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A B S T R A C T

Cu2ZnSn(S,Se)4 (CZTSSe) films with smooth surface were prepared by solution approach and etched (etched-
CZTSSe) through using KMnO4 in a H2SO4 based medium followed by Na2S. Two types of solar cells with
conventional structure were fabricated with CZTSSe and etched-CZTSSe as absorber, respectively. It is de-
monstrated by XRD, XPS, EDS and Raman measurement that the bulk CZTSSe is of kesterite structure while its
surface contains a small amount of Cu2ZnSn3Se8 and ZnSe secondary phases besides kesterite CZTSSe. On the
surface, the Cu2ZnSn3Se8 is completely removed after etching while the ZnSe is partially. It is found that the
elimination or reduction of the secondary phases increase the shunt resistance greatly, leading to a larger open-
circuit voltage (Voc) which results in the improvement of power conversion efficiency (PCE) for the etched-
CZTSSe-based solar cell. The PCE has a maximum increase of 26% by etching. An intensive study has been made
for the influencing mechanism of etching on the PCE of solar cells.

1. Introduction

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has been identified as a pro-
mising absorber material of alternative for Cu(In,Ga)(S,Se)2 (CIGSSe),
due to its earth-abundant and nontoxic elements, high absorption
coefficient (> 104 cm−1), tunable band gap (1.0–1.5 eV) and a power
conversion efficiency (PCE) as much as 33% predicted by Shockley-
Queisser theory (Katagiri et al., 2009; Ki and Hillhouse, 2011; Mitzi
et al., 2011; Ramasamy et al., 2012). In recent years, a great progress
has been made in the preparation and performance of CZTSSe-based
solar cell. The current record device (12.6%) of CZTSSe solar cell has
been produced from a hydrazine solution process by the IBM research
group (Wang et al., 2014). However, the record PCE of 12.6% is still
smaller than the PCE of 22.6% (Jackson et al., 2016) of CIGSe solar cell,
moreover, far below the Shockley-Queisser limit of 33% efficiency
under terrestrial conditions (Wang et al., 2014). It has been demon-
strated that the open-circuit voltage (Voc) deficit, equal to the difference
between the band gap and Voc, is currently the biggest hurdle pre-
venting CZTSSe devices from achieving higher efficiency (Altamura and
Vidal, 2016; Gokmen et al., 2013; Mitzi et al., 2013). Although many
factors, such as crystal quality, p-n junction (Hwang et al., 2017) and

electrode (Salomé et al., 2010), can influence the Voc in a solar cell,
carrier recombination near the charge-separating p-n junction play a
dominant role. While carrier recombination in p-n junction is mainly
determined by the band alignment (Altamura and Vidal, 2016; Bourdais
et al., 2016), lattice mismatch and the secondary phases at p-n junction
interface (Barkhouse et al., 2012; Yin et al., 2014).

A great deal of literature (Altamura and Vidal, 2016; Bourdais et al.,
2016) has indicated that CZTSSe with a single kesterite structure is very
hard to be obtained due to the extremely tiny composition region in
which the kesterite CZTSSe is formed. Some secondary phases, such as
Cu2Sn(S,Se)3 (Mousel et al., 2013), Zn(S,Se) (Hsu et al., 2013), Cu(S,Se)
(Tanaka et al., 2012), and Sn(S,Se) (Xie et al., 2014) are found very
easily to be formed under the off-stoichiometry conditions. In general,
the kesterite CZTSSe photovoltaic-grade absorber is prepared in the Zn-
rich and Cu-poor condition. The best devices have the ratio of Cu/
(Zn+ Sn) in the range of 0.7–0.9 and a ratio of Zn/Sn in the range of
1.1–1.25 (Lopez-Marino et al., 2013). Although the ratios can be con-
trolled in bulk CZTSSe, it seems very difficult in its surface layer, re-
sulting in an off-stoichiometric composition that is easy to form some
secondary phases. These secondary phases can be retained at the in-
terface of the CdS/CZTSSe heterojunction and potentially degrade the
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performance of CZTSSe-based solar cells. Therefore, it is essential and
significant to characterize the secondary phases and elucidate their
impact on the cell’s performance as well as to look for an effective
approach of removing or reducing those secondary phases for enhan-
cing the performance of CZTSSe-based solar cell. Xie et al. (2014) re-
ported that the SnSe secondary phase is detected by XRD (Li et al.,
2016a,b). Tanaka et al. (2012) observed secondary phase of Cu2Se on
the surface of CZTSSe by Raman spectroscopy and found that the
amount of Cu2Se can be lowered by adjusting the Cu/(Zn+ Sn) ratio.
Buffiere et al. (2015) used KCN to remove the secondary phase of Cu
(S,Se) on the surface of CZTSSe. Edgardo Saucedo et al. (Fairbrother
et al., 2014; Lopez-Marino et al., 2013) tried to clear away ZnSe sec-
ondary phase that was formed during annealing process in low pressure
and temperature conditions with an etching method by using H2O2,
KMnO4, or K2Cr2O7, and found that KMnO4 is the most effective etching
agent. These results indicate that the solution used for etching is not the
same for different secondary phases. Although the characterization and
elimination of surface secondary phases have been reported in some
literature, few researches about the effect of secondary phases on the
performance of CZTSSe-based solar cell are found and the corre-
sponding influencing mechanism remains unclear or need to be further
illustrated.

