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Abstract. Video-based facial expression recognition has become increasingly important for plenty of applica-
tions in the real world. Despite that numerous efforts have been made for the single sequence, how to balance
the complex distribution of intra- and interclass variations well between sequences has remained a great diffi-
culty in this area. We propose the adaptive (N þM)-tuplet clusters loss function and optimize it with the softmax
loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using
the similarity measurements of multiple samples in the feature space with many fewer comparison times as
conventional deep metric learning approaches, which enables the metric calculations for large data applications
(e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of
an Inception-ResNet network with long short term memory and the two fully connected layer branches structure.
Our proposed method has been evaluated with three well-known databases, and the experimental results show
that our method outperforms many state-of-the-art approaches.© 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.1.013022]
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1 Introduction
As the most expressive nonverbal channels of internal emo-
tions, facial expression recognition (FER) plays a vital role in
human–machine interaction systems. For the wide-spreading
employment of video-based digital entertainment and health
care etc., video-based FER, which is to classify an expressive
human face image sequence to one of the six expressions
(i.e., anger, disgust, fear, happiness, sadness, and surprise),
also has been a hot topic for decades.

Compared to static face images, videos usually provide us
more information, such as multiview and temporal informa-
tion. However, the FER problem becomes significantly chal-
lenging when it comes to videos and presents undesirable
performances. What’s more, the quality of video frames
seems to be unstable, and the faces in videos always present
much richer variations since the video acquisition has fewer
constraints.1 In addition, the common dynamic pattern in
facial expression also exerts influences in video-based
FER. Such a pattern can be divided into three phrases: onset,
peak, and offset, where the onset is the beginning of the
expression, the peak (aka apex) represents the maximum
intensity of the expression, and the offset describes the
moment when the expression vanishes. In most cases, the
change of a facial expression from the onset to the offset
tends to be very fast, which makes the process of video-
based FER pretty challenging.2 Also, the subjects in videos
are often mobile, and this definitely brings serious motion
blur and out-of-focus blur.

Despite the great efforts that have been made, FER, even
for still images, remains a challenge for illumination

and pose variations as well as intersubject variations
(i.e., identity-specific attributes).3 Since expressions may
only involve subtle facial muscle movements, the extracted
expression-related information from different classes can be
dominated by the sharp-contrast identity-specific geometric
or appearance features, which are not useful for FER. As
shown in Fig. 1, example x1 and x2 are happy faces whereas
x3 is a sad face. We set fðxiÞ as the image representations
given the corresponding extracted features. Specifically,
we expect that every two faces labeled as different expres-
sions are farther away from each other, while every two faces
that share the same expression label should be closer to each
other in the feature space, i.e., the distance D2 is larger than
D1, which is the distance between examples x1 and x2, just as
shown in Fig. 1(b). Unfortunately, the learned results of
facial expression representations usually contain erroneous
identity information as Fig. 1(a). Because the interidentity
variations tend to be large in real cases, D1 usually has
a larger value than D2.

In recent years, deep metric learning appeals to many
research interests in the regime of image recognition due
to its great learning ability to the general concept of distance
metrics and its outstanding compatibility with effectively
infering neighbors in the learned metric space. However,
it normally suffers the problem of slow convergence and
is easy to be overfitting. The softmax is computational effi-
cient for classification, but it does not encourage the large
margin separation of representations. A potential solution
to the problems mentioned above is to combine the deep met-
ric learning scheme and the softmax loss within a convolu-
tional neural network (CNN) framework. For the deep metric
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learning methods, the basic idea behind the well-known trip-
let loss function4 is to force one negative example farther to
the anchor example than one positive example to the anchor
example with a fixed gap τ. Therefore, the triplet loss
neglects the negative examples from the rest of the classes
in one certain iteration. What’s more, there are some special
situations in which the triplet loss function is very likely to
judge mistakenly when choosing an inappropriate anchor,
as shown in Fig. 2(a). Inspired by the ideas from the
(N þ 1)-tuplet loss5 and coupled clusters loss (CCL),6 we
then design a (N þM)-tuplet clusters loss function, which
incorporates a negative set that consists of N examples
and a positive set with M examples in a mini-batch. A refer-
ence distance T is introduced to force the negative examples
to be away from the center of positive examples and make
the positive examples to simultaneously group into a small
cluster around their center cþ. The circles of radius (T þ τ

2
)

and (T − τ
2
) centered at the cþ form the boundary of the neg-

ative set and positive set, respectively, as shown in Fig. 2(d).

