
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmop20

Journal of Modern Optics

ISSN: 0950-0340 (Print) 1362-3044 (Online) Journal homepage: https://www.tandfonline.com/loi/tmop20

Alignment algorithm for three-mirror anastigmatic
telescopes based on nodal aberration theory

Zhenchong Xing, Yongfeng Hong, Xiaobin Zhang & Bao Zhang

To cite this article: Zhenchong Xing, Yongfeng Hong, Xiaobin Zhang & Bao Zhang (2018)
Alignment algorithm for three-mirror anastigmatic telescopes based on nodal aberration theory,
Journal of Modern Optics, 65:16, 1910-1919, DOI: 10.1080/09500340.2018.1471531

To link to this article:  https://doi.org/10.1080/09500340.2018.1471531

Published online: 11 May 2018.

Submit your article to this journal 

Article views: 33

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmop20
https://www.tandfonline.com/loi/tmop20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09500340.2018.1471531
https://doi.org/10.1080/09500340.2018.1471531
https://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmop20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/09500340.2018.1471531&domain=pdf&date_stamp=2018-05-11
http://crossmark.crossref.org/dialog/?doi=10.1080/09500340.2018.1471531&domain=pdf&date_stamp=2018-05-11


JOURNAL OF MODERN OPTICS
2018, VOL. 65, NO. 16, 1910–1919
https://doi.org/10.1080/09500340.2018.1471531

Alignment algorithm for three-mirror anastigmatic telescopes based on nodal
aberration theory

Zhenchong Xinga,b, Yongfeng Honga, Xiaobin Zhanga and Bao Zhanga

aChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun, People’s Republic of China; bUniversity
of Chinese Academy of Science, Beijing, People’s Republic of China

ABSTRACT
Formost of the alignment algorithms, alignment errors and figure errors cannot be separated due to
the coupling effect among optical elements. We present an alignment algorithm for TMA telescopes
on the framework of nodal aberration theory (NAT). Based on NAT, we firstly determine the axial
misalignments of secondary (SM) and tertiary (TM) mirrors. Then we decouple the lateral misalign-
ments and angular misalignments of SM and TM. Finally, we decouple the figure errors of primary
mirror (PM) from the alignment errors of SM and TM. To validate the algorithm, a TMA telescope is
designed for simulation. In the simulation, modulation transfer function (MTF) is chosen to evaluate
the telescope before and after correction. It is found that the algorithmpresented in this papermain-
tains high precision. In the end, a Monte Carlo simulation is conducted to further demonstrate the
accuracy of the presented alignment algorithm even in poor conditions.
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1. Introduction

To improve resolution and performance, large-aperture
astronomical telescopes with fast F number need to
be constructed. But such telescopes are easily per-
turbed because of the effect of thermal variation, grav-
ity, vibration and other factors. Then telescope systems
become different from the designed. Optical elements
may become misaligned and mirror figures may also
be deformed, all of which will result severe degrada-
tion of the image quality. To maintain perfect perfor-
mance, active optics system needs to be integrated in the
telescope.

The concept of active optics system has been pre-
sented for nearly four decades. It was first applied to
New Technology Telescope (NTT) (1). Since then, many
telescopes (either monolithic or segmented) integrated
with active optics system have been constructed or under
construction. The main task of active optics system is
to recover the perturbed telescope system. To achieve
that, all the perturbations (including alignment errors
and figure errors) should be solved firstly.

There are several algorithms that can be used to
solve these perturbations in active optics system, for
instance, sensitivity table method (STM), merit function

CONTACT Zhenchong Xing chong091010123@163.com Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science,
Changchun 130033, People’s Republic of China

regression (MFS) method, differential wave-front sam-
pling (DWS) method, nodal aberration theory (NAT)
method, etc. All the algorithms are based on the idea
of system optimization. In general, the perturbed system
can be recovered based on any algorithm, if the system
owns fewer perturbation parameters. But for multi com-
ponents optical system, the perturbed system may be
optimized to a local optimum, where the system owns
perfect performance, but it is different from the origi-
nal system. The reason is that there exists coupling effect
among optical elements.

For multi components optical system, both STM (2,
3) and MFS method (4) cannot separate the coupling
effect. The reason is that they are based on the least square
method (LSM), which is numerical. The perturbations
resulting from them are not correct to some extent. To
eliminate the coupling effect, an algorithm called DWS
was presented (5, 6). This method can analytically sepa-
rate the coupling effect. While considering its high sen-
sitivity to the environment, such algorithm is difficult
to achieve in the practical application. Besides, another
algorithm, which is based on NAT, can also decouple the
optical elements. This algorithm can analytically relate
perturbations with wave aberration coefficients. And it is
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not limited to the environment. So this algorithm is of
great advantage. More attention should be paid to it.