It is well known that X-ray photoelectron spectroscopy and Raman
scattering spectroscopy are effective techniques to detect the compo-
sition and structure of surface layer. Chemical etching is one of ap-
proaches for removing surface secondary phases. Therefore, in our
present work, we will clear the surface of CZTSSe film by chemical
etching, characterize the surface structure before and after etching by
XPS and Raman techniques and systematically study the influencing
mechanism of etching on the performance of CZTSSe-based solar cells.

2. Experimental

A precursor solution used for the preparation of Cu2ZnSnS4 (CZTS)
thin films was prepared by dissolving Cu(CH3COO)2·H2O (1.198 g,
6mmol), SnCl2·2H2O (0.745 g, 3.3 mmol), ZnCl2·2H2O (0.5043 g,
3.7 mmol), and thiourea (1.97 g, 26 mmol) into N, N-dimethyl for-
mamide (10mL, DMF) and then magnetically stirring for 2 h at room
temperature. The CZTS precursor thin films were fabricated by spin-
coating the CZTS precursor solution onto the Mo-coated soda-lime glass
substrates at a rotating rate of 3000 rpm for 3min followed by drying in
air at 300 °C, and the coating and drying processes were repeated 10
times. A detailed synthetic procedure of the CZTS films can be found
elsewhere (Liu et al., 2015; Xiao et al., 2016). To get the suitable
CZTSSe thin films, the as-prepared CZTS films and 200mg of selenium
powder were sealed in a graphite box (∼55mm in diameter and
∼40mL in volume), followed by a selenization process at 550 °C for
15min in a rapid thermal processing (RTP) furnace (MTI, OTF-1200X-
4-RTP) under N2 flow (40mL/min, keep the pressure at 1 bar) with a
ramping rate of 5 °C/s, and finally cooled down to room temperature
naturally. Subsequently, some CZTSSe films were etched by the KMnO4

dissolved in dilute H2SO4 (PH=5) for 30 s followed by dipping in a
Na2S (1M) aqueous solution for 1min. The KMnO4 acidic solution is
used to etch surface secondary phases, such as ZnSe, by following re-
action (Lopez-Marino et al., 2013; Xie et al., 2014):

8H2SO4(aq)+ 2KMnO4(aq)+ 5ZnSe(s)= 5Se
(s)+ 5ZnSO4(aq)+ 2MnSO4(aq)+K2SO4(aq)+ 8H2O(l)

The Na2S is used to solubilize the Se produced by above reaction, so
that the Se can be rinsed out from the surface. In addition, the Na of
Na2S might diffuse into the polycrystalline CZTSSe films to passivate
surface and grain boundaries, which is beneficial to improvement the
PCE of solar cell.

For convenience, these CZTSSe films with an etching process are
denoted as etched-CZTSSe. The CZTSSe-based solar cells with a

conventional structure of glass/Mo/CZTSSe/CdS/i-ZnO/ITO/Al were
fabricated by using the CZTSSe or etched-CZTSSe as absorber layers.
Then CdS buffer layer were prepared by chemical bath deposition,
using cadmium sulfate (CdSO4·8/3H2O) as cadmium precursor sources
(Neuschitzer et al., 2015), followed by the radio frequency magnetron
sputtering deposition of i-ZnO (50 nm) and ITO (260 nm). Finally, Al
grid electrode (∼1.0 μm) was made though thermal evaporation.

