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Abstract: In the past, common media for high-order harmonic generation (HHG) has been 
atoms and molecules. More recently, clusters, and nanoparticles have been introduced as 
HHG emitting media. Multi-particle media can enhance HHG yields but have more stringent 
requirements in determining the optimal parameters. Here, we demonstrate, for the first time, 
the effective application of 1-3 nm metal sulfide quantum dots (QDs) for harmonic generation 
in the 20 – 115 nm extreme ultraviolet range. We report on the syntheses, ablation of Ag2S, 
CdS, and ZnS QDs, and HHG from laser-produced plasmas by using single- and two-color 
pumps. We compare HHG efficiency from the ablated QDs to that of bulk metal sulfides and 
show a seven-fold increase in harmonic yields. Further, the study also allows us to understand 
the effects of QD-contained plasma spreading dynamics on HHG yield. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Laser ablation has been studied extensively in material applications [1]. Laser ablation can 
readily produce plasmas containing neutrals and ions, as well as clusters, quantum dots (QDs) 
and nanoparticles that could be used for different applications. One application for the ablated 
media is that it can be used as emitters for harmonic generation from ultrashort laser pulses. 
The practical aspects of these studies include formation conditions for efficient emission of 
coherent extreme ultraviolet (XUV) radiation through high-order harmonic generation (HHG) 
with further applications in different fields of physics, chemistry, and biology. The enhanced 
harmonic generation has been demonstrated using clusters and nanoparticles in the cases of 
gas HHG [2–10] and plasma HHG [11–13]. 

Previous studies on HHG after ablation of nanoparticle-containing targets have revealed 
the advantages of such species for frequency conversion in the XUV range. A larger cross-
section of recombination and the possibility of recombination of an accelerated electron with 
the parent particle through either recombination with the same or a neighboring atom, or with 
the multi-atomic particle as a whole, were considered as the most probable reasons for the 
growth of HHG yield in such plasmas. In these earlier studies, the experimental conditions 
were not optimized, in particular, the delay between the heating and driving pulses. 
Nevertheless, even at those non-optimal conditions, the harmonic yield was already higher 
than in the case of ablation of bulk targets of the same material [14]. Since in these studies 
short delays of up to 100 ns between the heating and driving pulses were employed, it was not 
clear how nanoparticle species could influence the processes of frequency conversion, 
because there were no proofs of their presence in the interaction region with the driving laser. 
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One explanation was based on the disintegration of larger species into small clusters and 
monoatomic species, which probably could reach the interaction area at the short delays 
employed. However, no sufficient confirmation of this assumption has been provided. Taking 
into account the anticipated velocities of atoms, molecules and ions (~1 × 104 m s−1), QDs (~1 
× 103 m s−1) and nanoparticles [(1-5) × 101 m s−1] of the same material [15] one can expect 
their arrival in the region of the femtosecond laser beam propagation a few tens of 
nanosecond, a few hundreds of nanosecond, and a few tens of microsecond from the 
beginning of ablation, respectively. 

To match the propagation of the driving pulse and the highest concentration of the studied 
group of multi-atomic species one, therefore, has to use the electronic delay between the 
heating and the driving pulses. The application of two electronically separated pulses from 
different lasers synchronized by a digital delay generator allows analyzing the involvement of 
various species in such multi-particle plasmas in the HHG process. This method has earlier 
been used in the case of third harmonic generation in a laser plasma [16,17]. Application of 
this approach for HHG in multi-particle plasmas, alongside with other methods of harmonic 
enhancement, requires the analysis of the ablated species to temporally match them with the 
propagation of driving femtosecond pulses through the plasma. 

The QD-containing materials, particularly metal sulfide based QDs, have attracted special 
attention due to their large low-order optical nonlinearities [18,19]. Particularly, various 
nonlinear optical processes can be induced in the ZnS nanoparticles, which became useful in 
photonics [20–22]. The coexistence of reverse saturable absorption and two-photon 
absorption in silver sulfide suggests that Ag2S QDs could be a very promising nonlinear 
medium for photonic devices in different time scales if these semiconductor nanocrystallites 
are incorporated into appropriate media while retaining the attractive features of both 
components. The Ag2S QDs also demonstrate low-threshold optical limiting in the visible and 
near-IR ranges [23–25]. To the best of our knowledge, there are so far no studies devoted to 
the analysis of the high-order nonlinear optical properties of metal sulfide QDs. 