Recently, the method based on NAT has been studied
in different kinds of telescopes. Manuel (7) studied the
functional aberration description of a misaligned R–C
telescope. Schmid et al. (8) separated the effects of astig-
matic figure error from misalignments. Sebag et al. (9)
presented an alignment plan including the primary mir-
ror (PM) figure errors for the Large Synoptic Survey
Telescope (LSST). Gu et al. (10) simulated the align-
ment of a three-mirror anastigmatic (TMA) telescope.
Schmid et al. (11) presented an alignment method of the
two-mirror telescope.

In (10), an alignment algorithm for the TMA telescope
based on NAT has been studied. But there are two great
shortages in the alignment algorithm.On one hand, there
are two larger residual misalignments (YDEPM ,YDESM)
remained, which means the telescope is not recovered
and it is still misaligned. On the other hand, only lateral
misalignments (XDE,YDE) and angular misalignments
(ADE,BDE) are considered in (10). Axial misalignments
(ZDE) and figure errors (C5/C6,C10/C11), which are
also easily introduced, are not included in the alignment
algorithm. To cover these shortages, a more comprehen-
sive alignment algorithm should be modelled. To model
this algorithm, some new work has to be done in this
paper.

2. NAT for the TMA telescope

The vector form of wave aberration expansion for rota-
tionally symmetric optical system is the theoretical basis
of NAT. It was converted from the scalar form pre-
sented by Hopkins (12) and disseminated by Shack (13)
and Thompson and Rolland (14). The vector form is
expressed as:

W =
∑
j

∞∑
p

∞∑
n

∞∑
m

(Wklm)j(
→
H · →

H)p(
→
ρ · →

ρ )n

(
→
H · →

ρ )m,

k = 2p + m, l = 2n + m, (1)

where �H denotes the normalized field vector, �ρ denotes
the normalized radial vector as described in (15). When
the rotational symmetry is broken in an optical sys-
tem, a sigma vector (�σj) representing the displacement
of the centre of the aberration field was introduced by
Buchroeder (16). And the effective field height ( �H − �σj)
will replace the normalized field vector �H in Equation (1)
to describe the characteristic aberration fields after per-
turbation. Note that the total wave aberration in image
plane is the sum of individual surface contributions in

either rotationally or non-rotationally symmetric optical
system.

As described in NAT, sigma vector must be separated
into two components in the case of an aspheric surface.
One indicates the contribution associated with spherical
base curve, the other indicates the contribution asso-
ciated with aspheric departure from the spherical base
curve. They will be distinguished by using superscript
sph and asph respectively. In TMA telescopes, PM, sec-
ondary mirror (SM) and tertiary mirror (TM) are all
aspheric. And PM is usually regarded as the reference.
SM and TM are perturbed with respect to PM. Hence the
sigma vectors of SM and TM should be divided into two
parts. Note that the reference of the TMA telescope in
(10) is TM. So some equations will be modified to accu-
rately represent the telescope in this paper. According
to the paraxial ray-tracing depicted in Figure 1 and the
optical axis ray-tracing depicted in Figure 2, the quanti-
tative relationships between sigma vectors and perturba-
tions can be determined based on Eq. (3) and Eq. (10)
in (10). For simplicity, the specific relationships can be
described as:

σ
asph
SM,y = −YDESM

d1ūPM
,

Figure 1. Layout of paraxial ray-tracing for TMA telescope. Red
line represents paraxial chief ray. MCA is the abbreviation of
mechanical coordinate axis, which is coincident with the optical
axis of PM if PM is referred.

Figure 2. Layout of optical axis ray-tracing for TMA telescope.
Red line represents optical axis ray. Pink lines represent the state
of SM and TM after perturbation. Note that all the quantities refer-
ring to MCA or the axis parallel to MCA are denoted with a pound
sign. And all the quantities referring to optical axis ray (OAR) are
denoted with an asterisk.
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σ
sph
SM,y = −ADESM + cSMYDESM

(1 + cSMd1)ūPM
,

σ
asph
TM,y = YDETM − 2d2(ADESM + cSMYDESM)

[d2 + d1(2cSMd2 − 1)]ūPM
,

σ
sph
TM,y =

ADETM + cTMYDETM
−2(1 + cTMd2)(ADESM + cSMYDESM)

[cTM(d2 − d1)+2cSM(cTMd1d2 + d1)+1]ūPM
,

(2)

where all the symbols are defined as the same in the
appendix in (10). Here only y-components of sigma
vectors are discussed. Their x-components are ignored
because of their similarity. And all the functions in
Equation (2) are linear. All the perturbations can be
solved in sequence if the sigma vectors are determined.
The determination of the sigma vectors will be discussed
in the following sections.

