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A topology optimization method based on the solid isotropic material with penalization interpolation scheme is uti-
lized for designing gradient coils for use in magnetic resonance microscopy. Unlike the popular stream function method, the
proposed method has design variables that are the distribution of conductive material. A voltage-driven transverse gradient
coil is proposed to be used as micro-scale magnetic resonance imaging (MRI) gradient coils, thus avoiding introducing a
coil-winding pattern and simplifying the coil configuration. The proposed method avoids post-processing errors that occur
when the continuous current density is approximated by discrete wires in the stream function approach. The feasibility
and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.
Numerical design results show that the proposed method can provide a new coil layout in a compact design space.

Keywords: topology optimization method, gradient coils, solid isotropic material with penalization, magnetic
resonance imaging
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1. Introduction
1.1. Application in magnetic resonance imaging

Magnetic resonance imaging (MRI) is widely used in
medical diagnosis, biological research, and material science.
In recent years, it has been used on a microscale with spatial
resolutions of less than 100 µm typically in magnetic reso-
nance microscopy (MRM),[1] and micro-total analysis systems
(µTAS).[2] For imaging the mass-limited or volume-limited
samples, there is a challenge due to the huge reduction in
signal-to-noise ratio (SNR).[3] The increasing of imaging spa-
tial resolution and signal sensitivity is critical to the improve-
ment of MRI. According to the principle of MRI, the SNR
of imaging is mainly limited by the signal of RF coils and
the strength of main magnetic field. Imaging spatial resolu-
tion can be improved by increasing the gradient strength of
the magnetic field generated by the gradient coils.

Recently, a great deal of research has been reported for
rapid switching and high-resolution MR devices on a mi-
croscale for cell imaging. This research focuses on the minia-
turization of core components of MRI equipment. Most of
the studies are aimed at the downscaling of MR receiver coils,
which can enhance the local SNR.[2,4–7] The gradient value of
the gradient magnetic field is also a key factor restricting the
quality of imaging. The miniaturization of the gradient coil re-

duces the distance between the coil and the sample, improves
the efficiency of the coil, and increases its gradient value. In
this paper, we will discuss gradient coils for microscale MRI
applications. Whether there are simple and efficient micro coil
configurations is an open question. In this paper, voltage-
driven gradient coils are proposed, which are designed by a
topology optimization method. The method offers a means to
design custom coils with best performance.

1.2. Conventional gradient coils

To date, much research has focused on improving the per-
formance of gradient coils. The reported design methods can
be divided into two types: discrete wire techniques and cur-
rent density techniques.[8] Discrete wire techniques are based
on the optimization of the geometry (size/position) of inde-
pendent current loops to produce a required magnetic field.
The most basic examples of the discrete wire techniques are
the Maxwell coil (Fig. 1(a)) for longitudinal direction gradient
coils, and the Golay coil (Fig. 1(c)) for transverse direction
gradient coils. The Maxwell coil can be constructed by two
coaxial windings spaced by d =

√
3R, with opposite currents,

on a cylindrical surface. The deviation of produced magnetic
field from the ideal field within a sphere of radius 0.5R is less
than 5%. The Golay coil, which includes two pairs of arcs
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with radius R and geometry parameter ϕ = 120◦, a = 0.78R,
and b = 5.13a, can generate a y-gradient magnetic field with
the deviation less than 5%, in a sphere of radius 0.4R. In or-
der to improve the gradient linearity, optimization techniques,
like conjugate gradient descent[9] and simulated annealing,[10]

have been introduced to solve for various coil parameters.

z
(a)       (b)

y

z

ϕ

b

d

R

a

(c)                (d)

Fig. 1. (color online) Conventional gradient coils: (a) Maxwell coil,
(b) z-gradient coil calculated by stream function method, (c) Golay coil,
and (d) y-gradient coil calculated by stream function method.