In this way, our method is able to address the complex dis-
tributions of inter- and intraclass variations and solve the
anchor selection problem in traditional deep metric learning
methods. In addition, the margin τ and the reference distance
T can be learned adaptively through the propagation in
the CNN instead of being set manually as hyperparameters.
An efficient and simple mini-batch construction scheme is
proposed, which chooses different facial expression images
from one same identity as the negative set to get rid of the
difficult and expensive negative example searching, while
mining the positive set online. Thus, our (N þM)-tuplet
clusters loss guarantees that all the discriminating negative
samples can be used efficiently per update, so as to reach
an identity-invariant FER.

We design an Inception-ResNet network with long short-
term memory to extract not only the image features but also
the temporal information in videos. Considering the aim to
jointly optimize the softmax loss and (N þM)-tuplet clusters
loss to explore the potential of both the expression labels and
identity labels information, we also design two branches of
fully connected (FC) layers and another connecting layer to
balance them. The features extracted by the expression clas-
sification branch can be fed to the following metric learning
processing. This enables each branch to focus better on its
own task without being disturbed by the other. In our model,
we design two facial expression image sets as inputs: one
negative set (images of other expressions with the same iden-
tity of the query example) and one positive set (images of
the same expression from different subjects).

This paper is an extension of our previous conference
work,7 which introduces an adaptive deep metric learning
methods for static FER. Compared to our previous work,
the main and unique contribution of this paper is that we
adapt our model for videos using a network structure, aiming
to extract more discriminative expression representations
with both spatial and temporal information of video-based
FER. The three main contributions of this paper can be sum-
marized as the following: (1) we propose a (N þM)-tuplet
clusters loss function for metric learning and build an effec-
tive model for video-based FER based on that. (2) We use the
online positive mining and identity-aware negative mining
scheme to learn distance metrics with less calculations
and input passes. Meanwhile, such an approach can maintain
the good performance of video-based FER. (3) We design an
Inception-ResNet network with long short term memory
(LSTM) to extract not only image features but also temporal
information in videos and optimize the softmax loss and
(N þM)-tuplet clusters loss jointly in a unified two-branch
FC layer metric learning framework. In our experiments, we
show that our proposed approach achieves outstanding results
and outperforms several state-of-the-art methods in posed
facial expression dataset (e.g., CKþ, MMI, and FERA).

2 Related Work
In this section, we briefly introduce the related work and we
review the literature in three parts: (1) video-based FER,
(2) deep learning methods for FER, and (3) conventional
metric learning methods.

2.1 Video-Based Facial Expression Recognition
A lot of recent attempts have been made to obtain a better
performance on video-based FER. A number of studies focus

Fig. 1 Illustration of representations in feature space learned by
(a) existing methods, and (b) the proposed method.

Fig. 2 Failed case of (a) triplet loss, (b) (N þ 1)-tuplet loss, and
(c) CCL. The proposed (N þM)-tuplet clusters loss is shown in
(d).The corresponding loss function of (a), (b), and (c) will not punish
this distribution. However, the f ðxþÞ in (a), (b) and f ðxþ

2 Þ in (c) are still
closer to some of negative sample than their anchor, in which situation
the classifier will still be hard to correctly classifier the label.
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on making use of redundant information contained among
video frames, which include image set-based approaches,
dictionary-based methods, and sequence-based methods.8

The image set-based approaches build a model on the distri-
bution of video frames using different techniques, e.g., linear
subspace,9 affine/convex hull,10,11 and manifold methods.12,13

Afterward, they can measure the similarity between each dis-
tribution to match two image sets. One obvious disadvantage
of image set approaches, however, is that it is sensitive to
the variable volume of video frames and complicated facial
variations, which are pervasive in our real-world situations.14

The dictionary-based approaches create many redundant dic-
tionaries based on video frames and adopt sparse representa-
tion-based classifiers for classification.15,16 In lots of cases,
the data size of input video and the number of inputs can be
pretty large, and the created dictionary, therefore, becomes
a mass volume, which then often leads the dictionary-based
approaches to be inefficient. The sequence-based approaches
try to extract person-specific facial dynamics from continuous
video frames.17,18 This finally makes them have to rely on
robust face trackers, which sometimes turn out to be difficult
to realize.