A search for new applications of QDs is an important task for the optical community. The 
interesting idea is to find the optimal conditions in the application of such QDs as effective 
emitters of the high-order harmonics of femtosecond pulses for the development of efficient 
sources of coherent XUV radiation. In this paper, we demonstrate for the first time HHG in 
such QDs using electronically driven delays between the heating and driving lasers. We 
ablate Ag2S, CdS and ZnS QDs using a nanosecond laser and demonstrate efficient HHG in 
plasmas using a femtosecond laser. With this approach, we achieved effective harmonics 
generation in the spectral range from 20 to 115 nm using such QDs. 

2. Experimental arrangements 

2.1 Preparation of QD-containing targets 

Improving the efficiency of HHG in a plasma containing QDs requires solving two problems: 
(1) developing the methods for the synthesis of metal sulfides QDs, followed by the 
formation of solid-state materials containing large concentrations of these species, and 
ensuring the stability of the morphology of vaporized materials under laser ablation, and (2) 
optimizing the process of converting the wavelength of laser pulses during the HHG in a laser 
plasma containing such multi-particles. 

The synthesis of QDs was carried out taking into account a number of criteria for their use 
to generate harmonics of ultrashort pulses. The first criterion is the formation (as a result of 
ablation of samples by either picosecond or nanosecond heating pulses) of a plasma cloud 
consisting of QDs, as well as atoms, ions, and clusters at the time of the passage of the 
converting femtosecond pulses above the target surface. The second criterion is the presence 
of the maximal concentration of QDs at the time of transmission of the femtosecond pulses 
through the plasma. The third criterion is the size characteristics of quantum dots. Previous 
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studies of harmonic generation in multi-particle containing plasmas, as well as qualitative 
assessments, show that the most optimal sizes of such species should be in the range of 1 - 4 
nm (see also the discussion section). 

Synthesis of colloidal QDs of ZnS and CdS was carried out by mixing the CdBr2 × 4H2O, 
ZnBr2 × 4H2O and thioglucolic acid (TGA) in the required proportions. The corresponding 
salts of cadmium and zinc bromide were dissolved in water (200 ml) and then the TGA was 
added. Then the 50 ml of Na2S aqueous solution (1.3 mM) was injected into the prepared 
solution. The synthesized colloidal solution of QDs was dissolved by adding ethanol to a 50% 
solution, centrifuged and re-dissolved in water. The cleaning procedure was repeated several 
times. A similar procedure was used for the synthesis of Ag2S QDs. 

The synthesized samples of colloidal solutions of zinc, cadmium and silver sulfides were 
further used to produce the solid targets for laser ablation and generation of harmonics. We 
developed a new method of increasing the filling factor Ag2S, ZnS and CdS QDs in the 
stabilizing polymer to form solid samples of multi-particle species for laser ablation in 
vacuum and formation of the plasma torches containing a large amount of QDs required for 
efficient generation of harmonics. The method is based on the compatibility of synthesized 
colloidal QDs and gelatin, as well as the possibility of increasing the concentration of QDs 
during centrifugation in the presence of acetone. Gelatin’s property of high filling ability as a 
polymer and the possibility of drying such samples to a solid state are among the advantages 
of this method. The preparation of solid tablets was accomplished in the following sequence: 
the prepared concentrated solution of QDs was introduced into the gelatin melted at a 
temperature of 40-50 °C using intensive stirring and then the suspensions were dried at a 
temperature of 80 °C for 24 hours to a solid state and then placed for further vacuum drying 
where they were kept for 10 days. Control of the obtained samples was carried out by analysis 
of their luminescence, which was compared with the luminescence of the same QDs in TGA. 
We observed a weak difference in the spectra of these two cases. 

2.2 Plasma HHG setup 

Synchronization of two laser sources, such as most commonly used Ti: sapphire femtosecond 
laser and Nd: YAG nanosecond laser, may resolve, to some extent, the puzzle related with the 
observation of the enhancement of the harmonics generating in the plasmas produced during 
ablation of multi-particle media. The main advantage of this approach is a possibility to 
electronically drive the delay between heating nanosecond and driving femtosecond pulses in 
a broad range. Additionally, the use of radiation from the nanosecond Nd: YAG lasers offers 
advantages in plasma formation compared with previously used picosecond pulses. The 
application of nanosecond pulses to ablate the targets allows the formation of less ionized and 
less excited plasma during a longer period of laser-matter interaction compared with the 
picosecond pulses. Nd: YAG lasers commonly operate at 10 Hz pulse repetition rate, which is 
more suitable for stable HHG in plasmas compared with 1 kHz ablation, though in the latter 
case some strategies, such as target rotation [26], allowed, to some extent, improvement of the 
stability of 1 kHz coherent short-wavelength sources. 

