles will definitely converge to this sol-
ution again. The reason that those particles outside of the ad-
jacent area of the optimum solution are retained is that these
particles are a little far from the optimum solution. Therefore,
they still have the possibility of reaching the true global opti-
mum. The values of T and R should be carefully selected.
Redistributing too early did not allow for the desired degree
of solution refinement, while redistributing too late means
wasting time in a stagnated state.
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B. Randomized Halton Sequences for Ensuring the
Uniform Distribution and Randomness of the Initial
and Redistributed Particles
Initialization of particles plays an important role in population-
based optimization techniques. If the swarm population does
not cover the search space efficiently, it may not be able to
locate the potent solution points, thereby missing the global
optimum. This difficulty may be minimized to a great extent
by selecting a well-organized distribution of random numbers.
Since low-discrepancy sequences have better uniformity than
the random number sequences, they have been used to initialize
the particles [28,29]. Comparison between the distributions of
the randomly generated particles and those generated with low-
discrepancy sequences is illustrated in Fig. 3.

However, the situation in this paper is a little special. We not
only need to ensure the uniform distribution of the initial par-
ticles, but also need to ensure the uniform distribution and ran-
domness of the redistributed particles when we detect
premature convergence and redistribute some particles. The
main goal for this is that the particles can be uniformly redis-
tributed to different positions in the search space in different

redistributing processes. Here we use Halton sequences to
realize the uniform distribution of the initial and redistributed
particles. A simple strategy is also presented to randomize
Halton sequences and guarantee the randomness of the redis-
tributed particles. Compared to the randomized Halton
sequences proposed in Ref. [30], our method is much easier
to understand and implement.

The Halton sequence is generated based on the van der
Corput sequence. Now we first briefly introduced the van der
Corput sequence, which is a one-dimensional low-discrepancy
sequence. Let b ≥ 2 be an integer. Any integer n ≥ 0 can be
expressed as

n � d 0 � d 1b� 	 	 	 � d jbj, (20)

where d i ∈ f0, 1,…, b − 1g for i � 0, 1,…, j. The radical-
inverse function ϕb�n� is defined as

ϕb�n� �
d 0

b
� d 1

b2
� 	 	 	 � d j

bj�1 : (21)

The van der Corput sequence in base b is the se-
quence fϕb�n�gj∞n�0.

The Halton sequence is an extension of the van der Corput
sequence to a multi-dimensional space. The t-dimensional
Halton sequence X n in �0, 1�t is usually defined as

X n � �ϕb1�n�,ϕb2�n�,…,ϕbt �n��, (22)

where b1, b2,…, bt are integers that are greater than one and
pair-wise prime. In practice, they are usually chosen to be the
first t prime numbers.

Now we begin to discuss how to randomize the s-dimensional
Halton sequence. The basic principle adopted here is to
randomly rearrange the order of the ϕb1�n�,ϕb2�n�,…
,ϕbt �n� in X n (b1, b2,…, bt are the first t prime numbers in
order, and t is usually more than five for the case of the PD
technique). This problem can be boiled down to generating a
random permutation of the sequence 1, 2,…, t. Here, the
Fisher–Yates shuffle algorithm is introduced to complete this
work. The Fisher–Yates shuffle is an algorithm for generating
a random permutation of a finite sequence (in plain terms,
the algorithm shuffles the sequence). The algorithm effectively
puts all the elements into a hat; it continually determines the
next element by randomly drawing an element from the hat until

Fig. 3. Comparison between the distributions of the (a) randomly
generated particles and (b) those generated with low-discrepancy se-
quences. We can see that the particles generated with low-discrepancy
sequences have better uniformity.

Particle

Objective function
Global optimum 

solution

Redistributed particle

Original particle

Objective functionOptimum solution

Adjacent area

Objective functionOptimum solution

Adjacent area

Particle

(a)

(b)

(c)

Fig. 2. Illustration of the redistributing mechanism for preventing
premature convergence. In (a), when we detect premature conver-
gence, we determine the optimum solution and its adjacent area with
a radius of R. In (b), we randomly redistribute those particles in this
adjacent area in the search space, except for the optimum solution, and
then we continue to perform the PSO algorithm. At last, after certain
times of this redistributing process, the particles converge to the true
global optimum solution, as shown in (c).
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no elements remain. The algorithm produces an unbiased per-
mutation: every permutation is equally likely.