2.2 Deep Learning Methods for Facial Expression
Recognition

The developments in deep learning, especially the success of
CNNs, have made high-accuracy image classification pos-
sible in recent years. It has also been shown that carefully
designed neural network architectures perform well in
FER,19 and researchers have been making thousands of con-
tributions in this field. Krizhevsky et al.20 designed AlexNet
based on the original CNN layered architecture that adds
max-pooling layers and rectified linear units after several
convolution layers. Szegedy et al.21 introduced GoogLeNet
that consists of multiple Inception layers. Inception means
applying several convolutions on the feature map in different
scales. Mollahosseini et al.19,22 then began to use the
Inception layer for the task of FER and their experiments
showed that such an architecture achieved state-of-the-art
results. Following the success of Inception layers, research-
ers have delved into this field and several versions of them
have been proposed.23,24 What’s more, He et al.25 combined
the Inception layer with residual units and it shows that
this new neural network architecture speeds up the training
of Inception networks significantly and achieves better
results.26 By contrast, there are only limited studies on
video-based FER using CNN, such as Ding and Tao27

proposed a trunk-branch ensemble CNN, which extracts
complementary information from holistic face images and
patches cropped around facial components. There are several
reasons for it. First of all, existing CNN-based models, which
originally focus on images, cannot deal with the specialties
of video frames really well. In addition, current well-known
facial expression video databases are rather small, which
makes it hard to train from real-world video data.

With the great success that recurrent neural networks
(RNNs) have achieved in the field of natural language
processing, more researchers began to explore the possibility
that RNNs can also help to resolve the problems of computer
vision. Traditional RNNs can learn the temporal dynamics
by mapping input sequences to a sequence of hidden states
and then mapping the hidden states to outputs.28 Using

RNNs, we are able to extract the temporal information in
a video and escalate the accuracy of video-based FER.
Even though RNNs have shown outstanding performances
on different tasks, it is hard for them to learn long-term
sequences because of the vanishing/exploding gradients
problem.4 LSTMs can solve this problem and memorize
the context for a long period. Specifically, an LSTM has
three gates: (1) the input gate (i), (2) the forget gate (f),
and (3) the output gate (o), to protect and control the cell
state at the timestep t. It updates for the timestep t given
the inputs xt, ht−1, and Ct−1 as the following:
EQ-TARGET;temp:intralink-;e001;326;631

ft ¼ σðWf · ½ht−1; xt� þ bfÞ;
it ¼ σðWi · ½ht−1; xt� þ biÞ;
ot ¼ σðWo · ½ht−1; xt� þ boÞ;
C̃t ¼ tanhðWC · ½ht−1; xt� þ bCÞ;
Ct ¼ ft · Ct−1 þ it · C̃t;

ht ¼ ot · tanhðCtÞ; (1)

where σðxÞ ¼ ½1þ expð−xÞ�−1 is the sigmoid function and
x, h, C, W, and b are the input, output, cell state, parameter
matrix, and parameter vector, respectively.

Recently, we have seen several works using LSTMs for the
task of sequence labeling with prominent performances.
Byeon et al.5 proposed a neural network applying LSTMs
in four direction sliding windows and obtained outstanding
results. Donahue et al. proposed a long-term recurrent convo-
lutional network. This network combines CNNs and LSTMs
so that it is spatially and temporally deep and has the flexi-
bility to be used in various tasks involving sequential inputs
and outputs.28 Fan et al.29 added LSTMs after 2D-CNNs and
combined the resulting feature map with 3D-CNNs for FER,
which also proved the superiority of LSTMs in FER.

