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a b s t r a c t

This paper presents an adaptive fusion framework of infrared and visual images using saliency detection
and an improved dual-channel pulse-coupled neural network (ID-PCNN) in the local non-subsampled
shearlet transform (LNSST) domain. The first step is to use the LNSST, an upgrade of the non-
subsampled shearlet transform, for multi-scale analysis to separate the source images into low-pass
and high-pass sub-images. The final fusion effect is determined by the fusion rule of the low-pass com-
ponent. Thus, an improved algorithm based on frequency-tuned saliency extraction is adopted to guide
the adaptive weighted fusion of the low-pass sub-image. An ID-PCNN model is used as the fusion rule for
high-pass sub-images. A sum of directional gradients acts as the linking strength to characterize the tex-
ture details of an image. A modified spatial frequency that reflects the gradient features of images is used
to motivate neurons. A series of images from diverse scenes is used for fusion experiments. Fusion results
are evaluated subjectively and objectively. The results show that our algorithm exhibits superior fusion
performance and is more effective than typical fusion techniques.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Image fusion is an important branch of information fusion. Cer-
tain multi-source images from the same scene can be merged into
a new image following certain rules such that the scene is
described accurately and comprehensively [1]. Infrared (IR) and
visual image fusion is the most widely used heterologous image
fusion. An IR sensor generates images by detecting the thermal
radiation of objects; this tool can reveal hidden thermal targets
and is not strongly affected by external disturbances. A visible light
imaging sensor generates images by capturing the reflection of
objects with detailed information of high resolution. The combina-
tion of these two sensors effectively highlights a target and
increases image resolution [2].

Many fusion approaches have been proposed recently, particu-
larly for pixel level-based visible image (VI) and IR image fusion.
Ma et al. [3] presented a fusion method via gradient transfer and
total variation minimization. This method integrates the gradient
texture information of visible light into an IR image, which pro-
vides a basis for the rapid identification of IR targets. However,
the fused images have low contrast and lose considerable visual
information. Bai et al. [4–7] proposed a novel fusion model based
on multiscale new top-hat transform and obtained good results.
However, the algorithm requires three parameters, making it diffi-
cult for inexperienced users to implement. Li et al. [8] established a
weighted average fusion method using a guided filter. This method
solved the problem of multi-focus image fusion perfectly, but the
saliency maps generated may not be fully suitable for VI and IR
image fusion. Liu et al. [9] proposed a general framework for image
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fusion based on multi-scale transform and sparse representation.
The sparse representation algorithm requires intense dictionary
training; thus, the algorithm is highly complicated and time-
consuming. Chen et al. [10] used deep learning to guide the fusion
problem, but this application is not yet mature.

Compared with the abovementioned algorithms, multi-scale
geometric analysis (MGA) is a relatively simple and easy fusion
method for obtaining an image’s features. This method decom-
poses the source image into a series of multi-direction and
multi-scale sub-images, and appropriate fusion rules are applied
to transform the corresponding sub-band images into fused
images. The following MGA methods are currently used: the con-
tourlet transform [11], non-subsampled contourlet transform
(NSCT) [12], dual-tree complex wavelet transform [13], shearlet
transform [14], and non-subsampled shearlet transform (NSST)
[15]. The NSST is widely preferred by many researchers due to its
rapid decomposition rate and efficient decomposition. A large
shearlet filter causes a spectral aliasing phenomenon in the direc-
tional localization stage of the NSST. Thus, a local non-subsampled
shearlet transform (LNSST) is proposed in this paper as a tool for
the multi-scale decomposition of an image based on the NSST. This
method uses a local small shearlet filter to avoid the block effect
and weaken the Gibbs-ringing phenomenon, which improves time
domain convolution calculation efficiency.

A weighted summation is usually treated as the fusion rule for
the decomposition of low-pass sub-images. However, for IR and VI
image fusion, this rule reduces the contrast of the fused image due
to the spectral difference between the two low-pass components.
The fused image must incorporate hidden or salient IR target infor-
mation adaptively into humans’ sensitive visual environment such
that the fused image is not unnaturally reconstructed, and the
information pertaining to salient objects can be well retained in
the source image [16]. Achanta et al. [17] proposed a frequency-
tuned approach to compute saliency in images. This method iden-
tifies salient objects and regions in an image precisely and forms a
saliency map. The saliency map contains the weight information of
the spatial distribution of the gray-scale value of the image. This
map is used as a weighting function. The fusion rule of a low-
pass sub-image can be switched from a weighted-mean to a
weighted-adaptive rule, which effectively merges salient informa-
tion into the fused image and improves the fusion effect.