3. Boresight error for the TMA telescope

As shown in Figure 3, the intersection height ofOARwith
respect to Mechanical axis coordinate (MAC) is nonzero
while the telescope is perturbed. This nonzero parameter
is called boresight error. It can be deduced from Figure 2.
Similar to sigma vectors, only y-component of the bore-
sight error is discussed here. According to the derivation,
we can see that boresight error is only dependent on the
sigma vector associated with spherical component. The
specific relationship can be given by

HOAR
TM,y = −2d2[ūPM(1 + d1cSM)]σ sph

SM,y,

HOAR
IMAGE,y = −2(d2 + d3)[ūPM(1 + d1cSM)]σ sph

SM,y

+ 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,y,

(3)

Figure 3. Schematic representation for the boresight error. Solid
line represents the image plane of the nominal design. Dashed
line represents the image plane after misalignment. The bore-
sight error can be regarded as the vector, which is from point 1 to
point 2.

where d1, d2, d3 are the thickness of PM, SM, TM in
nominal design, cSM , cSM are the curvatures of SM and
TM. HOAR

TM,y denotes the intersection height of OAR with
TM, HOAR

IMAGE,y denotes the intersection height of OAR
with image plane. They are both linear with sigma vec-
tors. So, sigma vectors contributed from spherical com-
ponent can be determined if these two values can be
accurately measured. However, the quantity HOAR

TM,y can-
not be directly measured. Some means must be taken
to determine it. In practical application, this parame-
ter can be measured by inserting a beam splitter mirror
between SM and TM. But this method weakens optical
energy on the astronomical image plane. It is unwise and
inadvisable.

Equation (3) denotes that the sigma vector with
respect to SM is firstly determined. Then the sigma vector
with respect to TM is determined. So, the measurement
ofHOAR

TM,y is in need. But there is no need tomeasureHOAR
TM,y

if the processing sequence of sigma vectors is reversed.
There is a field stop between SM and TM in TMA tele-
scope. Only TM has some influence to the image of the
field stop. So, the sigma vector contributed from TM can
be determined based on the displacement of the image
of the field stop. Then another sigma vector contributed
from SM can be determined by using the fathomable
boresight error on the image plane of the telescope. The
specific expression is given by

HFS
TM,y = 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,y,

HOAR
IMAGE,y = −2(d2 + d3)[ūPM(1 + d1cSM)]σ sph

SM,y

+ 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,y,

(4)

whereHFS
TM,y denotes the displacement of the image of the

field stop. Based on Equation (4), the sigma vectors con-
tributed from spherical component can be determined.
However, the thicknesses in Equation (4) are unknown
if there exist axial misalignments in TMA telescopes. So,
the axial misalignments must be firstly determined.

Here we adopt the idea of Phase Diversity (PD) that
wave-front aberrations can be obtained by analysing the
focal image and defocus image. If the defocus distance of
image plane is known,we can use Equation (4) before and
after defocusing to determine the axial misalignments.
Equation (4) before defocusing can be expressed by:

HFS
TM,y,before = 2d′

3(cTMYDETM + ADETM),
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HOAR
SM+TM,y,before = 2(d′

2 − d′
3 − 2cTMd′

2d
′
3)(cSMYDESM

+ ADESM) + 2d′
3(cTMYDETM

+ ADETM). (5)

Equation (4) after defocusing can be expressed by:

HFS
TM,y,after = 2(d′

3 − �)(cTMYDETM + ADETM),

HOAR
SM+TM,y,after = 2[d′

2 − (d′
3 − �) − 2cTMd′

2(d
′
3 − �)]

(cSMYDESM + ADESM)

+ 2(d′
3 − �)(cTMYDETM + ADETM),

(6)

where d′
2 and d′

3 denote the thicknesses of SM and
TM after axial misalignment, they are given byd′

2 =
d2 + ZDETM − ZDESM , d′

3 = d3 − ZDETM , � denotes
the amount of defocus. Based on Equation (5) and
Equation (6), the axial misalignments of SM and
TM (ZDETM and ZDESM) can be determined as fol-
lowed. Thus the sigma vectors associated with spher-
ical component can be determined based on
Equation (4).

ZDETM = d3 − d′
3 = d3

− �

1 − (HFS
TM,y,after/H

FS
TM,y,before)

, (7)

ZDESM = d2 + ZDETM − d′
2,= d2 + ZDETM

−
� + d′

3

(
(HOAR

SM+TM,y,after) − (HFS
TM,y,after)

(HOAR
SM+TM,y,before) − (HFS

TM,y,before)
− 1

)
(

(HOAR
SM+TM,y,after) − (HFS

TM,y,after)

(HOAR
SM+TM,y,before) − (HFS

TM,y,before)
− 1

)

−2cTM

[
� + d′

3

(
(HOAR

SM+TM,y,after) − (HFS
TM,y,after)

(HOAR
SM+TM,y,before) − (HFS

TM,y,before)
− 1

)]
.