2.3 Metric Learning Methods
Even though the deep learning methods have achieved great
success and popularity, the current softmax loss-based net-
work does not present satisfactory results on intraclass com-
pactness and interclass separation. However, researchers
explored deep metric learning methods and adopted it for
vehicle reidentification and person recognition problems
with large intraclass variations, which gives us an inspiration
that deep metric learning may offer potential solutions for
FER. The initial work is to train a Siamese network with con-
trastive loss function.30 It predicts where the examples from
given the pairwise examples fed into two symmetric subnet-
works. Because it does not involve the interactions of
positive pairs and negative pairs, the Siamese network then
fails to learn effective metrics with respect to large intra-
and interclass variations. One improvement that cannot be
ignored is the triplet loss,31 which achieved outstanding per-
formance in both face recognition and reidentification tasks.
This method uses triplets as the inputs are, and each triplet
consists of a query, a positive example and a negative exam-
ple. Recently, some of its variations with faster and stable
convergence have been developed, and the (N þ 1)-tuplet
loss, as one of them, is the most similar method of our pro-
posed method.32 We use xþ and x− to denote the positive and
negative examples of a query example x, which means that
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xþ is from the same class of x, while x− is not. Considering
(N þ 1)-tuplet that includes x, xþ and N − 1 negative exam-
ples fx−j gN−1

j¼1
, the loss is

EQ-TARGET;temp:intralink-;e002;63;716

Lðx; xþ; fx−j gN−1
j¼1

; fÞ ¼ logð1þ
XN−1

j¼1

expðDðf; fþÞ

þ τ −Dðf; f−j ÞÞÞ; (2)

where fð·Þ is an embedding kernel obtained from the CNN,
which takes x and generates an embedding vector fðxÞ. We
write it as f for simplicity, with f inheriting all superscripts
and subscripts. Dð·; ·Þ is defined as the Mahalanobis or
Euclidean distance according to different implementations.

Despite their great popularity, the above frameworks still
suffer from the costly example mining aiming to provide
triplets or nontrivial pairs and poor local optima. In fact,
obtaining all possible triplets or pairs would bring a quadratic
or even a cubic computation complexity, respectively.
Additionally, the online or offline conventional mini-batch
sample selection is a huge burden, which increases the com-
plexity further. What’s more, from Fig. 2(a)–2(c), we find
that the selection of the anchor point has a huge influence
on them, especially when the intra- and interclass variations
are large. In that case, the triplet loss, (N þ 1)-tuplet loss, and
CCL become 0, since the distances from the anchor to
positive examples are smaller than the distances between
the anchor and negative examples for a margin τ. Therefore,
the loss function would ignore these mentioned cases during
the back propagation, and it also causes many more require-
ments of input passes with properly selected anchors to get it
right. Fortunately, a recent study presented objective compar-
isons between the softmax loss and deep metric learning loss,
and its results showed that they could be complementary to
each other.33 Inspired by this, we build a unified Inception-
ResNet framework to learn this two loss function simultane-
ously in a more reasonable way.

3 (N + M )-Tuplet Clusters Loss
In this section, we first describe our intuition of introducing a
reference distance T to control the relative boundary (T þ τ

2
)

and (T − τ
2
) for the positive and negative examples, respec-

tively, as shown in Fig. 2(d). We rewrite the (N þ 1)-tuplet
loss function in Eq. (3) as follows:
EQ-TARGET;temp:intralink-;e003;63;259

Lðx;xþ;fx−j gN−1
j¼1

;fÞ ¼ log

 
1þ

XN−1

j¼1

exp

�
Dðf;fþÞ

þ
�
−Tþ τ

2
þTþ τ

2

�
−Dðf;f−j Þ

�!

¼ log

�
1þ

XN−1

j¼1

exp

�
Dðf;fþÞ−Tþ τ

2

�

� exp
�
Tþ τ

2
−Dðf;f−j Þ

��
: (3)

In fact, the term expðDðf; fþÞ − T þ τ
2
Þ in the above equa-

tion is aiming to make the positive examples get closer and
the term expðT − τ

2
þDðf; f−j ÞÞ that is set to force the neg-

ative examples away have an “OR” relationship. However,

the loss function is very likely to neglect relatively large pos-
itive distances because of the long negative distances. One
potential way that tries to deal with large intraclass variations
is to construct an “AND” function for these two terms.

We further extend the triplet loss and make it for N neg-
ative examples and M positive examples. As for a practical
multiclassification problem, CCL and the triplet loss only
compare the query example with one certain negative exam-
ple, which only pushes the embedding of the query example
to be away from the selected negative class instead of each
class. Thus, for these methods, we expect that the final
distance metrics will be balanced after plenty of iterations.
However, in the late stage of the training stage, the loss
become unstable and slow convergence. Because of lacking
discriminative negative examples tend to cause a single iter-
ation may show zero errors.