High-pass sub-images usually adopt the conventional ‘‘max-
absolute” [18] as the fusion rule, in which large absolute values
correspond to highly salient texture features, but this rule easily
loses redundant information from the source image. A pulse-
coupled neural network (PCNN) [19] is a novel artificial neural net-
work model that has been widely applied in image fusion because
of its characteristics of global coupling and pulse synchronization
of neurons. However, the linking strength is always constant, and
the external stimuli usually adopt a single pixel value in traditional
PCNN models. To remedy these defects, an improved dual-channel
PCNN model (ID-PCNN) is proposed to process high-pass sub-
images information, exploit local image information thoroughly
and extract image details.

Given the preceding review, this paper presents an adaptive
fusion framework for IR and visual images using saliency detection
and an improved dual-channel pulse-coupled neural network (ID-
PCNN) in the LNSST domain. First, the LNSST is used as a multi-
scale analysis tool to decompose source images into a low-pass
sub-image and a series of high-pass sub-images. Second, an
improved algorithm based on frequency-tuned (FT) saliency
extraction is adopted to guide the adaptive weighted fusion of
the low-pass sub-image. The ID-PCNN model is proposed for
high-pass sub-images. This model retains the spatial 2D informa-
tion integrity of the input image after the fusing process. Finally,
each sub-image is modeled, and the corresponding fusion coeffi-
cients are produced. The algorithm can effectively express the
characteristics of the image and obtain a good fusion effect using
IR and visible light images in experiments.

The remainder of this paper is organized as follows. Chapter 2
details the principles of the LNSST. Chapter 3 introduces the theory
underlying FT and ID-PCNN. Chapter 4 elaborates on the algorithm
based on the new fusion rule. Chapter 5 presents the results of five
experiments and intuitively compares the proposed method with
other methods. Chapter 6 summarizes the findings.
2. LNSST

When the dimension is n = 2, the shearlet system function with
discrete parameters is as follows:

SAB uð Þ ¼ fuj;l;k ¼ detAj jj=2u BlA jx� k
� �

; j; l 2 Z; k 2 Z2g ð1Þ

where u 2 L2(R2), A and B are 2 � 2 reversible matrices, |detB| =
1, j is the scale parameter, l is the direction parameter, and k is the
spatial position. For j � 0, �2j � l � 2j � 1, k 2 Z2, and d = 0, 1, the
Fourier transform of the shearlet can be expressed based on the
tight support frame:

buðdÞ
j;l;k ¼ 23j=2Vð2�2jnÞW ðdÞ

j;l ðnÞe�2pinA�j
d
B�l
d k ð2Þ

where V(2�2jn) is the scale function, Wj,l
(d) is the window func-

tion localized on the trapezoidal pair, Ad is the heterosexual expan-
sion matrix, and Bd is the shear matrix. The shearlet transform of
the function f 2 L2(R2) can be calculated by Eq. (3).

f ; buðdÞ
j;l;k

D E
¼ 23j=2

Z
R2
bf ðnÞVð2�2jnÞW ðdÞ

j;l ðnÞe�2pinA�j
d
B�l
d kdn ð3Þ

Eq. (3) shows that the shearlet transform is divided into two

steps. The first step is a multi-scale decomposition (bf ðnÞVð2�2jnÞ),
and the second step is the calculation of the direction of localiza-

tion (bf ðnÞVð2�2jnÞW ðdÞ
j;l ðnÞ).

Multi-scale decomposition: The image is subjected to non-
subsampled pyramid decomposition using a non-subsampled 2D
filter bank of dual channels to generate a low-pass sub-image
and multiple high-pass sub-images with perfect reconstruction.