(8)

Therefore, boresight error plays an important role
not only in determining axial misalignments, but also
in determining the sigma vectors associated with spher-
ical component. More importantly, it is not negligible
in practical application. Just as described in Advanced
Technology Solar Telescope (ATST) (17, 18), image bore-
sight should be maintained during operation. If the
image boresight is not maintained, the data obtained
from wave-front sensing is inaccurate for the alignment
algorithm. As shown in Figure 3, assuming that there is
a detector (used for wave-front sensing) in position 1, it
corresponds to a field pointA. The field pointAwillmove
to position 2 if boresight error is introduced in the sys-
tem. Then position 1will correspond to an unknownfield

point. Obviously, the aberration coefficients obtained
from position 1 and position 2 are different. But they are
thought to be the same in the algorithm. So, the model
is not correct at this moment. Therefore, the boresight
error must be considered in order to establish the correct
model.

4. Field dependences of third-order and
fifth-order aberrations

Besides the expression in Equation (1), wave-front
aberration can also be described as a sum of weighted
Zernike polynomial. The polynomial can be expressed as:

W =
∑
j
CjZj(ρ,ϕ), (9)

where Zj(ρ,ϕ) represents the j-th Zernike polynomial
and its aperture dependence,Cj represents the scale of the
corresponding Zernike polynomial and its field depen-
dence.

Recently, Gray and Rolland (19) have expressed the
wave-front aberration in terms of Zernike polynomial.
In (19), Eq. (39) describes the aberration fields of the
perturbed system. On the basis, we can get the field
dependences of the corresponding Zernike polynomial.

As concluded by Gu and collaborators (10), the accu-
racy of the alignment model is lower only using third-
order aberration theory. To obtain the accurate results,
third-order and fifth-order aberration theory should be
considered simultaneously. In this paper, we will not only
focus on the alignment errors of the TMA telescopes,
but also the figure errors. This means the number of
the parameters needed to be determined has increased.
Therefore, fifth-order or higher order aberration theory
must be considered.

In perturbed optical systems, the vector forms of
third-order and fifth-order aberrations have been dedu-
ced and analysed in (20–22). Combining them with
Eq. (39) in (19), the field dependences of third-order
and fifth-order aberrations can be exactly determined.
In the following, the field dependences of third-order
and fifth-order aberrations will be expanded into matrix
form.

4.1. Fifth-order field-linear coma and oblique
spherical aberration

Asdescribed byThompson, the vector formof fifth-order
field-linear coma is expressed following:

W = [(W151 �H − �A151) · �ρ]( �ρ · �ρ)2. (10)
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Its expansion based on vector multiplication can be
written as:

W =
[

W151Hx − �A151,x
W151Hy − �A151,y

]T [ | �ρ|5 cosϕ
| �ρ|5 sinϕ

]
. (11)

To find the exact correspondence between Equation
(10) and Equation (11), the aperture dependence of
Equation (11) should be further expanded, followed by:[| �ρ|5 cosϕ

| �ρ|5 sinϕ

] [| �ρ|5 cosϕ
| �ρ|5 sinϕ

]

= 1
10

[
(10| �ρ|5 − 12| �ρ|3 + 3| �ρ|) cosϕ
(10| �ρ|5 − 12| �ρ|3 + 3| �ρ|) sinϕ

]

+ 4
10

[
(3| �ρ|3 − 2| �ρ|) cosϕ
(3| �ρ|3 − 2| �ρ|) sinϕ

]
+ �, (12)

where
[
(10| �ρ|5 − 12| �ρ|3 + 3| �ρ|) cosϕ
(10| �ρ|5 − 12| �ρ|3 + 3| �ρ|) sinϕ

]
=
[
Z14
Z15

]
,[

(3| �ρ|3 − 2| �ρ|) cosϕ
(3| �ρ|3 − 2| �ρ|) sinϕ

]
=
[
Z7
Z8

]
, � denotes x-tilt and y-

tilt of the wave-front aberration. Therefore, a conclu-
sion is done that fifth-order field-linear coma have cer-
tain contributions to C7/C8 if C14/C15 is not small
enough to be ignored. And the field dependences of
the corresponding Zernike coefficients are determined,
described by:[

W151Hx − �A151,x
W151Hy − �A151,y

]
= 10

[
C14
C15

]
. (13)

Thompson also described the vector form of oblique
spherical aberration, followed by:

W = 1
2
[(W242 �H2 − 2 �H �A242 + �B2242) · �ρ2]( �ρ · �ρ). (14)