The identity labels in the FER database greatly promote
the hard-negative mining to mitigate the problem of the inter-
subject variations. In real cases, when receiving a query, we
combine its negative set with all the different facial expres-
sion pictures of the same person. What’s more, the traditional
deep metric approaches adopt a way that randomly selects
one or a group of positive examples, but some extremely
hard positive examples may distort the manifold and cause
the model to be overfitting. And in the case of spontaneous
FER, the expression label can be falsely assigned owing to
the subjectivity or varied expertise of the annotators.2

Therefore, an efficient online mining forM randomly chosen
positive examples is what we expect for some large intraclass
variation datasets. Specifically, we choose the nearest

Algorithm 1 Online positive mining.

Input

query example and its randomly selected

positive set fxþ
i gMi¼1, and negative set fx−

j gNj¼1

1. map examples to feature plane with CNN to get:

ffþi gMi¼1 and ff −j gNj¼1

2. calculate the positive cluster center cþ ¼ 1
M

PM
i¼1 f

þ
i

3. calculate the distance from cþ to each

positive and negative example Dðfþi ; cþÞ, Dðf −j ; cþÞ

4. search for the nearest negative distance:

Dðx−
nearst; c

þÞ

5. ignore those positive examples satisfying:

Dðfþi ; cþÞ > Dðx−
nearst; c

þÞ

6. update cþ ¼ 1
M�
PM�

i¼1 f
þ
i

Output

Online mined M� positive examples and updated cþ
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negative example and ignore those positive examples, which
have longer distances. We show the details in Algorithm 1.

In summary, the proposed loss function can be expressed
as follows:

EQ-TARGET;temp:intralink-;e004;63;708

Lðfxþi gMi¼1;fx−j gNj¼1
;Þ¼ 1

M�
XM�

i¼1

max

�
0;Dðfþ;cþÞ−Tþ τ

2

�

þ 1

N

XN
j¼1

max

�
0;Tþ τ

2
−Dðf−j ;cþÞ

�
:

(4)

Figure 2(d) gives a simplified geometric interpretation.
From the figure and the equation, we know that only when
the distances from online mined positive examples to the
updated cþ smaller than (T − τ

2
) and the negative examples

have larger distances to the updated cþ than (T þ τ
2
) can the

loss become zero. This is pretty consistent with the principle
adopted by lots of discriminative data analysis and data
cluster approaches. It can be concluded that the traditional
triplet loss and its variations can be regarded as the special
situations of the proposed (N þM)-tuplet clusters loss.

For a batch consisting of X queries, the total number of
distance calculations is 2ðN þMÞ � X, and the required input
passes to evaluate the embedding feature vectors in this pro-
posed model are X. Normally,N andM are much smaller than
X. By contrast, triplet loss requires about 2C3

X calculations and
C3
X passes, while (N þ 1)-tuplet loss requires about ðX þ 1Þ �

X2 times calculations and ðX þ 1Þ � X passes. Even for a data-
set with a moderate size, it is almost impossible and costly for
loading all possible triplets into the limited memory during the
training phase.

We then define a flexible learning task with adjustable
difficulty for the network through assigning different values
to T and τ. However, there are two hyperparameters that
need manual tuning and validation. Inspired by the idea of
adaptive metric learning for SVM,23 we use a function
Tð·; ·Þ which is related with each example instead of a
constant to formulate the reference distance. Considering
the Mahalanobis distance matrix M in Eq. (5) is quadratic,
and it is known that it can be calculated automatically through
a linear FC layer as shown in Ref. 34, we assume Tðf1; f2Þ as
a simple quadratic form, i.e., Tðf1; f2Þ ¼ 1

2
ztQzþ ωtzþ b,

where zt ¼ ½ft1ft2� ∈ R2d, Q ¼
�
Qf1f1 Qf1f2
Qf2f1 Qf2f2

�
∈ R2d×2d,

ωt ¼ �ωt
f1
ωt
f2

�
∈ R2d, b ∈ R, f1 and f2 ∈ R2d are the rep-

resentations of two images in the feature space

EQ-TARGET;temp:intralink-;e005;63;210Dðf1; f2Þ ¼ f1 − f22M ¼ ðf1 − f2ÞTMðf1 − f2Þ: (5)

Because f1 and f2 are symmetric, we can rewrite
Tðf1; f2Þ

EQ-TARGET;temp:intralink-;e006;63;156Tðf1;f2Þ ¼
1

2
ft1Ãf1þ

1

2
ft2Ãnþ ft1B̃f2þ ctðf1þ f2Þþb;

(6)

where Ã ¼ Qf1f1 ¼ Qf2f2 and B̃ ¼ Qf1f2 ¼ Qf2f1 are both
the d × d real symmetric matrices [not necessarily positive

semidefinite (PSD)], c ¼ ωf1 ¼ ωf2 is a d-dimensional
vector, and b is the bias term.