The current density techniques compute a continuous cur-
rent distribution which needs to be approximated by discrete
wires or current paths. A number of optimization methods
have been developed in order to determine the current den-
sity distribution. These include the target field method[11–14]

and the stream function method.[15–18] The target method de-
veloped by Turner[19] uses a Fourier–Bessel expansion of the
magnetic field generated by current flowing on a cylindrical
surface, and uses Fourier transforms to obtain an ideal cur-
rent density solution. The stream function method is based
on meshing the current carrying surface into an array of fi-
nite elements to approximate distributions of stream functions,
where the current density vector design variables are trans-
formed into scalar design variables. The numerical meth-
ods mainly include finite difference method,[20] finite ele-
ment method (FEM),[21] and boundary element method.[16]

These types of techniques have been extended by optimiz-
ing some features of coils, such as the inductance,[22,23] stored
magnetic energy,[24–26] dissipated power,[27–29] torque,[30] coil
width, and nonlinear gradient coils.[31] The current density

techniques generally lead to more compact coils resulting in
increased efficiency, as well as less concentrated current re-
sulting in lower inductance.[32] Figures 1(b) and 1(d) show
the gradient coils designed by a stream function method
for longitudinal gradient coils and transverse gradient coils,
respectively.[33] Comparing with the gradient coils designed
by discrete wire techniques, the differences in winding shape
are immediately obvious.

Even though the current density technique is successful
in designing the MR gradient coils, it also has some limita-
tions. Firstly, the current distribution derived by these meth-
ods must be approximated by discrete wires or current paths.
As for small numbers of wires, the approximation to the cur-
rent distribution is poor, resulting in deviation of the calculated
magnetic fields. Secondly, return paths must be introduced to
assure that equal currents flow in all paths. The return currents
in these wires produce a smaller negative field which reduces
somewhat the gradient achievable, and lead to a longer geom-
etry for the current-carrying surface and a higher inductance.
Thirdly, the complexity of the configuration increases the dif-
ficulty in making gradient coils for microscale MRI.

1.3. Topology optimization method

Topology optimization can be defined as a method with
material suitably placed within a prescribed design domain in
order to minimize or maximize the given objective function
subject to user’s specified design constraints.[34] The method
as a design process has spread to a wide range of applica-
tions in different fields of engineering over the years, such
as mechanical structures,[35,36] heat conduction,[36] unsteady
incompressible Navier–Stokes flows,[38] and multi-physics
actuators.[39,40]

In this paper, a method based on the topology optimiza-
tion of a material distribution is proposed to optimize the con-
figuration of gradient coils, and a gradient-based optimization
technique is utilized to solve the design problems. The coil
configuration can be obtained, avoiding the usual system er-
rors which may appear in a discrete approximation between
the calculated continuous current density and the practical re-
alization of discrete current paths. There is also no presetting
limit to the shape of coil configurations.

2. Method
In this section, the proposed topology optimization

method (TOM) of designing the gradient coils is discussed
in detail. The design process can be divided into two main
steps. The first step is to establish the relationship between the
surface current and the design variables via a description of
the gradient coil, and then to derive the performance parame-
ters of the electromagnetic coil, such as the magnetic field and
energy consumption. The second step is to find the optimal
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coil configuration under a particular application by optimiza-
tion procedure. Here, the design of gradient coils on a cylin-
drical surface serves as an example. In order to simplify the
optimization model and reduce the amount of calculation, the
developable property of a cylindrical surface and the layout
symmetry of gradient coils are utilized. The proposed method
can also be extended to other geometries or physical boundary
conditions.

2.1. Physical problem formulation in continuous form

2.1.1. Layout symmetry and boundary conditions of
gradient coils

As shown in Fig. 1, due to the symmetry of the desired
gradient magnetic field, conventional gradient coils are sym-
metric with respect to the planes x = 0, y = 0, and z = 0. Sim-
ilarly, the developed surface is divided into eight subdomain
Ω = ∪Ωi (i = 1, . . .,8), (Fig. 2). In order to reduce the amount
of calculation, the coil configurations of one eighth of the de-
veloped design surface Ω1 are calculated in the optimization
process, and the rest can be obtained by symmetry.

ROI

z

h/2

↩h/2

0
ll0

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

x
y

z

h

Γcoil
σ(ρ)

Fig. 2. (color online) Current-carrying surface Γcoil, region of interest (ROI),
and the developed design surface. The subdomain Ω1 is used for optimiza-
tion, where l0 = 2πr0 and r0 is the radius of Γcoil.