The crystal structures of the films were characterized by an X-ray
diffractometer (XRD) with Cu Kα radiation (λ=1.5406 Å). The
morphologies of surface are measured by scanning electron microscope
(SEM) (Hitachi S-4800) equipped with an energy-dispersive X-ray
spectroscopy (EDS) system (EDAX Genesis 2000). The structure of the
surface layer is detected by Raman scattering spectroscope excited with
633 nm wavelength (T64000 Horiba Jobin-Yvon spectrometer at
backscattering configuration). The composition of film is measured by
EDS. Composition of the surface and valence state of elements of the
film are detected by X-ray photoelectron spectra (XPS) with Mg Ka
radiation (hν=1253.6 eV) and a resolution of 1.0 eV (VG ESCALAB
Mark II XPS). For the power conversion efficiency measurements of
CZTSSe based solar cells, the current density-voltage curves were
measured with a Keithley 2400 source meter and a solar simulator
(Abet Sun 2000; AM 1.5). The light intensity was calibrated to 100mW/
cm2 using a Newport optical power meter (model 842-PE) certified by
Newport.

3. Results and discussion

Fig. 1 shows the X-ray diffraction (XRD) patterns of CZTSSe thin
film and etched-CZTSSe thin film, indicating that both films consist of
CZTSSe with kesterite structure (Amal et al., 2014; Li et al., 2016a,b;
Xiao et al., 2015, 2016), metal Mo (JCPDS Card No. 42-1120) (Yang
et al., 2016) and MoSe2 (Li et al., 2015; Würz et al., 2003). The ex-
istence of Mo is ascribed to the Mo layer coated on the glass substrate,
while the MoSe2 is formed due to the reaction of Mo and Se at the
CZTSSe/Mo interface during the selenization process. The XRD results
reveal that both the CZTSSe and etched-CZTSSe films are composed by
a single kesterite CZTSSe phase. The sharp diffraction peaks imply that
they have a good crystalline quality.

Fig. 2a and c show the SEM images of the surface morphology of
CZTSSe and etched-CZTSSe films, respectively. It is found that the
surface of CZTSSe film appears fish scale residual after etching with
KMnO4/H2SO4+Na2S, which is due to that the chemical reaction re-
sidual cannot be washed out completely. In addition, the small grains
on the surface of the CZTSSe film (marked by red circles) disappeared
after etching. This implies that the small grains may be secondary
phases and can be removed by etching.

Fig. 1. XRD patterns for the CZTSSe (lower curve) and etched-CZTSSe (upper
curve).
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Both first principle calculations and experiments demonstrate that
the phase composition of CZTSSe film is closely related to its chemical
composition. In order to figure out secondary phases in the surface
layer of the CZTSSe film, the chemical compositions of surface layer and
bulk of the CZTSSe films before and after etching were measured by
XPS and EDS, respectively, as shown in the Supporting information. The
results are listed in Table 1, which shows a great difference between the
bulk and the surface layer.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.solener.2018.08.016.

Fig. 3 shows ternary phase diagram of composition-structures cal-
culated by Altamura and Vidal (2016). The red dot around the center of
phase diagram shows the composition range to form a single-phase
Cu2ZnSnSe4, indicating that single phase Cu2ZnSnSe4 can be form when
the composition is near stoichiometric ratio of Cu2ZnSnSe4. According
to the results listed in Table 1, the compositions of bulk CZTSSe and
etched-CZTSSe are both close to the stoichiometric ratio of CZTSSe. So,
it is deduced from the phase diagram that the bulk of both samples are
composed of single kesterite CZTSSe, which is in agreement with the
results of Fig. 1. However, the surface compositions of CZTSSe and
etched-CZTSSe films deviate far from the stoichiometric ratio, implying
that their surface layer should be composed of multi-phases. Based on
Table 1, the surface composition of CZTSSe film locates at the position
marked by a black star in Fig. 3, which indicates that the secondary

phases of Cu2ZnSn3Se8 and ZnSe exist on the surface besides kesterite
CZTSSe phase. The surface composition of etched-CZTSSe locates at the
position marked by a blue square in Fig. 3, indicating that the sec-
ondary phase is ZnSe. It can be inferred from above analysis that the
etching treatment can remove Cu2ZnSn3Se8 and lead to the exposure of
ZnSe, which is exactly supported by the higher concentration of Zn in

Fig. 2. SEM images of surface and cross-sectional morphology of the CZTSSe (a, b) and etched-CZTSSe (c, d).

Table 1
Compositions and atom ratios of metal elements for surface layer and bulk of the CZTSSe and etched-CZTSSe films measured by XPS and EDS.