Then, we can obtain a new quadratic formulaHðf1; f2Þ ¼
Tðf1; f2Þ −Dðf1; f2Þ by combining the distance metric
function with the reference distance function. Substituting
Eqs. (5) and (6) to Hðf1; f2Þ, we get

EQ-TARGET;temp:intralink-;e007;326;686

Hðf1; f2Þ ¼
1

2
ft1ðÃ − 2MÞf1 þ

1

2
ft2ðÃ − 2MÞf2

þ ft1ðB̃þ 2MÞf2 þ ctðf1 þ f2Þ þ b;

Hðf1; f2Þ ¼
1

2
ft1Af1 þ

1

2
ft2Af2 þ ft1Bf2

þ ctðf1 þ f2Þ þ b; (7)

EQ-TARGET;temp:intralink-;e008;326;575Hðm;nÞ ¼ 1

2
mtAmþ 1

2
ntAnþmtBnþ ctðmþnÞþ b; (8)

where A ¼ ðÃ − 2MÞ and B ¼ ðB̃þ 2MÞ. Suppose A is
PSD and B is negative semidefinite, then A and B can be
factorized as LT

ALA and LT
BLB. Therefore, Hðf1; f2Þ can

be rewritten as follows:

EQ-TARGET;temp:intralink-;e009;326;504

Hðf1; f2Þ ¼
1

2
ft1L

T
ALAf1 þ

1

2
ntLT

ALAf2 þ ft1L
T
BLBf2

þ ctðf1 þ f2Þ þ b ¼ 1

2
ðLAf1ÞtðLAf1Þ

þ 1

2
ðLAf2ÞtðLAf2Þ þ ðLBf1ÞtðLBf2Þ

þ ctf1 þ ctf2 þ b: (9)

Based on the above, we propose a general and computa-
tionally feasible loss function. Following the previous nota-
tions and denote ðLA;LB; cÞT as W, we have

EQ-TARGET;temp:intralink-;e010;326;362

LðW;fxþi gMi¼1;fx−j gNj¼1
;fÞ¼ 1

M�
XM�

i¼1

max

�
0;−Hðfþi ;cþÞþ

τ

2

�

þ 1

N

XN
j¼1

max

�
0;Hðf−j ;cþÞþ

τ

2

�
;

(10)

where lð·Þ is the label function for the mined N þM� train-
ing examples in a mini-batch. If the example xk is from the
negative set, lðxkÞ ¼ 1, otherwise lðxkÞ ¼ −1. In addition,
we simplify the term τ

2
in the above equation to be the con-

stant 1, and when we multiply the matrices to corresponding
factors, it can be changed to other positive values. Our hinge-
loss-like function is

EQ-TARGET;temp:intralink-;e011;326;183

LðW; fxþi gMi¼1; fx−j gNj¼1
; fÞ ¼ 1

N þM�
XNþM�

k¼1

maxð0; lðxkÞ

�Hðfk; cþÞ þ 1Þ: (11)

We optimize Eq. (11) using the standard stochastic
gradient descent with momentum. The desired partial deriv-
atives of each example are computed as
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EQ-TARGET;temp:intralink-;e012;63;752

∂L
∂Wl ¼

1

N þM�
XNþM�

k¼1

∂L
∂Xl

k

∂Xl
k

∂Wl ; (12)

EQ-TARGET;temp:intralink-;e013;63;711

∂L
∂Xl

k

¼ ∂L
∂Xlþ1

k

∂Xlþ1
k

∂Xl
k

; (13)

where Xl
k is the feature map of the example xk at the l’th

layer. Equation (12) represents the overall gradient, which
is the sum of the example-based gradients, while Eq. (13)
represents that the partial derivative of each example with
respect to the feature maps can be calculated recursively.
So, the back propagation algorithm can help to compute
the gradients of network parameters.