Before optimization, the method of driving the gradient
coils and boundary condition specifications of the design do-
main must be determined. For the traditional stream function
design method, the electric current drive mode is typically
used and the electric current is calculated directly by using
the gradient of the stream function. Then the analytical Biot–
Savart equation is used to calculate the magnetic field under
the given current distribution. For the proposed method, the
design variables of the gradient coil are the conductor distri-
bution of gradient coil on the design surface. Therefore, the
electric problem has to be solved numerically (here the finite
element method is used) under either voltage or current bound-
ary condition. Compared with the current boundary condi-
tions, the voltage boundary conditions can be straightforward
implemented based on the standard finite element solution. In
this paper, the proposed gradient coil is driven by applying a
voltage at a predefined position. For different types of gradi-
ent coils, the input voltage can be specified by the designer as
shown in Fig. 3.

The z-gradient magnetic field can be produced by a cir-
cumferential current, so the input voltage for z-gradient coils

can be applied to the left and right ends of the developed de-
sign surface. The corresponding boundary condition of sub-
domain Ω1 is shown in Fig. 3(a), with ΓD1 electric potential
boundary conditions, ΓD2 connected to ground, and ΓN electri-
cally insulation boundary conditions.

(a) (b)

Ω1

ΓN ΓN

ΓN

ΓNΓN

ΓD

ΓD ΓDΓD

Ω1

Fig. 3. Boundary conditions of design subdomain Ω1 for (a) z-gradient coils
and (b) y-gradient coils.

As shown in Figs. 1(b) and 1(d), a linear gradient in the
transverse (x, y) direction requires a slightly more complicated
conductor geometry, and can be produced by four symmetric
arcs or windings, spaced appropriately on a cylindrical sur-
face. Here, the boundary conditions of Fig. 3(b) is chosen for
y-gradient coils. By adjusting the position of the input voltage
boundary ΓD1, different coil configurations can be obtained.

2.1.2. Distribution of conductive material

In this paper, the design variable ρ is not the current den-
sity or the stream function, but the spatial distribution of con-
ductive material, which is reflected in the conductivity of the
gradient coils. The distribution is described by the density
field ρ(x) that can take either the value 0 (void) or 1 (solid
material) at any point x in the design domain Ω . Intermediate
density values are not expected to appear in the final designed
coils. In order to enforce binary design variables, the electri-
cal conductivity is expressed using the solid isotropic material
with penalization (SIMP) interpolation scheme,[41,42] which is
given as

σ (ρ) = σAir +
(
σCopper−σAir

)
(ρ (x))p , (1)

where p is the penalization parameter. In order to obtain a
usable design result, typically p is not less than 3, σCopper =

5.99× 107 S/m is the conductivity of copper, and σAir =

5×10−15 S/m is the conductivity of air.

2.1.3. Current continuity equation

The electric problem is analyzed in the design domain Ω ,
together with boundary conditions on Γ = ΓD ∪ΓN . It is as-
sumed that the internal electric current source is zero, so that
the current continuity equation can be expressed as

∇ · (tσ (ρ)∇V ) = 0, in Ω ,

∂V
∂n

= 0, on ΓN ,

V =UD1, on ΓD1,
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V =UD2, on ΓD2, (2)

where t is the thickness of current-carrying surface, V is the
distribution of electric potential, and the boundary conditions
are shown in Fig. 3. Because the necessary input voltage for
satisfying the design objective is unknown before the opti-
mization procedure, equation (2) is solved with a unit voltage
input, and the necessary input voltage is set up as an additional
design variable Vin. The unit input voltage is applied to ΓD1,
and ΓD2 is set to ground (UD1 = 1, UD2 = 0). The x and y
components of the surface current density on the cylindrical
surface under unit voltage input are

Jx (l,z) = tσ (ρ)
∂V
∂ l

sin
(

l
r0

)
,

Jy (l,z) =−tσ (ρ)
∂V
∂ l

cos
(

l
r0

)
. (3)

2.1.4. Biot–Savart method and objective of optimiza-
tion

The z-component of the magnetic field Bi
z at the ith point

(xi, yi, zi) inside the region of interest (ROI) can be calculated
from the following equation by using the Biot–Savart method:

Bi
z (xi,yi,zi) =

µ0t
4π

∫
Ω

Jy (l,z)RC− Jx (l,z)RS(
RC2 +RS2 +(z− zi)