 

Fig. 1. High-order harmonic generation setup. fs, converting femtosecond pulses, ns, heating 
nanosecond pulses; FL, focusing lenses; VC, vacuum chamber; T, target; NC, BBO crystal; 

                                                                                              Vol. 26, No. 26 | 24 Dec 2018 | OPTICS EXPRESS 35015 



LP, laser plasma; XUVS, extreme ultraviolet spectrometer; CM, cylindrical gold-coated 
mirror; FFG, flat field grating; MCP, microchannel plate; CCD, CCD camera. 

The metal sulfide QD plasmas were used for HHG. The driving femtosecond pulses 
(800nm, 1 kHz; Spitfire Ace, Spectra Physics) propagated through the plasma at different 
delays from the beginning of target irradiation by nanosecond heating pulses (1064 nm, 10 
Hz; Q-Smart, Coherent). The variable delay (0 –106 ns) between 5 ns heating pulses and 30 fs 
driving pulses was established to generate harmonics in plasma at the used geometry of 
experiments when the 800 nm femtosecond pulses were focused onto the plasma area from 
the orthogonal direction with regard to ablating radiation, at a distance of ~200 µm above the 
target surface (Fig. 1). Additionally, the harmonic yield was maximized by adjusting the 
position of the target with regard to the optical axis of propagation of the driving femtosecond 
pulses and by varying the focusing position of this radiation with regard to the plasma. The 
harmonic emission was directed to the XUV spectrometer containing a cylindrical mirror and 
a 1200 grooves/mm flat field grating with variable line spacing. The XUV spectrum was 
recorded by a micro-channel plate (MCP) with a phosphor screen, and the harmonics were 
imaged by a CCD camera. 

We also carried out the HHG using the two-color pump (TCP) of plasma. The reason for 
using the TCP instead of the single-color pump (SCP) was related with earlier demonstrated 
advantages of this approach in the generation of odd and even harmonics in gases and 
plasmas [27–31], as well as larger efficiency of harmonic yield in the former case. The TCP 
using 800 nm radiation as the first field and 400 nm radiation as the second field was applied 
to carry out the comparative analysis of TCP and SCP schemes. The 0.4-mm-thick BBO 
crystal (type I) was installed inside the vacuum chamber on the path of the 800 nm radiation 
to generate second harmonic (H2). The conversion efficiency of H2 pulses (λ = 400 nm) was 
relatively low (~4%). However, due to small group velocity dispersion in the thin BBO 
crystal, the overlap of these two pulses in plasma area was sufficient to determine how the 
weak second orthogonally polarized field influences the whole process of HHG in QDs. 

3. Results 

3.1 Characterization of QDs 

The originality of the general approach to increase the HHG efficiency is based on the choice 
of quantum confined multi-atomic particles to facilitate an increase of the nonlinear optical 
response of the plasma medium. Qualitatively, an increase of the cross section for the 
recombination of accelerated electrons with the multi-particle species with increasing size of 
the parent particle can be expected. However, this assumption is valid only up to certain sizes 
of multi-particle species. A further increase of the number of atoms or molecules in the 
particle leads to conditions where the atoms or molecules located inside the particle become 
completely shielded and thus eliminated from the three-step process of HHG, i.e., ionization, 
acceleration, and recombination. In other words, the internal atoms and molecules do not 
supply electrons for acceleration and recombination. Thus, the optimal size of the particles is 
one of the most important characteristics in order to achieve an increase in the efficiency of 
harmonic generation. Moreover, its importance rises with increasing order of the generated 
harmonic. Early studies carried out in gases and plasmas have shown an increase of HHG 
intensity using clusters containing up to 1000 noble gas atoms, as well as using nanoparticles 
containing tens of thousands to a few millions of atoms. It turned out that the optimal number 
of atoms in the particles seems to lie in an intermediate size region. If one divides the 
aggregates into three categories like clusters (0.1 - 1 nm), QDs (1 - 6 nm), and nanoparticles 
(10 - 100 nm), then the second group seems to be the most promising for HHG. The QDs 
synthesized in this work are satisfying this criterion. 