In fact, the proposed (N þM)-tuplet clusters loss can be
seen as a straightforward generalization from traditional deep
metric learning methods, and it can be easily adopted as
a drop-in replacement for the triplet loss and its variations,
as well as used in tandem with other performance-boosting
methods and models, including pooling functions, modified
network architectures, activation functions, or data
augmentations.

4 Network Architecture
The proposed two-branch FC layer joint metric learning
architecture with softmax loss and (N þM)-tuplet clusters
loss, denoted as 2BðN þMÞ softmax is shown in Fig. 3,
and the detailed network architecture is shown in Fig. 4.
In this section, we introduce the neural network parts in
our model. We use an Inception-ResNet network here
because of the remarkable performances of Inception and
ResNet in various tasks, especially the combination of
them. The Inception deep CNN architecture was first intro-
duced as GoogLeNet, which is also known as Inception-v1.21

It highly utilizes the computing resources inside the network
by increasing the width and depth of the neural network. In
practice, it applies multiple convolutions on the same feature
map with different scales trying to extract different features.
The cool thing is this network can keep the computational
budget constant, which makes it quite popular in real
cases. As for the residual connection, it was introduced in
2015.25 It mainly focuses on the degradation problem:
when a neural network has more and more layers, its accu-
racy gets saturated and then degrades rapidly. The authors
gave convincing theoretical and practical evidence to prove
that reformulating the layers as learning residual functions
with reference to the layer inputs instead of learning
unreferenced functions can address this problem. Its results
reached state-of-the-art and gained much popularity. In addi-
tion, considering the lack of temporal relationship that these

models are able to extract, we add an LSTM unit that takes
the output of the Inception-ResNet network as an input and
extracts the temporal relations from it. Then, we add a fully
connected layer with a softmax activation function, which
outputs the resulting feature map.

Fig. 3 The proposed network structure. In the testing phase, only the convolutional groups and expres-
sion classification branch with softmax are used to recognize a single facial expression image.

Fig. 4 The detailed network architecture.
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Specifically, our Inception-ResNet takes an input video
with the size of 299 × 299 × 3 (299 × 299 frame size and
three color channels), and it is followed by the stem layer.
After that, there are Inception-ResNet-A, Reduction-A,
Inception-ResNet-B, Reduction-B, Inception-ResNet-C,
Average Pooling, Dropout, an LSTM unit, and a fully con-
nected layer, respectively. Here, each reduction block is for
reducing the grid size. In addition, using an LSTM unit
makes the whole model suitable for video-based tasks,
due to the output from the previous Inception-ResNet
block containing the time sequences within the input video.
Based on that, vectorizing the resulting feature map of
the Inception-ResNet block on its sequence dimension can
provide the necessary sequenced input for the LSTM unit.
We also find that the LSTM unit with a size of 200 hidden
units has the best performance for the video-based FER task.

5 Experiments and Results
In this section, we not only introduce the face databases we
used in our experiments but also report our experiment
results and compare them with the state-of-the-art.

5.1 Implementation Details
In our experiment, we resize the faces to 299 × 299 pixels.
The main reason why we choose such a large image size as
input is the consideration that we are able to use deeper
neural networks and extract more features from the input.
Ten frames of each sequence are extracted for video-based
recognition. Our model was implemented using Tensorflow
and TFlean toolboxes on NVIDIATitan X GPUs. In the test-
ing stage, we take about 1.25 s for processing each sequence.
All the networks in the experiment have the same settings
and are trained from scratch for each database we select.
In the training phrase, we used asynchronous stochastic gra-
dient descent with the momentum of 0.9, the weight decay of
0.0001, and the learning rate of 0.015. In addition, we chose
categorical cross entropy for our loss function and used accu-
racy as the evaluation metric.

5.2 Experimental Evaluations
To evaluate the effectiveness of our proposed model, we have
conducted extensive experiments on three well-known and
publicly available facial expression databases: CKþ, MMI,
and FERA. For the fair comparison, we follow the protocol
used by previous works.22,35 Three baseline methods are
employed to demonstrate the superiority of the metric learn-
ing loss and two-branch FC layer network, respectively, i.e.,
adding the (N þM)-tuplet clusters loss or (N þ 1)-tuplet
loss with softmax loss after the EC branch, denoted as
1BðN þ 1Þ softmax or 1BðN þMÞ softmax, and combining
the (N þ 1)-tuplet loss with softmax loss via the two-branch

FC layer structure, as 2BðN þ 1Þ softmax. We do not com-
pare with the triplet loss here, because the number of triplets
grows cubically with the number of images, which makes it
impractical and inefficient. With randomly selected triplets,
the loss failed to converge during the training phase.