2
) 3

2
dΩ , (4)

where RC =(r0 cos(l/r0)− xi) and RS=(r0 sin(l/r0)− yi).[25]

Because the current continuity equation is a linear problem,
the z-component of the magnetic field under voltage input Vin

can be expressed as

B̃i
z (xi,yi,zi) =VinBi

z (xi,yi,zi) . (5)

The goal of the optimization procedure is to find a con-
ductive material distribution in the design domain Ω in order
to minimize the objective function for magnetic field linearity,
which is defined as the least-square form of the residual be-
tween the actual magnetic field and the desired magnetic field

Min : φ (V ;ρ) =
1
2

m

∑
i

(
B̃i

z−Bi
zobj

)2
, (6)

where Bi
zobj is the z-component of the desired magnetic field

at the ith point inside the ROI, and m is the total number of
sampling points inside the ROI.

2.2. Numerical discretization of the optimization model
using the FEM

Through the analysis above, the relationship among the
magnetic field strength, the current density, and the design
variable is established. The formulation is based on the reg-
ular discretization of the design domain Ω that is covered by
a given shape. Here, the continuous material distribution is
approximated by C0-continuous finite elements in the design
domain. The density variable can be expressed as

ρ (x) =𝑁 (x)𝜌=
n

∑
j=1

N j (x)ρ j, (7)

where 𝑁 is a vector of shape functions, whose components
are N j(x)( j = 1, . . .,n), N j(x) is the nodal shape function of
the C0-continuous finite elements, 𝜌 is a vector of nodal de-
sign variables ρ j ( j = 1, . . .,n), and n is the total number of
nodes. By using an FEM discretization, equation (2) can be
written as

𝐾𝑉 = 𝑃 , (8)

where 𝑉 is a vector of the corresponding value of nodal
electric potentials Vi (i = 1, . . .,n), and the distribution of
electric potential can be expressed as V (x) = 𝑁 (x)𝑉 =

∑
n
k=1 Nk (x)Vk; 𝑃 is a vector with applied boundary condi-

tions; 𝐾 is n×n global conductivity matrix, which is assem-
bled in the usual way as the summation over element conduc-
tivity matrices

𝐾 =
ne

∑
e=1

∫
Ωe

tσ (𝜌)𝐾e dΩe,

𝐾e,i j =
∫

Ωe

∇Ni∇N j dΩe, (9)

where ne is the total number of elements in the design domain.
Therefore, equation (4) can be expressed as

Bi
z (ri,θi,zi) =−

µ0t
4π

∫
Ω

σ (𝜌)

(
∑

n
k=1 Vk

∂Nk

∂ l

)(
cos
(

l
r0

)
RC+ sin

(
l
r0

)
RS
)

(
RC2 +RS2 +(z− zi)

2
)3/2 dΩ . (10)

In order to obtain a binary configuration, it is common to
choose an auxiliary objective function, such as the resistance,
input voltage Vin, or the energy consumption. In this paper,
we use the minimum resistance. Under unit voltage boundary
conditions, the coil resistance can be calculated from

R(𝑉 ;𝜌) =
U2

D1
Q

=
1
Q
, (11)

where Q = t
∫

Ω
σ (𝜌) |∇V |2 dΩ is the dissipated power. Its

discrete form can be written as

Q = 𝑉 T𝐾𝑉 = ∑
e∈Ω

𝑉 T
e 𝐾e𝑉e. (12)

Based on the above arguments, the optimization model can be
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written as

Min : f = fB +α fR,

S.t. : 𝐾𝑉 = 𝑃 ,

gVol =
n

∑
i=1

ρiVoli 6 Vol∗,

06 𝜌6 1, (13)

where fB = φ (𝑉 ,𝜌)/φ (𝑉 ,𝜌)|init is the normalized objec-
tive function for relative residual of magnetic field, fR =

R(𝑉 ,𝜌)/R(𝑉 ,𝜌)|init is the normalized objective function for
resistance, with φ (𝑉 ,𝜌)|init and R(𝑉 ,𝜌)|init being the cor-
responding objective function value under initial design vari-
ables 𝜌 = 𝜌init; α is the weight coefficient of the objective

function of resistance; Voli =
∫

Ω

Ni (x) dΩ is the node volume

fraction; Vol∗ is the constraint on the material volume fraction.