Directional localization: Directional localization is achieved by
small shearlet filters and high-pass sub-image convolution calcula-
tions. The traditional NSST does not specify the size and scale
parameters of shearlet filters. Large-size shearlet filters are prone
to cause the Gibbs-ringing phenomenon, which introduces false
error information into the final fusion image and affects the fusion
effect. To remedy the abovementioned defects, the LNSST is con-
structed based on the NSST by using a local small shearlet filter
to improve the computational efficiency of the time domain convo-
lution and weaken the block effect of the image. To fully combine
the shearlet characteristics of parabolic scaling with its localiza-
tion, a parabolic constraint function is proposed as follows:

L 6 minð
ffiffiffiffiffi
M

p
;
ffiffiffiffi
N

p
Þ

L P 2 j þ 1
L ¼ n � ð2j�1 þ 1Þ

8><>:
where the size of the shearlet filter is L � L, j is the scale param-

eter, and n is any positive integer. In this manner, the size and scale
parameters of the shearlet filters are combined and constrained
relative to one another; thus, the contour information of the image
can be well extracted. Through a large number of experiments, it is
found that when j is generally 2 or 3, the local window is usually
15 � 15; therefore, a relatively good decomposition effect of the
image can be obtained.
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The abovementioned shearlet transformation is called the
LNSST. The local non-subsampled shearlet removes the sampling
operation in the decomposition stage, which presents translation
invariance because the local small shearlet filter can avoid the
aliasing of the spectrum and improves image decomposition and
reconstruction.

A local non-subsampled shearlet exhibits good local properties,
excellent direction selectivity, and parabolic edge characteristics.
The frequency domain-implemented and time domain-implanted
shearlet filters are shown in Fig. 1(a)–(d). The number of direc-
tional sub-bands in the first layer is 4 and 8 in the second layer,
and the size of the shearlet filter is 15 � 15.

3. Relevant theory

3.1. Frequency-tuned salient region detection

Achanta et al. proposed a frequency-tuned approach to com-
pute saliency in images by choosing the DoG filter as the bandpass
filter for identifying salient features in the frequency domain. The
DoG filter is defined as

DoGðx; yÞ ¼ 1
2p

1
r2

1

e
�ðx2þy2 Þ

2r2
1 � 1

r2
2

e
�ðx2þy2 Þ

2r2
2

" #
¼ Gðx; y;r1Þ � Gðx; y;r2Þ

ð5Þ
where r1 and r2 are the standard deviations of the Gaussian

function.
The DoG filter is a simple bandpass filter. The low-frequency

cut-off value wlc is determined by r1. The high-frequency cut-off
valuewhc is controlled by r2. The extracted saliency map preserves
the expected spatial frequency characteristics by selecting appro-
priate values for r1 and r2. The value of r1 is set to infinity to retain
all the other frequencies. Small values of r2 are chosen to eliminate
high-frequency noise and texture. For an input image, the saliency
map calculated by the DoG filter is

Sðx; yÞ ¼ jjIl � Iwhcjj ð6Þ
This method uses the Lab color space, and each pixel location is

an [L,a,b]T vector, where Il is the average of the image feature vec-
tors, Iwhc is the Gaussian blur filtered value of the corresponding
image pixel vector at the pixel location (x, y), and ||�|| is the Eucli-
dean distance. The algorithm diagram is displayed in Fig. 2.

An example of saliency map extraction of IR and VI images for
the same scene is illustrated in Fig. 3(a)–(d). The original IR and
VI images are shown in Fig. 3(a)–(b), and the corresponding
saliency maps obtained by the FT algorithm are shown in
Fig. 3(c)–(d). The saliencymap extracts relatively important regions
or regions to which human vision is sensitive, which lays the foun-
dation for the adaptive weighted fusion of low-pass components.

3.2. Improved dual-channel PCNN model

A PCNN is obtained by studying neuron stimulation in the
mammalian visual system and conforms to the visual information
system of the human brain. Because human eyes are highly sensi-
tive to the high-frequency components that represent the edge fea-
tures of an image, the PCNN model with a visual restoration
mechanism can perform bionic processing of high-pass sub-
images and perfectly restore detailed information in the fused
images [20,21]. The traditional single-channel PCNN model only
reflects the information in one source image, while other original
images are not considered. In addition, the traditional PCNN model
features numerous peripheral parameters that cannot be ignored.
Many values must rely on experience value settings, which signif-
icantly reduce the integration of accuracy. Thus, an improved
PCNN model with dual-channel (ID-PCNN) is considered in this
paper. The sum of directional gradients (SDG) represents the image
information changed in the horizontal, vertical, and diagonal direc-
tions, which can be used as the adaptive linking strength of the
high-pass sub-image to characterize the textural details of an
image. The ID-PCNN model is as follows.