Sample Cu (at%) Zn (at%) Sn (at%) Se (at%) S (at%) Cu/metal elements Zn/metal elements Sn/metal elements

Surface CZTSSe 16 14 18 52 – 0.33 0.29 0.37
Etched-CZTSSe 18 25 13 44 – 0.32 0.44 0.23

Bulk CZTSSe 21 11 10 54 4 0.5 0.26 0.23
etched-CZTSSe 21 12 12 47 8 0.46 0.26 0.26

Fig. 3. Cu-Zn-Sn-X diagram calculated by G. Altamura et al using first principle
calculation (Altamura and Vidal, 2016).
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etched-CZTSSe than that of CZTSSe for the proportion of Zn in ZnSe is
higher than that of Cu2ZnSn3Se8.

In order to confirm the secondary phases, Raman scattering spectra
of the CZTSSe and etched-CZTSSe films were measured. Fig. 4 shows
the Raman spectra of the CZTSSe and etched-CZTSSe films measured
with excitation wavelength of 633 nm. As shown in Fig. 4a, there are
five Raman peaks at 175, 197, 233, 247 and 328 cm−1 for both films,
corresponding to the Raman vibrational modes of CZTSSe (Chalapathy
et al., 2018; Grossberg et al., 2011; Lai et al., 2016; Li et al., 2016a,b).
The strongest peak at 197 cm−1 is ascribed to the vibration of Se, while
the weak peak at 328 cm−1 originates from the vibration of S. These
results indicate that two types of anions coexist in the CZTSSe films but
the content of Se is dominant. It is noted that a shoulder (labeled by an
orange club) appears beside high Raman shift of the 197 cm−1 peak for
the CZTSSe film but disappears after etching, as shown in Fig. 4b. This
result implies that the shoulder is caused by the Raman scattering of a
surface secondary phase. From the analysis about surface composition
mentioned above, it is known that the surface secondary phases are
Cu2ZnSn3Se8 and ZnSe. Since the Raman peaks of ZnSe is far from the
region around 197 cm−1, it can be inferred that the shoulder should
originate from Cu2ZnSn3Se8. Disappearance of the shoulder implies that
the Cu2ZnSn3Se8 is completely removed from the surface after etching
(Altamura, 2014). In addition, the intensity of the 247 cm−1 peak is
stronger than that of 233 cm−1 peak before etching but drops down to
the same level after etching, which implies that the 247 cm−1 peak is
related to the secondary phases. It is reported that ZnSe has a Raman
peak at 249 cm−1 which is very close to the value of 247 cm−1 as ob-
tained in our present work (Fairbrother et al., 2014; Hegedus and
Shafarman, 2004; Li et al., 2016a,b). Therefore, the peak at 247 cm−1

should be ascribed to ZnSe. The decline in the intensity of 247 cm−1

peak indicates that the ZnSe on the surface of CZTSSe is partially re-
moved after etching.

In order to investigate effect of the etching on performance of
CZTSSe-based solar cell, two types of solar cells were fabricated with
the CZTSSe and etched-CZTSSe films as the absorbers, respectively. The
J-V curves of the two types of solar cells with best PCE are shown in
Fig. 5a, which indicates that the PCE of the etched-CZTSSe-based solar
cell is larger than that of the CZTSSe-based solar cell and the im-
provement of the PCE is due to enhancement of Voc, short-circuit cur-
rent density (Jsc) and fill factor (FF) after etching. It is found from
Fig. 5b that the EQE of etched-CZTSSe-based solar cell is higher than
that of CZTSSe-based solar cell at the wavelength larger than 600 nm,
which is mainly due to that the electricity loss of the etched-CZTSSe-
based solar cell is smaller than that of the CZTSSe-based solar cell
(Hegedus and Shafarman, 2004; Hsu et al., 2013). The Jsc is calculated
by integration of the EQE are 28.8 and 31.1 mA/cm2 for the CZTSSe and
etched-CZTSSe-based solar cell, respectively, which agrees with the
value measured from the J-V curves, indicating that our measurement is
reliable. The band gaps (Eg) derived from the EQE indicates that the
bandgap of CZTSe-based solar cell is somewhat larger than that of the
etched-CZTSSe-based solar cell, as shown in the inset of Fig. 5b. The
decreased bandgap of the etched-CZTSSe-based solar cell may result
from formation of surface state due to its rough surface.