2.3. Optimization procedure

The optimization problem can be solved iteratively by us-
ing the gradient-based optimization schemes. In this paper, the
gradients with respect to the design variable are obtained using
adjoint analysis. The detailed sensitivity derivation is given in
the appendix. In each iteration, the following computational
steps are performed:

i) Solve the current continuity equation (8) for the un-
known electric potential vector.

ii) Perform objective function and sensitivity analysis to

current continuity analysis
Eq. (8)

magnetic field calculation
Eq. (10)

sensitivity analysis
Eq. (A10) and Eq. (A11) 

output coil configuration

update design variables

initial design variables

input voltage calculation
Eq. (A1)

determine the new design variables 
ρnew via the OC solver

δ=ρnew-ρold

δ ≤ η?

changes of design variables 
Iter/Iter⇁

ρold=ρinit

ρold=ρnew

Iter/

no

yes

Fig. 4. Flow chart of the optimization process.

obtain the derivatives of the objective and constraint function
with respect to the design variable Eqs. (A10) and (A11).

iii) Update the design variable based on the optimality
criterion (OC) method[43] or method of moving asymptotes
(MMA).[44] In this paper, we will use a standard OC method,
because there is only one design constraint about material vol-
ume fraction.

The procedure has converged when the changes of design
variable δ for subsequent iterations are less than a threshold η

(typically 103). We detail the optimization process in Fig. 4.

3. Results
For the applications of microscale MRI, the gradient coil

is designed on a cylindrical surface as shown in Fig. 2, with a
length–diameter ratio of 1, radius of 10 mm, height of 20 mm,
thickness t of 1 mm, and radius of the ROI of 5 mm. The
design subdomain and boundary conditions are described in
Fig. 3(a). The design subdomain is discretized with 10240
rectangular elements, and the ROI is discretized using a rel-
atively regular mesh with 997 nodal points. The desired
gradient magnetic field, Bi

zobj = Gzzi for z-gradient coils or
Bi

zobj = Gyyi for y-gradient coils and the gradient value of Gz

and Gy is set to be 0.01 T/m.
Here, the field inaccuracy is defined as the linear gradient

deviation of magnetic field ∆Gz

∆Gz = maxi

(∣∣∣∣∣∂Bi
zobj/∂ z−∂ B̃i

z/∂ z

∂Bi
zobj/∂ z

∣∣∣∣∣
)
. (14)

Usually, in order to satisfy the requirement for the MRI engi-
neering, ∆Gz is less than 5% and ∆Gy for y-gradient coils in
defined in the same way.

3.1. Single-objective optimization

The most straightforward optimization model is the single
objective model, where the weight coefficient α in Eq. (13) is
equal to zero. It is known that the non-convex least-square ob-
jective function may suffer bad optimization procedure. The
optimal configuration of z-gradient coil is circles as shown in
Figs. 1(a) and 1(b). Figure 5 gives the optimized z-gradient
coil configurations with different parameters, and their nec-
essary input voltages and field inaccuracies are shown in Ta-
ble 1. Since there is no constraint on the input voltage, when
the intermediate density is present, the desired magnetic field
strength can be obtained by increasing the necessary input
voltage.

Figure 6 shows the optimized y-gradient coils with Vol∗=
0.1. In the SIMP interpolation method, the penalty parameter
p is used to obtain the nearby black-and-white designed re-
sults. When penalty parameter p is set to be 1, there is an
intermediate density value in the result, which is not expected
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to appear in the final designed coils. As shown from the re-
sults, for single-objective optimization, increasing the value
of p cannot help the optimization procedure to converge to a
binary result, but coils oscillate significantly.

In physical terms, due to the lack of accurate constraints
on input voltage for the desired magnetic field, design vari-
ables can hardly converge to the binary configuration. In other

words, minimizing the input voltage (or its equivalent, such
as resistance and dissipated power) is necessary for the opti-
mal result to converge to a black-and-white pattern in the pro-
posed optimization model. In this paper, in order to obtain a
reasonable optimized result, the auxiliary objective function is
introduced into the optimization model with non-zero weight
coefficient α .