As done to fifth-order field-linear coma, Equation
(14) should be expanded based on its aperture depen-
dence. Through expansion and combination, a similar
conclusion can be acquired that the values of Zernike
coefficientsC5/C6 have some contributions from oblique
spherical aberration. And the field dependences of the
corresponding Zernike coefficients are also determined,
described by:

[
H2
x − H2

y −2Hx 2Hy 1 0
2HxHy −2Hy −2Hx 0 1

]
⎡
⎢⎢⎢⎢⎢⎣

W242
�A242,x
�A242,y
�B2242,x�B2242,y

⎤
⎥⎥⎥⎥⎥⎦

= 8
[
C12
C13

]
. (15)

4.2. Third-order coma and field-cubed coma

To our knowledge, the aperture dependence of third-
order coma is third. When fifth-order aberration is
considered, field-cubed coma should be combined to
third-order coma because of the same aperture depen-
dence. The combining wave aberration expansion is
followed

W =

⎡
⎢⎢⎣
W331M( �H · �H) �H − 2( �H · �A331M) �H

+(W131 + 2B331M) �H
−( �H · �H)()�A331M + �B2331M �H∗

−(�A131 + �C331M)

⎤
⎥⎥⎦ · �ρ( �ρ · �ρ).

(16)

According to the aperture dependence in Equation
(16), Z7/Z8 are its corresponding Zernike polynomi-
als and C7/C8 are its corresponding Zernike coef-
ficients. Recalling to Section 4.1, fifth-order field-
linear coma also have some contributions to seventh
and eighth Zernike coefficients. Through expansion
and merging, the same matrix referred to Zhiyuan
Gu can be obtained (10). A simplification is done
here to reduce the needed fields of view in the
calculation.

Note that sigma vector is much less than 1 in non-
rotationally symmetric TMA systems. So the value of
�B2311M and B311M , which are proportional to the squared
value of sigma vector, are small enough to neglect com-
pared to the low-order terms of sigma vector. And the
value of �C311M is smaller. By omitting the higher order
terms related to sigma vectors, Equation (16) can be
simplified by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H3
x + HxH2

y H2
xHy + H3

y
−3H2

x − H2
y −2HxHy

−2HxHy −H2
x − 3H2

y
Hx Hy
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎣

W331M
�A331M,x
�A331M,y
W131
�A131,x
�A131,y

⎤
⎥⎥⎥⎥⎥⎥⎦

= 3
[
C7 − 4C14
C8 − 4C15

]
. (17)

4.3. Third-order astigmatism and fifth-order
astigmatism

Similar to third-order coma and field-cubed coma, third-
order astigmatism and fifth-order astigmatism also have
the same aperture dependence. That means they have
individual contributions to the same Zernike coeffi-
cients. Consequently, they should be merged together as
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expressed:

W=

⎡
⎢⎢⎣

1
2W422( �H · �H) �H2 − ( �H · �H)( �H �A422)

+ 3
2 (

�H · �H)�B2422 − ( �H · �A422) �H2

+ 1
2 (W222 + 3B422) �H2 − 1

2
�H(�A222 + 3�C422)

− 1
2
�C3
422 �H∗ + 1

2 (
�D2
422 + �B2222)

⎤
⎥⎥⎦· �ρ2.

(18)

Oblique spherical aberration should also be consid-
ered when Equation (18) is expanded. After the higher
order termswith respect to sigma vectors are omitted, the
final result can be expressed as a matrix, given by:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H4
x − H4

y 2HxHy(H2
x + H2

y )

−4H3
x −6H2

xHy − 2H3
y

4H3
y −2H2

x − 6HxH2
y

H2
x − H2

y 2HxHy
−Hx −Hy
Hy −Hx
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W422
�A422,x
�A422,y
W222
2�A222,x
2�A222,y
�B2222,x�B2222,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2
[
C5 − 3C12
C6 − 3C13

]
. (19)

4.4. Elliptical coma

Elliptical coma (also called trefoil) is a typical wave aber-
ration similar to third-order astigmatism. This kind of
aberration almost remains unchanged when alignment
errors are introduced. Its value mainly depends on the
changes of the surface figures produced by three-point
support. The vector form of elliptical coma has also been
summarized, which follows:

W = 1
4
(W333 �H3 − 3 �H2 �A333 + 3 �H�B2333 − �C3

333) · �ρ3.
(20)

Not like other wave-front aberrations, trefoil has con-
tribution to Zernike coefficients C10/C11. Through sim-
plification, a matrix could be derived, which is expressed
by: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H3
x − 3HxH2

y 3H2
xHy − H3

y
−3H2

x + 3H2
y −6HxHy

6HxHy −3H2
x + 3H2

y
3Hx 3Hy

−3Hy 3Hx
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W333
�A333,x
�A333,y
�B2333,x�B2333,y
�C3
333,x�C3
333,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 4
[
C10
C11

]
. (21)