The pseudo code of the modern Fisher–Yates shuffle
algorithm to shuffle an array q of N elements (indices
0, 1,…,N − 1 is shown below:

for i from 0 to N − 2 do

j ← random integer such that i ≤ j < N

exchange q�i� and q�j�: (23)

With the Fisher–Yates shuffle algorithm presented in
Eq. (23), we can obtain a random permutation of the sequence
1, 2,…, t. Using this permutation sequence, we can corre-
spondingly set the order of ϕb1�n�,ϕb2�n�,…,ϕbt �n� in X n,
and a randomized Halton sequence is generated. Besides, we
can further randomize the sequences by randomly choosing
the start of each sequence.

We should emphasize that here the randomized Halton
sequences are used to complement the redistributing mecha-
nism presented above for improving the global searching
ability and solving the stagnation problem of the PSO al-
gorithm. They do not make much sense when they are dis-
cussed individually (without the redistributing mechanism).

The flow chart of the modified PSO algorithm for PD pro-
posed in this paper is shown in Fig. 4. We should point out that
when we initialize the velocity and position of the initial and
redistributed particles, we ensure only the uniformity of the
positions of them. The velocities of them are still randomly
generated. The stagnation criterion in this figure indicates
Eqs. (15) or (17).

5. SIMULATIONS AND EXPERIMENT

In this section, simulations and an experiment will be per-
formed to demonstrate the effectiveness of the proposed strat-
egy for solving the stagnation problem of the traditional PSO
algorithm for PD.

A. Simulations
In this part, we will first perform similar simulations as in
Section 3 using the modified PSO algorithm. Three different
cases will be considered, which are presented below:

(1) In the first case, the range of aberration coefficients is
�−0.5λ, 0.5λ��λ � 500 nm�, and the dimension is 5.

(2) In the second case, the range is increased to
�−1.0λ, 1.0λ�, and the dimension is still 5.

(3) In the third case, the range is �−1.0λ, 1.0λ�, while the
dimension is increased to 8.

The noise conditions considered in this part are the same
as those in Section 3. Then we can use the modified PSO
algorithm to recover the wavefront coefficients. Since in this
algorithm there is an explicit strategy to solve the stagnation
problem (thus greatly improving the global searching ability),
we can further change the value of c1 and c2 to improve
the local searching ability of the algorithm. In the modified
algorithm, we set the learning factors c1 � c2 � 1.05. The
value of w is constant, w � 0.37, T � 0.001, and R �
0.05λ. The population size is 40 and the maximum number
of iterations is 400. The accuracy of the three cases
[evaluated with Eq. (14)] considered in this part is shown
in Fig. 5.

Comparing Fig. 5 with Fig. 1, we can clearly see that the
accuracy of the PSO algorithm for PD is not sensitive to

Fig. 4. Flow chart of the modified PSO algorithm for PD with an explicit strategy (in red color) for solving the stagnation problem.
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the range and dimension of the search space. With the increase
in the range and dimension of aberration coefficients to be
searched, the accuracy nearly stays unchanged. While the ac-
curacy actually decreases with the increase in the noise ratio,
it is still acceptable, and the algorithm is seldom trapped in
a local minimum (in this case, a wrong result will be obtained).
We can conclude that the strategy of solving the stagnation
problem of the traditional PSO for PD is efficient.