Table 1. Input voltage and field inaccuracy of gradient coils listed in Fig. 5.

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d) Fig. 5(e) Fig. 5(f) Fig. 5(g) Fig. 5(h)

Input voltage/V 7.2e-2 3.7e-2 4.3e-1 6.9e-2 6.6e-1 1.0e-1 1.5 1.8e-1

Field inaccuracy/% 2.8 2.0 1.7 1.8 2.5 4.0 2.0 2.6

(a) p=1, Vol*=0.1 (b) p=1, Vol*=0.2 

(c) p=3, Vol*=0.1 (d) p=3, Vol*=0.2 

(e) p=5, Vol*=0.1 (f) p=5, Vol*=0.2 

(g) p=7, Vol*=0.1 (h) p=7, Vol*=0.2 

Fig. 5. One-eighth final configurations of z-gradient coils using single ob-
jective optimization model with different parameters.

(a) (b) (c)

Fig. 6. One-eighth final configurations of y-gradient coils using single ob-
jective optimization model with Vol∗ = 0.1, (a) p = 1, (b) p = 3, (c) p = 5.

3.2. Two-objective optimization
3.2.1. Topology optimization of z-gradient coils

Figure 7 shows the final optimal coil configurations of z-
gradient coils with volume fractions ranging from 0.1 to 0.5

and the weight coefficient α = 100. The performances of de-

sign coils are presented in Table 2.

(a) （b) (c)

(d) (e)

Fig. 7. Final configurations of z-gradient coils with the volume fractions
ranging from 0.1 to 0.5, Here, the weight coefficient α of resistance objec-
tive function is chosen as 100 and p = 5.

From Table 2, it can be found that the total current re-

quired for a given magnetic field distribution is constant,

which indicates that all optimal coils have the same gradi-

ent efficiency. Increasing the volume fraction of conductive

material can help to reduce the current concentration, induc-

tance, and resistance. However, due to the limited length of

the current-carrying surface, as the volume fraction increases,

useless material which does not contribute to the creation of

a linear magnetic field, is distributed at the lower boundary

(Fig. 7(e)). Since the normalized objective function is used,

the increasing of volume fraction can result in an increase in

the weight of resistance objective function, so that the gradient

linearity becomes worse. Figure 8 shows the complete config-

uration of the optimal z-gradient coil presented in Figs. 7(a)

and 7(b), and the corresponding distribution of electric poten-

tial. Figures 8(e) and 8(f) show the gradient field inaccuracy

contours in Figs. 8(a) and 8(c), the field inaccuracy of the red

part is more than 5%, and the ROIs with field inaccuracies

less than 5%, 3%, and 1% are shown by the dashed circles.

It can be seen that the coil configuration is almost identical to

a Maxwell coil (shown in Fig. 1(a)), which verifies the effec-

tiveness and accuracy of the proposed method.
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Table 2. Performance parameters of z-gradient coils presented in Fig. 7.

Volume fraction 0.1 (Fig. 7(a)) 0.2 (Fig. 7(b)) 0.3 (Fig. 7(c)) 0.4 (Fig. 7(d)) 0.5 (Fig. 7(e))

Input voltage/V 2.14e-3 7.68e-4 4.37e-4 3.05e-4 2.47e-4

Current/A 1.28 1.32 1.22 1.15 1.17

Dissipated power/W 5.50e-3 2.02e-3 1.07e-3 7.01e-4 5.76e-4

Magnetic energy/J 8.56e-8 6.83e-8 4.95e-8 3.88e-8 3.32e-8

Resistance/Ω 1.67e-3 5.81e-4 3.58e-4 2.65e-4 2.11e-4

Inductance/H 9.96e-8 7.84e-8 6.66e-8 5.87e-8 4.85e-8

Field inaccuracy/% 1.86 1.58 4.34 7.55 10.01

Efficiency (Gz/I)/T·m−1·A−1 7.81e-3 7.58e-3 8.2e-3 8.7e-3 8.54e-3
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Fig. 8. (color online) Configurations of the optimal z-gradient coil presented in Figs. 7(a) and 7(b) on the current-carrying surface,
together with the corresponding distributions of electric potential. Panels (e) and (f) show the corresponding gradient field inaccuracy
contours of panels (a) and (c) in xz section. R is radius of current-carrying surface.