As discussed above, every single Zernike coeffi-
cient has specific field dependence. According to the

field dependences, all the parameters associated with
sigma vectors (perturbation vectors and scalars in the
appendix) can be determined. Here we will focus more
on one kind of perturbation vector, which is linear to the
sigma vectors, given by:

�Aklm = Wsph
klm,SM �σ sph

SM + Wasph
klm,SM �σ asph

SM

+ Wsph
klm,TM �σ sph

TM + Wasph
klm,TM �σ asph

TM , (22)

where Wklm denotes the Seidel coefficient of every opti-
cal component. Their values are confirmed with respect
to the designed system. In order to determine the values
of these sigma vectors, twomore analogous equations are
needed including Equation (4). The process of determin-
ing the values of these sigma vectors are followed: (here
boresight errors and astigmatic field and comatic field are
chosen)

HFS
TM,x = 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,x,

HFS
TM,y = 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,y,

HOAR
IMAGE,x = −2(d2 + d3)[ūPM(1 + d1cSM)]σ sph

SM,x

+ 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,x,

HOAR
IMAGE,y = −2(d2 + d3)[ūPM(1 + d1cSM)]σ sph

SM,y

+ 2d3[cTM(d2 − d1) + 2cSM(cTMd1d2 + d1)

+ 1]ūPMσ
sph
TM,y,

�A222,x = Wsph
222,SM �σ sph

SM,x + Wasph
222,SM �σ asph

SM,x

+ Wsph
222,TM �σ sph

TM,x + Wasph
222,TM �σ asph

TM,x,

�A222,y = Wsph
222,SM �σ sph

SM,y + Wasph
222,SM �σ asph

SM,y

+ Wsph
222,TM �σ sph

TM,y + Wasph
222,TM �σ asph

TM,y,

�A131,x = Wsph
131,SM �σ sph

SM,x + Wasph
131,SM �σ asph

SM,x

+ Wsph
131,TM �σ sph

TM,x + Wasph
131,TM �σ asph

TM,x,

�A131,y = Wsph
131,SM �σ sph

SM,y + Wasph
131,SM �σ asph

SM,y

+ Wsph
131,TM �σ sph

TM,y + Wasph
131,TM �σ asph

TM,y.
(23)

Then all the lateral misalignments and angular mis-
alignments can be determined through these sigma vec-
tors. But figure errors have nothing to do with sigma
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vectors. Some considerations should be taken to solve
this problem.

5. Some considerations about the
determination of figure errors

As is known, both alignment errors and figure errors have
contributions to aberration fields. The primary problem
is how to separate them. According to the NAT applied to
freeform surfaces (23), the beam footprint at the surface
is not the same for different field points. So, aberration
contributions for different field points are varying. But
the surface located at aperture stop (PM in TMA tele-
scope) has the same footprint for different field points.
In other words, wave-front aberrations contributed from
figure errors of PM are independent of fields of view.
Their contributions can be derived from the perturba-
tion vectors, which are independent of fields of view (i.e.
�B2222, �C3

333).
If astigmatic figure errors on PM exist, the perturba-

tion vector �B2222 in Equation (19) consists of two parts. It
can be expressed as:

�B2222 = Figure�B2222 + Align�B2222, (24)

where Figure�B2222 denotes the contribution from figure
errors, Align�B2222 denotes the contribution from alignment
errors. For TMA telescope, they can be expressed as:

Figure�B2222 = 2(n − n′)
[

C5,PM
C6,PM

]
, (25)

Align�B2222 = Wsph
222,SM(�σ sph

SM )2 + Wasph
222,SM(�σ asph

SM )2

+ Wsph
222,TM(�σ sph

TM)2 + Wasph
222,TM(�σ asph

TM )2.
(26)

In Equation (25), (n − n′) = −2, C5,PM and C6,PM
denote the astigmatic figure errors on PM. In Equation
(26), Wsph/asph

222,SM/TM denotes the Seidel coefficients of SM
and TM for TMA telescope. All the sigma vectors have
been determined in the process of solving the alignment
errors. So the astigmatic figure errors can be determined
if �B2222 is solved in Equation (19).

For trefoil on PM, it can be determined according to
the perturbation vector �C3

333 in Equation (21). Its solv-
ing process is similar to the solving process of astigmatic
figure errors on PM.

6. Simulations for the TMA telescopes

For the validation of the method presented in this paper,
a TMA telescope is designed. As rendered in Figure 4,

Figure 4. Layout of the TMA telescope.

Table 1. Optical prescription for the TMA telescope.

Surface Type
Conic

constant
Radius
(mm)

Thickness
(mm)

Decentre of the
aperture

PM/stop Conic −0.996 −9999.588 −4500
SM Conic −1.633 −1149.171 4800
TM Conic −0.741 −1297.643 −900 123mm
FSM Infinity 1100 −26.8mm
Image Infinity

Note: Note that the last column in Table 5 denotes the decentre of the aperture
in y direction.