Samples of colloidal QDs were characterized by x-ray diffraction, transmission electron 
microscopy (TEM), optical absorption, and luminescence spectroscopy. The composition of 
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from being two-dimensional to three-dimensional, which may lead to a removal of the 
medium symmetry. With suitable control of the relative phase between the fundamental and 
the second harmonic radiation, the latter field enhances the short path contribution, resulting 
in a clean spectrum of harmonics. One can see that even at a very small ratio of 400 and 800 
nm pulse energies the influence of the weak field was sufficient to strongly modify the whole 
harmonic spectrum compared to the single color pumping case. 

 

Fig. 5. Plasma emission spectra of Ag2S, CdS and ZnS QDs in gelatin (three upper panels) and 
pure gelatin (bottom panel). Dash-dotted lines show similar emission in all four plasmas. 

Notice the relative weaker H12 compared to H10 and H14. This heterogeneity in the even 
harmonic yields was caused by group velocity dispersion in the 0.4mm thick BBO crystal, 
which causes a notable delay between the 400 and 800 nm pulses at the output of the crystal 
in the case of 30fs pulses. Each 0.1 mm of BBO causes ~19fs delay between the driving (800 
nm) and second harmonic (400 nm) waves. Thus only a small part of the second harmonic 
remains within the pulse duration of the driving fundamental 800nm pulse. This causes a 
further decrease in the influence of the second harmonic field on the whole pattern of 
harmonic distribution. On the other hand, this second harmonic pulse generates relatively 
strong low-order odd harmonics: H5400nm which corresponds to H10800nm, and H7400nm which 
corresponds to H14800nm, see Fig. 6. An introduction of either positive or negative chirp in the 
femtosecond pulses by varying the distance between gratings in the compressor led to an 
increase of the pulse duration and a better overlap of the two orthogonally polarized pulses in 
the plasma. However, in that case, a decrease of the intensity of the driving pulse led to a 
general decrease of the whole harmonic yield. 

The peculiarity of the gelatin plasma emission and TCP-induced harmonic spectra was the 
proximity of some ionic transitions of gelatin with the wavelengths of even harmonics, see 
H8 and the nearby emission lines of gelatin lines in the case of CdS QD (Fig. 6, middle panel) 
and ZnS QD (Fig. 6, bottom panel) plasmas. Neither enhancement nor suppression of this 
harmonic generated in both plasmas was observed. These studies showed that the proximity 
of strong emission lines and harmonics does not necessarily lead to a variation of the 
harmonic yield. 

We did not make the absolute measurements of harmonic conversion efficiency in QD-
containing plasmas. The estimates of conversion efficiency were carried out using the 
comparison with known results from other plasmas). In the case of silver plasma at similar 
conditions, we had almost equal conversion efficiencies with regard to ZnS in the range of 
40-110 nm. By knowing the conversion efficiency from previous measurements of harmonic 
generation in the plasmas produced on the surface of bulk Ag (4 × 10−6), we deduced that 

                                                                                              Vol. 26, No. 26 | 24 Dec 2018 | OPTICS EXPRESS 35020 



conversion ef
plasma) was ~

Fig. 6
line) p
(botto

4. Discussio

Our experime
targets. So, th
from QDs, H
the interaction
of a few nano
has not yet b
showed the i
electron on d
more strongly
results in the 
nanoparticles 
atoms [33]. 

Early exp
and semicond
both merits a
recombination
case of relativ
is accompani
HHG, therefo

fficiency in Z
~3 × 10−5. 

6. Two-color (800 
pump induced har

om panel) QDs at o

on 

ents have two 
he observed en
HG from large
n of QDs with
ometers can eff
been studied t
increased HHG
different atoms
y than the plate
case of ZnS QD
also increases

eriments with 
ductors, and oth
nd drawbacks 
n cross section
vely large parti
ed by a reduc

ore, fewer atom

ZnS QD plasm

nm + 400 nm, das
rmonic spectra fro
optimal delays betw

key features: a
nhanced HHG 
er concentratio
 atoms. Presen

ffectively gener
theoretically, b
G yield under
s in the cluster
eau harmonics,
Ds (Fig. 4). Th