3.2.2. Topology optimization of y-gradient coils

By adjusting the weight coefficient α , a series of different

coil configurations can be obtained. Figures 9 and 10 show the

plots of the weight coefficient α dependent objective function

value for resistance and magnetic field, and the corresponding

coil configurations with a volume fraction Vol∗ = 0.1 and 0.4,

respectively. As the weight coefficient increases, the coil con-

figuration becomes smoother, but the linearity of the gradient

magnetic field becomes worse.

Figure 11 shows the optimal y-gradient coil configura-

tions with volume fractions of 0.1–0.4 when the weight co-

efficient is α = 100. The corresponding parameters of the gra-

dient coils are listed in Table 3. It shows that an increasing

volume fraction results in smoother coil configuration. The

complete y-gradient coils and their corresponding electric po-

tential distributions, with volume fractions of 0.1 and 0.2, are

shown in Fig. 12. Figures 12(e) and 12(f) show the gradient

field accuracy contours of Figs. 11(a) and 11(c), the field in-
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accuracy of the red part is more than 5%, and the ROIs with

field inaccuracy less than 5%, 3%, and 1% are shown by the

dashed circles, respectively.

Compared with conventional y-gradient coils, the coil

configurations are much simple, easy to make on a microscale,

with very low inductance and resistance. The required current

value is larger, because the magnetic field is produced by a

single wire. However, due to the small resistance, the coil can

be driven with a relatively small voltage.
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Fig. 11. Coil configurations of y-gradient coils with volume fractions of
(a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4. Here α = 100 and p = 5.
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Table 3. Performance parameters of z-gradient coils presented in Fig. 11.

Volume fraction 0.1 (Fig. 11(a)) 0.2 (Fig. 11(b)) 0.3 (Fig. 11(c)) 0.4 (Fig. 11(d))
Input voltage/V 9.713×10−4 3.248×10−4 2.098×10−4 1.547×10−4

Current/A 1.022 1.012 1.032 1.081
Dissipated power/W 3.972×10−3 1.315×10−3 8.659×10−4 6.690×10−4

Magnetic energy/J 8.16×10−8 6.34×10−8 5.85×10−8 5.73×10−8

Resistance/Ω 9.5×10−4 3.2×10−4 2.0×10−4 1.4×10−4

Inductance/H 1.56×10−7 1.24×10−7 1.10×10−7 9.80×10−8

Field inaccuracy/% 3.88 4.16 3.95 4.09
Efficiency (Gy/I)/T·m−1·A−1 9.78×10−3 9.88×10−3 9.69×10−3 9.25×10−3

4. Conclusion
In this paper, a voltage-driven gradient coil with the con-

ductive material distribution as a design variable, is proposed
and optimized by the topology optimization method. Com-
pared with the traditional stream function method, the pro-
posed method avoids magnetic field deviations caused by the
discrete approximation of coils. Optimal gradient coils have a
much simpler pattern without windings of multi-turn wire. It
is thereby possible to effectively reduce the length required for
the gradient coil and improve the space utilization of the mag-
netic resonance system. The proposed method is suitable for
designing the gradient coils of microscale MRI gradient coils.
Even though the proposed method is still in its infancy, the
preliminary design results have shown that it has advantages
that the stream method cannot match.

There is still some work to do on further improving the
optimization model. For example, multi-objective optimiza-
tion of the gradient coils can be achieved by introducing other
performances of the gradient coils, such as inductance and
torque. A closed y-gradient coil can be obtained by adjusting
the position of the input voltage.

Appendix A: Sensitivity analysis
To solve the optimization problem (13) by gradient-based

methods, it is necessary to calculate the sensitivity of the struc-
tural response to change in the design variable. Here, we as-
sume that the external input voltage Vin is the solution that
minimizes the objective function for magnetic field linearity,
and can be calculated by

∂ fB

∂Vin
=

1
φ |init

m

∑
i

(
VinBi

z−Bi
zobj

)
Bi

z=0 or Vin=
∑

m
i Bi

zobjB
i
z

∑
m
i Bi

zBi
z
.