The Jsc, Voc, FF and PCE of all of etched-CZTSSe- and CZTSSe-based
solar cells were listed in Table 2, where the performance parameters
with a prefix “etch” are for the etched-CTZSSe-based solar cells. To
elucidate the influencing mechanism of etching on the PCE, the elec-
trical parameters including shunt resistance (Rsh), series resistance (Rs),
diode ideality factor (A) and reverse saturation current density (J0) for
each solar cell are calculated by using site’s method (Yang et al., 2017),
and are listed in Table 3. Similarly, a prefix “etch” was used for elec-
trical parameters of etched-CTZSSe-based solar cells.

In order to reveal the effect of etching clearly, the performance and
electrical parameter ratios (R(x)) of each pair of etched-CZTSSe- and
CZTSSe-based solar cells are introduced and defined as:

= − =R(x) etch x
x

(x J , V , FF, PCE, R , R , A and J )sc OC sh s 0

(1)

Obviously, R > 1 (or R < 1) presents that the etching makes the
performance and electrical parameters increase (or decrease). Using the
data in Table 2, we plot R of Jsc, Voc, FF and PCE for the six pairs of
solar cells, as shown in Fig. 6. It can be seen from Fig. 6 that the R(PCE)
is always larger than 1 for the six pairs of cells, indicating that etching is
beneficial to the improvement of PCE. The R(Voc) of the each pairs of
cells is larger than 1 and the change of the R(Voc) is very similar to that
of R(PCE), which indicate that the improvement of PCE should be
mainly attributed to the increase of Voc. It is known that the

Fig. 4. Raman scattering spectra of the CZTSSe and etched-CZTSSe films (a)
and their A1 vibration mode (b) using excitation wavelength of 633 nm.

Fig. 5. J-V curves of typical CZTSSe and etched-CZTSSe solar cells (a) and the EQE curves and (b). Inset in (b) indicates the band gap estimation of CZTSSe and
etched-CZTSSe absorber layer.

H. Luan et al. Solar Energy 173 (2018) 696–701

699



relationships of Voc with J0, A, and Rsh can be expressed as:

= − ⎛
⎝

− ⎞
⎠R

V J J
qV
AkT

1 exp 1
sh

oc ph
oc

0 (2)

where Jph is photogenerated current density, q, k and T are electron
charge, Boltzmann constant and kelvin temperature, respectively. It is
known from the EQE of Fig. 5b that the bandgaps of CZTSSe-based solar
cell is larger than that of etched-CZTSSe-based solar cell and change of
the EQE is due to electrical loss. So it is deduced from Eq. (2) that the
effects of etching on Voc come from electrical parameters. It can be seen
from Table 3 that both J0 and A increase after etching and A values are
all larger than 2, which implies that the increased J0 is due to the en-
hancement of recombination at CdS/CZTSSe interface (Kassis and Saad,
2003; Saad and Kassis, 2003a; Scheer and Schock, 2011). It can be seen
from Fig. 2 that the surface of CZTSSe becomes rough. Since the rough
surface can increase the density of charged interface states (Nir) and
thus lead to the enhancement of surface recombination (Saad and
Kassis, 2003b). The increased recombination may be ascribed to that
the surface of CZTSSe becomes rough after etching. Based on Eq. (2)
and the discussion mentioned above, it is concluded that etching is not
helpful to increase Voc from the point of view of interface recombina-
tion.

However, it is also found from Table 3 that Rsh increases after
etching, which enhances improvement of Voc. The increased Rsh is due
to that the Cu2ZnSn3Se8 and partial ZnSe secondary phases are removed
from the surface by etching and suppresses shunt effect. Based on above
discussion, it is concluded that the enhancement of Voc comes from the
increased Rsh induced by removing of the secondary phases with
etching. It may be a pathway to further improve the Voc and decrease J0
through the rough surface of etched CZTSSe.

4. Conclusion

Cu2ZnSn(S,Se)4 (CZTSSe) films with kesterite structure and smooth
surface were prepared by solution approach. It is found that the com-
position of the bulk CZTSSe is closed to its stoichiometry but the
composition of the surface of the CZTSSe deviates far from the stoi-
chiometry, leading to the formation of Cu2ZnSn3Se8 and ZnSe sec-
ondary phases at the surface. After etching, the Cu2ZnSn3Se8 is com-
pletely but the ZnSe partially removed from the surface, and the surface
becomes rough. The Rsh is increased by the elimination of secondary
phases, and the J0 is also increased due to the enhancement of interface
recombination induced by the rough surface of CZTSSe. The promotion
of etching to the performance of solar cell is mainly attributed to the
increase of Rsh which improves the Voc of CZTSSe-based solar cell and
thus leads to the increase of PCE.
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