s the intensity o

larger nanostr
her agglomerat
of this metho

n of the parent 
icle sizes, may
ced number of
ms are involve

mas (which wa

sh-dotted blue line
om Ag2S (upper pa
ween the heating a

ablation by na
conversion eff

ons of neutral 
nt studies show
rate high-order
but a simulatio
r the assumpti
r. The cutoff h
, which is in g
he local enhanc
of cutoff harm

ructures [carbo
tes of relatively
d for increasin
particle with t

y result in an in
f atoms located
ed in the gene

as 7 times hig

 

e) and single-color
anel), CdS (middl
and driving pulses

anosecond puls
ficiency can ha
atoms and HH

w that particles
r harmonics. H
on of HHG f
ion of possibl
harmonics wer
ood agreement
cement of the e

monics generate

on nanotubes, n
y large sizes (2
ng the HHG ef
the accelerated

ncreased numb
d on their sur
eration of the 

gher than in b

r (800 nm, full red
le panel), and ZnS
s for each species. 

ses and QDs-c
ave three origi

HG enhanceme
s with sizes of 
HHG directly f
from small clu
le recombinati
re also enhanc
t with our exp
electric field ne
ed from the sur

nanoparticles o
20-80 nm)] hav
fficiency. An 
d electron whic

ber of harmonic
rface. In tradit
harmonics bec

bulk ZnS 

d 
S 

ontaining 
ins: HHG 
ent due to 
the order 

from QDs 
usters [7] 
on of an 

ced much 
erimental 
ear larger 
rrounding 

of metals 
ve shown 
increased 
ch, in the 
c emitters 
tional gas 
cause the 

                                                                                              Vol. 26, No. 26 | 24 Dec 2018 | OPTICS EXPRESS 35021 



atoms located inside the nanoparticles are unlikely to participate in HHG. As a consequence, 
the amount of harmonic generation processes per single atom falls short for large 
nanoparticles. Another mechanism for HHG is found in solids [34]. In this case, the electron 
is excited to a conduction band, and different channels including intraband and interband 
processes are proposed for the actual generation of the harmonics [35,36]. HHG in solids 
could also become relevant for nanoparticles. From this perspective, QDs may act as an 
intermediate material between atoms and solid states. As already mentioned, earlier studies 
have revealed benefits in using small nanoparticles for HHG [2–13]. The exact number of 
atoms in the particle for optimal generation of coherent XUV radiation remains a puzzle, 
despite the fact that, to date, a large number of experiments with gas clusters, as well as 
ablated nanoparticles, were conducted. 

Laser ablation induced HHG spectroscopy of semiconductors can reveal the resonance-
induced enhancement of some harmonic orders in the XUV range as well as the cluster-
induced growth of harmonic yield. The latter assumption has been demonstrated by de Nalda 
et al. [16] where the third and fifth harmonic generation of an IR (1064 nm) pulsed laser has 
been studied in ablation plasmas of the wide bandgap compounds (CdS and ZnS). Their 
investigation of the temporal behavior of the harmonic generation has revealed the presence 
of three distinct compositional populations in these plasmas. Species ranging from atoms to 
nanometer-sized particles have been identified as emitters, and their nonlinear optical 
properties could be studied separately because they appear at well-separated times in the 
interaction region with the driving laser pulse. In their experiment, it was found that at earlier 
times (< 500 ns for the distance chosen for the driving beam) mostly atomic species are 
responsible for harmonic generation, while clusters mostly contribute at later times (>1 μs). 

The harmonic generation in such a plasma can prove or disapprove the role of the 
complex composition of ablated species in this process. A signature which would reveal the 
nature of the emitters is the growth of harmonics emission with the time delay with respect to 
the ablation laser pulse. This delay is converted to the time of propagation of QDs or clusters 
to the interaction region with the ultrashort driving pulse. It was suggested by Oujja et al. [17] 
that, in the case of a thermalized ablation plume, the average arrival times can be assigned to 
different cluster sizes. The delay at which the harmonic yield reaches its maximum should 
scale as a square root of the atomic or molecular weight of the constituents. The ejection of 
lighter clusters from QDs allows them to reach the region of the driving beam earlier as 
heavier species. 