Table 2. Seidel coefficients of SM and TM for the TMA telescope.

Wsph
222 Wasph

222 Wsph
131 Wasph

131

SM −45.462 47.108 596.916 597.468
TM 77.699 −100.844 11.116 30.924

it is a 5m F/16 telescope with a 0.2°× 0.1° field of view
and a 0.15° field offset. This telescope is composed of PM,
SM, TM, fine steering mirror (FSM) and image plane.
Their optical parameters are listed in Table 1. And the
corresponding Seidel aberration coefficients are listed in
Table 2. Note that the aperture stop locates at PM and it
is regarded as the reference surface.

Theoretically, all the linear perturbation vectors (�Aklm)
can be acquired by solving Equation (13), Equation (15),
Equation (17), Equation (19) and Equation (21). Then
sigma vectors can be determined by combining these lin-
ear perturbation vectors. In (10), two matrix equations
similar to Equation (17) and Equation (19) are chosen to
solve them. But the resulting values are biased from the
designed. Therefore, the alignment method only based
on aberration theory is undesirable. In this paper, we
concentrate more on boresight error. On the premise
that boresight errors are known, only two linear pertur-
bation vectors are needed in the algorithm. The linear
vectors associated with third-order aberrations are cho-
sen here because they dominate the aberration fields.
From Equation (17) and Equation (19), we can see that
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four fields of view are enough to solve these matrix equa-
tions. At the same time, the axial misalignments can be
calculated based on boresight errors.

In TMA telescope, SM and TM are likely to mis-
align. And PM figure may be damaged. To be in accor-
dance with the realistic system, some small perturba-
tions are introduced. The introduced alignment errors
and figure errors are listed in Table 3. Among them,
XDE/YDE/ZDE denote the decentres of SM and TM,
ADE/BDE denote the tilts of SM and TM, C5,PM/C6,PM
denote the astigmatic figure errors onPM,C10,PM/C11,PM
denote the trefoil figure errors onPM.After perturbation,
the modulation transfer function (MTF) of the TMA
telescope is depicted in Figure 5.

Through simulation, the computed alignment errors
and figure errors are listed in Table 4. The MTF of the
TMA telescope is depicted in Figure 6. From Table 4,
we can see that the computed results are very close to
the introduced. Specifically, the vertex decentres can be
determined on the level ofmicron (even sub-micron), the
tilts can be determined on the level of second (even sub-
second), the figure errors can be determined on the level
of 10−4 waves. From Figure 6, we can see that the system
is diffraction limited. So a conclusion can be made that
the perturbed TMA telescope has been recovered.

Table 3. The introduced alignment errors and figure errors.

XDESM/mm YDESM/mm ZDESM/mm ADESM/◦ BDESM/◦
0.006 −0.004 0.008 0.0025 0.001
XDESM/mm YDESM/mm ZDESM/mm ADESM/◦ BDESM/◦
0.005 −0.005 −0.007 −0.001 0.002
C5,PM/waves C6,PM/waves – C10,PM/waves C11,PM/waves
0.1 0.1 – 0.05 0.05

Table 4. The computed alignment errors and figure errors.

XDESM/mm YDESM/mm ZDESM/mm ADESM/◦ BDESM/◦
0.006011 −0.004003 0.007912 0.002499 0.000999
XDESM/mm YDESM/mm ZDESM/mm ADESM/◦ BDESM/◦
0.004887 −0.004930 −0.007053 −0.000997 0.002005
C5,PM/waves C6,PM/waves – C10,PM/waves C11,PM/waves
0.099737 0.099734 – 0.049897 0.049893

To further demonstrate the accuracy of the presented
method in this paper, three cases of Monte Carlo simu-
lations are conducted and analysed as listed in Table 5.
There are 100 pairs of random perturbations following
a standard uniform distribution for each case. Among
them, Case 1 consists of relatively small values, Case 2
consists of relatively large values, Case 3 consists of the
same values as Case 2 but with 1% measurement error.

An evaluation function should be set to evaluate
these simulation results. Here we adopt the root mean
square error (RMSE) between computed perturbations
and introduced perturbations as the evaluation function.
It can be expressed as:

RMSE =
√√√√ 1

N

N∑
n=1

[X(n) − x(n)]2, (27)

where X(n) denotes the computed perturbation and
x(n) denotes the introduced perturbation. The resulting
RMSE of every perturbation for different cases are listed
in Table 6.

According to the simulations in Case 1 and Case 2,
we can see that the calculated axial misalignments are
themost accurate. The reason is that axial misalignments
are mainly determined by boresight errors. They can be

Figure 5. MTF of the TMA telescope before simulation.
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Figure 6. MTF of the TMA telescope after simulation.