The received part is

Fij
1 nð Þ ¼ Sij

1ðnÞ ð7Þ

Fij
2 nð Þ ¼ Sij

2ðnÞ ð8Þ

LijðnÞ ¼
1 if

P
Nði;jÞ

Yij n� 1ð Þ > 0

0 otherwise

8<: ð9Þ

S1ij and S2ij represent the gray-scale values normalized at the
(i, j) position of the two source images. Their values are regarded
as the model’s external stimuli. Lij is the linking input, and F1ij
and F2ij represent two symmetrical feedback inputs. Yij denotes
the external output of the neurons after internal processing.

The modulation part is

UijðnÞ ¼ max F1
ij nð Þð1þ b1

ijLijðnÞÞ
n

; F2
ij nð Þð1þ b2

ijLijðnÞÞ
o

ð10Þ

Uij is treated as the internal activity item of the neurons. b1ij and
b2ij represent the linking strength, which reflects the strength of
the human visual system’s response to different characteristic
regions in the image.

The pulse-generated domain is

YijðnÞ ¼
1 if UijðnÞ P hijðn� 1Þ
0 otherwise

�
ð11Þ

hijðnÞ ¼ hijðn� 1Þ � Dþ VhYijðnÞ ð12Þ
D is the declining extent of the dynamic threshold, which can

be regarded as 0.01 to ensure that the decay rate of the dynamic
threshold is mild. hij is the threshold function. Vh determines the
threshold of the fired neuron and should be set to a relatively large
value (e.g., 10).

The firing times of each neuron are

Tij ¼
n if Yij nð Þ ¼ 1 for the first time

Tij n� 1ð Þ otherwise

�
ð13Þ

n denotes the iteration number, and Tij [22] is used to adaptively
determine the number of reasonable iterations.

The adaptive linking strength is computed as follows:

SDG ¼ rDh þrDv þrDmd þrDvd ð14Þ

rCh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk

l ði; jÞ � Dk
l ði� 1; jÞ

� �2
þ Dk

l ði; jÞ � Dk
l ðiþ 1; jÞ

� �2r
ð15Þ

rCv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk

l ði; jÞ � Dk
l ði; j� 1Þ

� �2
þ Dk

l ði; jÞ � Dk
l ði; jþ 1Þ

� �2r
ð16Þ

rCmd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDk

l ði; jÞ�Dk
l ði�1; j�1ÞÞ2þðDk

l ði; jÞ�Dk
l ðiþ1; jþ1ÞÞ2

� �
=
ffiffiffi
2

pr
ð17Þ

rCvd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDk

l ði; jÞ�Dk
l ði�1; jþ1ÞÞ2þðDk

l ði; jÞ�Dk
l ðiþ1; j�1ÞÞ2

� �
=
ffiffiffi
2

pr
ð18Þ

b2ði; jÞ ¼ SDGk
l ði; jÞ ð19Þ



(a) Four-direction frequency domain-implanted shearlet filters in the first level 

(b) Four-direction time domain-implanted shearlet filters in the first level 

(c) Eight-direction frequency domain-implanted shearlet filters in the second level 

(d) Eight-direction time domain-implanted shearlet filters in the second level 

Fig. 1. Schematic of shearlet filters.
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where Cl
k (i, j) is the coefficient obtained by multi-scale analysis,

l is the number of decomposed layers, and k is the number of
decomposition directions of each layer. SDG represents the sum
of the direction gradients at the pixel element. rCh and rCv repre-
sent changes in the horizontal and vertical directions, respectively.
rCmd and rCvd represent changes in the diagonal directions. Large
direction gradient sums guarantee high local area clarity and fast
neuronal activation.



Fig. 2. Algorithm diagram of frequency-tuned salient region detection.

Fig. 3. Example of an extracted saliency map. (a) IR image, (b) VI image, and (c) and (d) saliency maps of IR image.
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4. Fusion method

4.1. Fusion framework

The algorithm used in this paper aims to fuse heterologous
images. The specific fusion framework is shown in Fig. 4. The pro-
posed fusion steps can be summarized as follows.

(1) LNSST is used for the multi-scale decomposition of visible-
light and IR images.