To further help grasp the specific operation mechanism
of the proposed strategy for solving the stagnation problem,

we continue to perform some simulations to show the trend
of the change of error metric in the optimization process.
For one specific case (coefficient range of �−0.5λ, 0.5λ�,
dimension of 5, and a noise ratio of 0.01), we use the tradi-
tional PSO algorithm and the modified PSO algorithm to
optimize the error metric (each with four simulations), re-
spectively. The change of the error metrics during optimi-
zation are shown in Fig. 6, and different colors in this
picture are used to differentiate the results of the four
simulations.
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Fig. 5. Results of the modified PSO algorithm for PD under different conditions. In (a), the range of aberration coefficients to be searched is
�−0.5λ, 0.5λ��λ � 500 nm�, and the dimension is 5. In (b), the range is increased to �−1.0λ, 1.0λ�, and the dimension is still 5. In (c), the range is
�−1.0λ, 1.0λ�, while the dimension is increased to 8. Different noise conditions are also considered in each case. We can recognize that with the
strategy for solving the stagnation problem, the modified PSO algorithm for PD is no longer sensitive to noise or the range and dimension of the
search space.
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Fig. 6. Change of the error metrics (four sets of data) of the traditional PSO (a) and the modified PSO (b) for PD during the optimization process.
We can clearly recognize a step-change downward trend in (b). This rapid stepwise decrease in error metric of (b) illustrates the effectiveness of the
redistributing mechanism.
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We can see from Fig. 6(a) that all of the four simulations
using the traditional PSO algorithm are trapped in a local mini-
mum, while all of the four simulations using the modified PSO
algorithm can find the true global minimum, as shown in
Fig. 6(b). Particularly, we can recognize that the error metrics
of the four simulations in Fig. 6(b) change in a stepwise decrease
mode. The main reason that results in this characteristic step-
change decrease is the redistributing strategy. The redistributing
strategy provides a mechanism for jumping out of the local
minimum and thus can prevent premature convergence. When
the redistributed particles find a solution better than the
current optimum solution, the step-change decrease will happen,
until the true global optimum solution is obtained.

Also, we can see that for most cases in Fig. 6(b), the step-
change decrease happens very rapidly and the optimization
process can converge to the global minimum very soon.
One reason for this is the randomized Halton sequences for
ensuring the uniform distribution of the redistributed particles
in the search space, which can make the redistributed particles
cover the search space more efficiently, thus improving the
effectiveness of the redistributing mechanism.

B. Experimental Tests
To further validate the effectiveness of the proposed strategy
for solving the stagnation problem of the traditional PSO

Fig. 7. (a) Sketch and (b) physical map of the optical system used in
the experiment.

Fig. 8. Four pairs of PSF images directly collected from the optical system and re-generated with the recovered aberration coefficients.
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algorithm for PD, a simple experiment will be performed. The
sketch and physical map of the optical system used in the ex-
periment are shown in Fig. 7(a) and Fig. 7(b), respectively. The
interferometer (PhaseCam 4020) in Fig. 7 serves two purposes.
On one hand, it can directly measure the aberrations of the
optical system, which is composed of only one lens (the aber-
rations of this system are introduced by slightly rotating the
lens). On the other hand, the focus of the interferometer
(PhaseCam 4020) is used to serve as the point light source.
The beam passes through the system two times and a PSF
can be obtained at the detector. By using the one-dimensional
precision translation stage, we can obtain a pair of PSFs with a
known defocus diversity between them. Then by using PD
with the modified PSO algorithm serving as the optimization
method, we can recover the corresponding aberration coeffi-
cients (note that the aberration coefficients here are twice as
much as the aberration coefficients of the optical system, for
the beam passes through the system twice). The focal length
of the lens is 180 mm, the diameter of the aperture stop is
9.2 mm, the defocus distance is 1.5 mm, the wave length is
0.6328 μm, and the pixel size of the detector is 5.5 μm.

Here, we use two methods to demonstrate the accuracy of
the recovered aberration coefficients. On one hand, we can
use the recovered aberration coefficients to re-generate the in-
focus and defocus PSF images with Fourier optics. By com-
paring these two re-generated PSF images with those directly
obtained from the optical system, we can validate the effec-
tiveness of the proposed algorithm qualitatively. On the other
hand, we can directly use the aberration coefficients measured
by the interferometer to quantitatively demonstrate the accu-
racy of the proposed algorithm. Four pairs of PSF images are
collected, and the corresponding aberration coefficients are
measured by the interferometer and recovered by the proposed
algorithm. The results are shown in Fig. 8 and Table 1,
respectively.