Table 5. Ranges of perturbation used inMonte Carlo simulations.

Axial mis-
alignment

(ZDE)

Lateral mis-
alignment
(XDE/YDE)

Angular mis-
alignment
(ADE/BDE)

Figure errors on
PM

(C5/C6/C10/C11)

Case 1 [−0.01,0.01] [−0.01,0.01] [−0.001,0.001] [−0.01,0.01]
Case 2 [−0.1,0.1] [−0.1,0.1] [−0.01,0.01] [−0.1,0.1]
Case 3 [−0.1,0.1] [−0.1,0.1] [−0.01,0.01] [−0.1, 0.1]

With 1%measurement error

Table 6. The RMSE of every perturbation for different cases.

Case 1 Case 2 Case 3

XDESM 2.29× 10−6 2.38× 10−5 7.22× 10−4

YDESM 9.12× 10−7 5.92× 10−6 1.45× 10−3

ZDESM 8.53× 10−9 1.22× 10−8 8.95× 10−5

ADESM 7.94× 10−10 5.15× 10−9 4.37× 10−3

BDESM 1.99× 10−9 2.07× 10−8 9.44× 10−7

XDETM 3.38× 10−5 4.24× 10−4 8.8× 10−3

YDETM 1.32× 10−4 1.63× 10−4 9.9× 10−3

ZDETM 2.14× 10−7 4.87× 10−7 1.41× 10−3

ADETM 1.02× 10−7 1.25× 10−7 7.91× 10−6

BDETM 2.60× 10−8 3.27× 10−7 4.79× 10−6

C5,PM 1.54× 10−5 9.80× 10−5 2.29× 10−4

C6,PM 9.42× 10−6 1.07× 10−4 2.48× 10−4

C10,PM 6.37× 10−5 1.32× 10−4 7.13× 10−4

C11,PM 5.73× 10−5 1.45× 10−4 9.96× 10−4

directly separated from the coupling effect. Furthermore,
angular misalignments are relatively accurate compared
with lateral misalignments and figure errors. The rea-
son is that angular misalignments are mainly determined
by sigma vectors contributed from spherical component,
which are also determined by boresight errors. However,
lateral misalignments and figure errors are mainly deter-
mined by field-dependentmatrices. There exists coupling
effect between them. They can only be determined by

the singular value decomposition (SVD) of the field-
dependent matrices.

Comparing Case 1 with Case 2, it is found that
the computation accuracy declines as the perturba-
tion parameters increase. This is because the alignment
algorithm presented here is mainly based on the paraxial
optics. It will become inapplicable with the increase of the
perturbation parameters. But within the ranges in Case 2,
the algorithm is still accurate and applicable.

In Case 3, 1% measurement errors are added. From
the Monte Carlo simulation, we can see that the compu-
tation accuracy decreases compared to Case 2, especially
the accuracy of axial misalignments and lateral mis-
alignments. This is because aberration fields are mainly
affected by angular misalignments and figure errors.
Axial misalignments and lateralmisalignments only have
few contributions to the aberration fields. So it is difficult
to precisely determine them in the presence of mea-
surement errors. But the angular misalignments and the
figure errors can be precisely determined. In this case,
the perturbed TMA telescope can also be recovered with
perfect performance.

7. Conclusion

In this paper, we present an algorithm about the
active correction for the TMA telescope. Based on this
algorithm, we can decouple the alignment errors of SM
and TM. Meantime, we can decouple the figure errors of
PM from the alignment errors of SM and TM.

Firstly, we analyse the advantages and disadvantages
of the presented alignment algorithms. By contrast, the
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algorithm based on NAT is regarded as the better one.
Secondly, a vector called boresight error is introduced in
this paper. This vector is independent of aberration coef-
ficients. It plays an important role in decoupling. Thirdly,
the field dependencies of third-order and fifth-order
aberrations are expanded into matrix form here. Based
on thesematrices, it is easy to determine the perturbation
vectors. Fourthly, we go into much detail about how to
decouple the alignment errors and figure errors. Only by
combining the boresight error with the field-dependent
matrices, can the coupling effect be decoupled. In the end,
a telescope system is designed to demonstrate the correct-
ness of themethod presented in this paper. By simulation,
it is found that this algorithmowns high precision.Mean-
time, a Monte Carlo simulation is conducted to further
demonstrate the accuracy of the algorithm. By analysis,
we can see that the algorithm is applicable even in poor
conditions.

However, several perturbation parameters are not dis-
cussed here. For example, the surface figure of SM and
TM are likely to be damaged on orbit. Unlike PM, beam
footprints on SM and TM are dependent with fields of
view. They cannot be easily determined. Theories should
be extended to solve these problems in the future.
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