(2) Different fusion rules are obeyed to process the high-pass
and low-pass sub-images given their differences. The low-
pass sub-image adopts adaptive weight based on saliency
Fig. 4. Schematic of our
detection as the fusion rule, whereas the high-pass sub-
images are treated with the improved dual-channel PCNN
model to output the high-pass fusion coefficients.

(3) The fused image is reintegrated based on an inverse NSST.

4.2. Fusion rule of low-pass sub-images

The low-pass component of the image represents the main
energy of the image, which is an approximate part of the image.
Thus, the fusion rules for the low-pass component determine the
final fusion effect. To avoid incompatible spectral characteristics
of heterologous images, an improved algorithm based on FT sal-
iency extraction is adopted to guide the adaptive weighted fusion
proposed algorithm.
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of the low-pass sub-image. The saliency map generated by the FT
algorithm can intelligently identify the relatively important and
salient parts of the image, thereby providing a basis for the adap-
tive weighting of the fusion rules. The fusion rules of the low-
pass sub-image are as follows.

Step 1: FT algorithm is used for the saliency detection of IR and
VI images, and the corresponding saliency maps SIR and SVI are
generated. The gray values of the saliency maps are normalized
to form the weighting coefficient matrices S1 and S2.

S1ði; jÞ ¼ SIRði; jÞ �minSIRði; jÞ
maxSIRði; jÞ �minSIRði; jÞ ð20Þ

S2ði; jÞ ¼ SVIði; jÞ �minSVIði; jÞ
maxSVIði; jÞ �minSVIði; jÞ ð21Þ

Step 2: S1 and S2 are used to guide adaptive weighted fusion
based on the saliency detection of IR and VI images, respectively
[23,24]. The specific expression is as follows:

C1
l;kði; jÞ ¼ S1ði; jÞ � CIR

l;kði; jÞ þ ð1� S1ði; jÞÞ � CVI
l;kði; jÞÞ ð22Þ

C2
l;kði; jÞ ¼ S2ði; jÞ � CVI

l;kði; jÞ þ ð1� S2ði; jÞÞ � CIR
l;kði; jÞÞ ð23Þ

where Cl
k (i, j) represents the multi-scale decomposition coeffi-

cients of the low-pass sub-image, l represents the decomposition
number, k represents the direction of decomposition of each layer,
and C1l,k (i, j) and C2l,k (i, j) represent the adaptive weighted fusion
coefficients based on the saliency detection of IR and VI images,
respectively.

Step 3: The two sets of fusion coefficients contain the results of
the adaptive weighted fusion; thus, regional energy is used to
combine the sets. This method can further combine the saliency
information of IR and VI images based on the results of adaptive
weight treatment. Thus, the effect of image fusion is robust. The
process is as follows.

(1) The regional energy of the two groups of fusion coefficients
is calculated.

E1
l;kði; jÞ ¼

X1
m¼�1

X1
n¼�1

xðmþ 2;nþ 2Þ C1
l;kðmþ i; nþ jÞ

��� ��� ð24Þ

E2
l;kði; jÞ ¼

X1
m¼�1

X1
n¼�1

xðmþ 2;nþ 2Þ C2
l;kðmþ i; nþ jÞ

��� ��� ð25Þ

xðm;nÞ ¼ 1
15

1 2 1
2 3 2
1 2 1

264
375 ð26Þ

where x(m, n) represents a window at position (i, j) in the 3 � 3
local region, and E1l,k (i, j) and E2l,k(i, j) represent the regional energy
of the two groups of fusion coefficients in the window.

(2) The similarity between the two groups of fusion coefficients
is calculated.

M1;2
l;k ði; jÞ¼

2
P1

m¼�1

P1
n¼�1

xðmþ2;nþ2ÞE1
l;kðmþ i;nþ jÞE2

l;kðmþ i;nþ jÞ

½E1
l;kðmþ i;nþ jÞ�2þ½E2

l;kðmþ i;nþ jÞ�2

ð27Þ
where a threshold T is set, which ranges between 0.3 and 0.4. When
M1,2

l,k (i, j) < T, the correlation between the two groups of coeffi-
cients is poor. A large regional energy value indicates that the
region contains a considerable amount of salient information. Thus,
the large coefficients are the final fusion coefficients. The consolida-
tion rules for the fusion coefficients are as follows:

Ck
l ði; jÞ ¼

C1
l;kði; jÞ if E1

l;kði; jÞ > E2
l;kði; jÞ

C2
l;kði; jÞ otherwise

(
ð28Þ

When M1,2
l,k (i, j) > T, both regions contain significant saliency

information, and the two groups of fusion coefficients are com-
bined into a weighted average. The two sets of fusion coefficients
are obtained through adaptive weighted fusion. The weighted
average strategy does not affect the fusion effect even when the
coefficients are combined.