Therefore QDs comprising of n molecules should appear in the interaction zone n0.5 times 
later compared to single atoms, molecules, or ions of the sulfides. The present HHG studies 
reveal that for bulk target ablation the maximum yield from single CdS and ZnS molecules 
occurred at a delay of about ~300-400 ns. The corresponding QDs allowed efficient 
generation at about 400-500 ns delay, which is a similar delay as in the former case. Further, 
attempts to observe HHG at the delays of up to 50 μs, the expected delay for thermalized 
larger nanoparticles, did not show any harmonic emission. Thus our studies show that QDs 
arrive at the area of interaction with the femtosecond laser beam notably earlier than one 
would expect for a thermalized ablation plume. In other words, all metal sulfide molecules in 
QDs acquire, from the very beginning, a similar kinetic energy and spread out from the 
surface with velocities approximately similar to that of single metal sulfide molecule ablating 
from bulk material. This conclusion reconciles the similarity in the optimal delays for HHG 
from bulk and QD targets of the same material. 

In [16], de Nalda et al. suggested that a similar average kinetic energy E = mv2/2 could 
characterize all plasma components of the same elemental composition. Thus the average 
arrival time assigned to the particles containing different amount of identical molecules will 
be approximately the same. Our studies have confirmed this assumption. The difference in 
“optimal” delays between heating and driving pulses is related with the difference in the 
velocities of particles, which depends on the atomic masses of the components of molecules. 
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One can expect from this assumption the arrival of ZnS ions, atoms and QDs in the area of 
interaction with driving beam at (MAg2S:MZnS)0.5~1.59 times earlier with regard to Ag2S-
containing particles taking into account the ratio between the atomic weights of these two 
molecules (MAg2S:MZnS ≈2.54). Once we compare the “optimal” delays for these two species, 
their ratio (400 ns: 250 ns = 1.6) becomes close to the above estimates. Thus, one can assume 
that above rule properly explains the dynamics of material spreading out from the ablated 
target, once one analyzes the particles’ movement during laser ablation at relatively moderate 
fluencies (5 – 20 J cm−2) of heating nanosecond pulses. 

As already mentioned, an increase of the recombination cross section for QDs with 
respect to atoms or single molecules can enhance the HHG efficiency in multi-particle 
plasmas. An additional cause for strong harmonics generation from QDs compared to single 
atoms or ions could be the higher concentration of neutral metal sulfide molecules inevitably 
accompanying the presence of multi-particle species. The QDs present the extreme case of 
solid-state density in a very small volume. Compared to solids, they still do not absorb all the 
HHG radiation produced inside them due to their very small thickness. QDs can further 
improve phase-matching conditions for harmonics generated from atoms and ions [9] using 
compensation of free-electron dispersion of the driving pulse by dispersion of clusters. 

A new method for the analysis of multi-particle plasma formations using two laser sources 
for the HHG in the laser ablation can be considered as a promising approach to materials 
science. Its application will expand the possibilities of optimizing HHG in laser-induced 
plasma plumes, allow the implementation of new approaches to the study of large molecules 
and clusters undergoing ablation, and will significantly increase the range of objects of study 
compared to HHG in gases. Thus, the method presented is not only an alternative approach in 
generating stronger coherent XUV radiation but rather can serve as a tool for various 
spectroscopic and analytical applications. 

5. Conclusions 

In this paper, we have studied the possibility and conditions of using quantum dots as 
efficient emitters for high-order harmonics generation by 30 fs pulses using optimally delayed 
heating and driving laser pulses. 

We further have developed methods for the aqueous synthesis of Ag2S, ZnS and CdS QDs 
that enable, by their size and dispersion, as well as their structural properties, the effective 
generation of harmonics in plasma plumes. The study of the morphological properties of the 
samples demonstrated the formation of ZnS and CdS QDs with mean sizes of 2-3.2 nm in a 
cubic lattice, and of Ag2S QDs with mean sizes of 1.7-2.0 nm in a monoclinic lattice, all with 
a weight fraction of about 20-25% in gelatin. 

A comparison of HHG using QDs and ablation of solid-state targets for the same materials 
(Ag2S, ZnS and CdS) was carried out. In the case of QDs, the conversion efficiency into 
harmonics is higher despite the lower concentration of these species in the plasma compared 
to the concentration of molecules and ions for bulk ablation. The observed increase of HHG 
conversion efficiency could be caused by a larger concentration of harmonic emitters and the 
specific properties of QDs, particularly their plasmonic properties. The maximum HHG 
conversion efficiency is achieved much earlier than one would expect from the kinetic model 
of QDs spreading out from the target surface. Therefore similar velocity distributions of 
molecules and QDs of these metal sulfides are assumed in the ablation process. 
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