(A1)

Here, the adjoint sensitivity analysis method is used to calcu-
late the sensitivity to design variable. An adjoint vector 𝜆 and
the residual 𝐿=𝐾𝑉 𝑃 = 0 are introduced into the augmented
objective function f̂ , which is given as

f̂ = f +𝜆T (𝐾𝑉 −𝑃 ) = fB +α fR +𝜆T (𝐾𝑉 −𝑃 ) . (A2)

Differentiating the augmented objective function yields

d f̂
d𝜌

=
∂ fB

∂𝜌
+

(
∂ fB

∂𝑉

)T
∂𝑉

∂𝜌
+

∂ fB

∂Vin

∂Vin

∂𝜌
+α

∂ fR

∂𝜌

+ α

(
∂ fR

∂𝑉

)T
∂𝑉

∂𝜌
+𝜆T

(
∂𝐾

∂𝜌
𝑉 +𝐾

∂𝑉

∂𝜌

)
, (A3)

where the load 𝑃 is assumed to be independent of the design
variables, and ∂ fB/∂Vin = 0 (Eq. (14)). In order to avoid cal-
culating the terms including sensitivities of electric potential
vector, let the sum of the terms including ∂𝑉 /∂𝜌 be zero, i.e.,((

∂ fB

∂𝑉

)T

+α

(
∂ fR

∂𝑉

)T

+𝜆T𝐾

)
∂𝑉

∂𝜌
= 0. (A4)

This can be ensured by choosing the adjoint vector 𝜆 to be the
solutions to the adjoint equation

𝐾T𝜆+
∂ fB

∂𝑉
+α

∂ fR

∂𝑉
= 0, (A5)

where ∂ fB/∂𝑉 and ∂ fR/∂𝑉 can be calculated from Eqs. (6)
and (11) by

∂ fB

∂𝑉
=

1
ϕ|init

m

∑
i

((
VinBi

z−Bi
zobj

)
Vin

∂Bi
z

∂𝑉

)
∂ fR

∂𝑉
=− 1

R|init

1
Q2

∂Q
∂𝑉

, (A6)

where ∂Bi
z/∂𝑉 and ∂Q/∂𝑉 can be obtained by differentiat-

ing Eqs. (10) and (12)

∂Bi
z

∂Vk
=−µ0t

4π

∫
Ω

σ (𝜌) ∂Nk
∂ l

(
cos
(

l
r0

)
RC+ sin

(
l

r0

)
RS
)

(
RC2 +RS2 +(z− zi)

2
) 3

2
dΩ ,

∂Q
∂𝑉

= 2𝐾𝑉 . (A7)

In a similar way, ∂ fB/∂𝜌 and ∂ fR/∂𝜌 can be obtained to
be

∂ fB

∂𝜌
=

1
φ |init

m

∑
i

((
VinBi

z−Bi
zobj

)
Vin

∂Bi
z

∂𝜌

)
,

∂ fR

∂𝜌
=− 1

R|init

1
Q2

∂Q
∂𝜌

, (A8)

and
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∂Bi
z

∂𝜌
=−µ0t

4π

∫
Ω

p
(
σCopper−σAir

)
ρ p−1 ∂ρ

∂𝜌 ∑
n
k=1

(
Vk

∂Nk

∂ l

)(
cos
(

l
r0

)
RC+ sin

(
l
r0

)
RS
)

(
RC2 +RS2 +(z− zi)

2
)3/2 dΩ ,

∂Q
∂𝜌

= 𝑉 T ∂𝐾

∂𝜌
𝑉 , (A9)

where ∂ρ/∂𝜌=𝑁 (x) and

∂𝐾

∂𝜌
=

ne

∑
e=1

∫
Ωe

tσ0 pρ
p−1 (∂ρ/∂𝜌)𝐾e dΩe.

The sensitivity equation (A2) can be simplified after solving
the adjoint equation (A4) for 𝜆

d f
d𝜌

=
d f̂
d𝜌

=
∂ fB

∂𝜌
+α

∂ fR

∂𝜌
+𝜆T ∂𝐾

∂𝜌
𝑉 . (A10)

The sensitivities of the constraint functions gVol and ggray

can be found from Eq. (13) by

∂gVol

∂ρi
= Voli. (A11)
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