We can see from Fig. 8 that the PSF images directly col-
lected from the optical system bears strong similarities with
those generated with the aberration coefficients recovered using
the modified algorithm. This fact can qualitatively demonstrate
the effectiveness of the modified algorithm. In this figure, the
words “in-focus” and “defocus” mean only that the two images
are collected at different focal planes.

The aberration coefficients directly measured from the
interferometer and those recovered with the modified algo-
rithm are shown in Table 1. Here only the 5th–8th fringe
Zernike coefficients are compared, which correspond to
astigmatic and coma aberrations. The defocus aberration can-
not be compared. The high-order aberrations are very
small, and we still do not compare them. We can see from
Table 1 that the mean error of each aberration coefficient is
about 0.01λ�λ � 0.6328 μm�, which is enough to demon-
strate the feasibility of the modified algorithm in practical con-
ditions. The main reason for this error is the non-common path
error induced by the splitter.

Also, the traditional PSO algorithm is used to recover the
aberration coefficients. However, we find that it can easily
be trapped in a local minimum, and a wrong result will be ob-
tained. This result is consistent with that shown in the simu-
lation process. In this part, we no longer present the wrong
results obtained by the traditional PSO algorithm.

6. CONCLUSION

One key point of the PD technique is to develop a suitable
optimization algorithm to minimize the error metric (objective
function) and search the coefficient set for which the error met-
ric is a global minimum. Gradient-based optimization algo-
rithms can easily be trapped in a local minimum, for the
searching direction of them mainly depends on the derivative
information of the error metric. From this perspective,
population-based optimization algorithms are better, for they
rely directly upon objective function values rather than deriva-
tive information. Compared to other population-based optimi-
zation algorithms, the PSO algorithm has simple structure,
high convergence efficiency, and fast searching ability. However,
we should note that the traditional PSO algorithm for PD still
suffers from the stagnation problem (premature convergence).
This problem will become even more severe with the increase
in the noise level and the scale and dimension of the aberration
coefficients set to be searched.

To solve the stagnation problem of PSO for PD and im-
prove the robustness of PD wavefront sensing, an explicit strat-
egy is proposed in this paper. According to the inherent
optimization mechanism of the PSO algorithm, we know that
there exists an information exchange among different particles,
and the particle swarm will gravitate towards the optimum sol-
ution (may be a local minimum), instead of randomly looking
for the solution individually. Based on this basic knowledge, we
propose a redistributing mechanism to detect and prevent pre-
mature convergence. Randomized Halton sequences are further
introduced to complement this redistributing mechanism and
improve the efficiency of it, which can ensure the uniform dis-
tribution and randomness of the initial particles and the redis-
tributed particles in the search space. Simulation results show
that this strategy can effectively improve the global searching
ability of the PSO algorithm and solve its stagnation problem,
especially for large-scale and high-dimension wavefront sensing
and noisy conditions. The effectiveness of the proposed method
is further verified by an experiment. This work can contribute
to improving the capacity and robustness of PD wavefront
sensing.

Table 1. Aberration Coefficients Measured by
Interferometer (A) and Recovered Using PDwith Modified
PSO Algorithm Serving as Optimization Method (B) for
Four Pairs of PSF Imagesa

C 5 C 6 C 7 C 8

(a) A 0.621 −0.339 0.137 −0.021
B 0.608 −0.345 0.130 −0.026

(b) A 0.395 −0.278 0.112 −0.026
B 0.382 −0.288 0.104 −0.033

(c) A 0.345 −0.257 0.102 −0.020
B 0.336 −0.264 0.095 −0.023

(d) A 0.574 −0.264 0.127 −0.016
B 0.561 −0.269 0.124 −0.020

aThe aberration coefficients are measured in λ � 0.6328 μm.
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