CKþ: The extended Cohn–Kanade database (CKþ)36

contains 593 videos from 123 subjects, while only 327
sequences from 118 subjects contain facial expression labels
that ranging from 7 different expressions (i.e., anger, con-
tempt, disgust, fear, happiness, sadness, and surprise). The
label is only provided for the last frame (peak frame) of
each sequence. We split the CKþ database to eight subsets
in a strict subject-independent manner, and an 8-fold cross
validation is employed. Data from six subsets are used for
training and the others are used for validation and testing.
The confusions matrix of the proposed method evaluated
on the CKþ dataset is reported in Table 1. It can be observed
that the disgust and happiness expressions are perfectly rec-
ognized while the contempt expression is relatively harder
for the network because of the limited training examples
and subtle muscular movements. As shown in Table 1,
our proposed 2BðN þMÞ softmax outperforms most of
the state-of-the-art methods. Not surprisingly, it also beats
the baseline methods obviously benefiting from the combi-
nation of deep metric learning loss and two-branch architec-
ture (Fig. 5).

MMI: The MMI database34 includes 31 subjects with
frontal-view faces which contain a full temporal pattern of
expressions, i.e., from neutral to one of six basic expressions

Table 1 Recognition accuracy comparison.

State-of-the-art methods 1BðN þ 1Þ softmax 2BðN þ 1Þ softmax 1BðN þMÞ softmax 2BðN þMÞ softmax

CKþ 84.1,37 88.5,38 92.0,39 93.2,22 93.640 88.32 91.79 92.91 93.90

MMI 63.4,41 74.7,39 79.8,42 86.743 77.13 78.93 77.72 79.03

FERA 56.1,41 55.6,38 76.722 64.36 73.75 75.27 79.94

Fig. 5 Average confusion matrix obtained from the proposed method
on CKþ.
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as time goes on, and then released. These subjects range in
age from 19 to 62, which provides a great diversity. Because
of the above features, it is especially favored by the video-
based methods to exploit temporal information. We extracted
static frames from each sequence, which resulted in 11,500
images. Afterward, we divided MMI dataset into 10 subsets
for person-independent 10-fold cross validation and also
divided videos into sequences of 10 frames to shape the
input tensor for our network. We reported the confusion
matrix of our proposed model on the MMI database in Fig. 6.
As shown in Table 1, the performance improvements in this
small database without causing overfitting are impressive.
We can also conclude from the results that the proposed
method outperforms many other works.

FERA: The GEMEP-FERA database44 is a subset of the
GEMEP corpus, which is used as database for the FERA

2011 challenge.38 GEMEP is developed by the Geneva
Emotion Research Group at the University of Geneva.
This database has 87 image sequences of 7 subjects.

Each subject presents the facial expressions of the follow-
ing five emotion categories: anger, fear, joy, relief, and sad-
ness. The head poses in this database are mainly frontal with
relatively fast and different movements. In addition, every
video is annotated with action units and holistic expressions.
Same as the above databases, we extracted static frames from
the sequences, and finally obtained around 7000 images.
Here, we employed a sevenfold cross validation and reported
the confusion matrix of our model in Fig 7. With the
augmentation of deep metric learning and two-branch FC
layer network, we achieve, to our knowledge, state-of-
the-art.

6 Conclusion
We propose a (N þM)-tuplet clusters loss and combine it
with softmax loss. Using an Inception-ResNet network
with LSTM and a unified two-branch FC layer joint metric
learning architecture, we aim to get rid of the attribute var-
iations due to different identities in FER and escalate the
accuracy of video-based FER. We also adopt an effective on-
line positive-mining and identity-aware negative-mining
scheme, which can reduce the number of input passes
and computations. The experimental results on three well-
known databases, which are CKþ, MMI, and FERA, show
that our proposed method outperforms many of the state-of-
the-art approaches. More appealing, the (N þM)-tuplet
clusters loss function has clear intuition and geometric inter-
pretation for generic applications. In future work, we intend
to focus on this point and explore some possible uses of it in
other fields.
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