Wði; jÞ ¼ 1
2
� 1
2

1�Ml;k
1;2ði; jÞ

1� T

 !
ð29Þ

Ck
l ði; jÞ¼

Wði; jÞ �C1
l;kði; jÞþð1�Wði; jÞÞ �C2

l;kði; jÞ E1
l;kði; jÞ> E2

l;kði; jÞ
ð1�Wði; jÞÞ �C1

l;kði; jÞþWði; jÞ�C2
l;kði; jÞ E1

l;kði; jÞ6 E2
l;kði; jÞ

(
ð30Þ

where W(i, j) represents the weight coefficient when the fusion
coefficients are combined. The low-pass component is equivalent
to twofold fusion, which solves the problem of low contrast and
combines the salient information of the two source images. A sche-
matic of the low-pass component fusion process is shown in Fig. 5.

4.3. Fusion rule of high-pass sub-images

The high-pass sub-images always reflect the edge features and
textural details of the image. Using the traditional ‘‘maximumabso-
lute value” as the fusion rule results in a significant loss of detailed
information. Therefore, an ID-PCNN model is adopted to guide the
fusion of high-pass components. The human visual system is highly
sensitive to edges, directions, and other features, yet the true
brightness of an independent position is not. A single pixel value
is insufficient, which is why image features are used for the PCNN
external stimulus. This study uses the modified spatial frequency
(MSF) [25] as the external stimulus, which represents the change
in the gray value of an image and reflects changes in image edges
and texture details. A schematic of the high-pass component fusion
process is shown in Fig. 6. The fusion steps are as follows:

Step 1: The parameters of the ID-PCNN model are initialized,
and the value of the SDG of each pixel is used as the linking
strength (Eqs. (14)-(19)).
Step 2: The MSF of the high-pass sub-images coefficients is cal-
culated and acts as the external stimulus for the ID-PCNN
model. The formula for the MSF is as follows:

MSF ¼ 1
M � N

XM
i¼1

XN
j¼1

RF þ CF þMDF þ SDF ð31Þ

RF ¼ Dk
l i; jð Þ � Dk

l ði; j� 1Þ
h i2

ð32Þ

CF ¼ Dk
l i; jð Þ � Dk

l ði� 1; jÞ
h i2

ð33Þ

MDF ¼ Dk
l i; jð Þ � Dk

l ði� 1; j� 1Þ
h i2

=
ffiffiffi
2

p
ð34Þ

SDF ¼ Dk
l i; jð Þ � Dk

l ði� 1; jþ 1Þ
h i2

=
ffiffiffi
2

p
ð35Þ



Fig. 5. Fusion diagram of low-pass component.

Fig. 6. Fusion diagram of high-pass sub-images.
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where RF, CF, MDF, and SDF represent row frequency, column
frequency, main diagonal frequency, and auxiliary diagonal fre-
quency, respectively, and M � N is 3 � 3.

Step 3: Eqs. (7)–(13) are iterated until all the neurons are
ignited, and Uij (n), Lij (n), hij (n), Tij (n), and Yij (n) are calculated.
The fused coefficients are selected as follows:

Ck
l ði; jÞ ¼

Cl;k
L ði; jÞ UijðnÞ ¼ UL

ijðnÞ
Cl;k
V ði; jÞ UijðnÞ ¼ UV

ij ðnÞ

(
ð36Þ

UL
ijðnÞ ¼ FL

ijðnÞð1þ bL
ijLijðnÞÞ ð37Þ

UV
ij ðnÞ ¼ FV

ij ðnÞð1þ bV
ij LijðnÞÞ ð38Þ
5. Experimental results and analysis

To verify the superiority of the proposed method, our method is
compared with the following methods: NSST-SF-PCNN [26], GFF
[8], CNN [10], IFE-VIP [27], GTF [3], FT [28], LNSST-PCNN, and
NSST-ID-PCNN. The LNSST-PCNN method combines the traditional
single-channel PCNN model with the LNSST, and the NSST-ID-
PCNN method combines the traditional NSST with the ID-PCNN
model. Eight different environments are selected to demonstrate
the versatility of the proposed algorithm. The first group shows a
Jeep in front of a house, the second group depicts a man hidden
in a forest, the third group shows a hidden tank, the fourth group
depicts a man walking in a forest, the fifth group depicts an airport,
the sixth group shows a ship on a lake, the seventh group depicts a
coast, and the eighth group shows a woman standing in front of a
car door. The original image sizes of the eight groups are 620 �
450, 505 � 510, 472 � 354, 360 � 270, 256 � 256, 505 � 510,
505 � 510, and 656 � 490, respectively. Our method adopts
‘‘maxflat” and [2,2,3,3] as the direction filter and pyramid filter,
respectively. All experiments are conducted in MATLAB 2012a on
a PC with an Intel Core i7/3.4 GHz/4G processor. The five sets of
source images are presented in Fig. 7(a)–(h), from the first group
to the fifth group.
5.1. Subjective evaluation

The first to fifth experiments are shown from top to bottom. The
results of the NSST-SF-PCNN, GFF, CNN, IFE-VIP, GTF, FT, LNSST-
PCNN, and NSST-ID-PCNN methods and the proposed method are



Fig. 7. Source images.
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shown in Fig. (a) to Fig. (i) in each group, respectively. Globally,
Fig. (i) for each experiment consistently looks clearer than
Fig. (h). The main reason is that the LNSST is more effective than
the NSST in decomposing the image; thus, the texture details of
the image can be well restored into the fusion image. The enlarged
details of each group well support the suitable effect of the pro-
posed algorithm. Similarly, the effect of Fig. (g) appears much
worse than that of Fig. (i) in each group; the discrepancy arises
mainly because the ID-PCNN model can handle the high-
frequency details of the image better than the traditional single-
channel PCNN model can. The first group of experiments are
shown in Figs. 8(a)–(i). The Fig. 8(i) that obtained by the proposed
method has the highest contrast, the most background information
retained, and the best view. The Figs. 8(a)–(g) are all close to the IR
image and do not integrate the VI information into the fused
image. The second group of experiments shows that the textural
details of the trees are not reconstructed well in Fig. 9(a) and (c),
and the contrast of Fig. 9(d) is low. Fig. 9(b) shows a relatively good
appearance, but compared with Fig. 9 (i), the edge details of the
whole image and textures of the trees are not as good as those pro-
duced by the method used in this paper. The third experiment
shows that the brightness of Fig. 10(d) (see Fig. 11) is high, which
results in ambiguous details for the tank. The background informa-
Fig. 8. First group of fu
tion of Fig. 10(e) is almost completely lost compared with Fig. 10(i).
The contrast of the fused image obtained in this paper is high, and
the textural information of the tank wheel is largely restored. The
salient information of the IR image and the textural details of the
VI image are combined perfectly in the background. The fourth
group of experiments shows that the fusion effect of the algorithm
introduced is better than the effects of the other five contrast algo-
rithms, in which the image contrast is the highest, and the appear-
ance is the clearest. The other five groups of fused images appear
more like IR source images. Thus, many edge details of the VI
source images are lost. Regarding the fifth group of experiments,
Fig. 12(e) is ambiguous and has a poor view, and the lamp informa-
tion of the VI image is not reconstructed well in Fig. 12(a)–(c). The
image is excessively bright, which results in low contrast. The
fused image obtained in this paper exhibits the best appearance.
The combination of light and body contour is perfect under the
lighting conditions, and the overall brightness is moderate. Regard-
ing the sixth group of experiments, the backgrounds of Fig. 13(c)
and Fig. 13(g) do not fuse the information pertaining to the moun-
tain profile in the infrared image very well, and the hulls of Fig. 13
(d) and Fig. 13(f) are closer to the IR images, thus losing the edge
information of the VI images. The contrast of Fig. 13(e) is not as
good as that produced by the algorithm proposed in this paper,
sion experiments.



Fig. 9. Second group of fusion experiments.

Fig. 10. Third group of fusion experiments.
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Fig. 11. Fourth group of fusion experiments.

Fig. 12. Fifth group of fusion experiments.
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Fig. 13. Sixth group of fusion experiments.
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and the water wave texture on the sea surface is not as good as that
shown in Fig. 13(i). Regarding the seventh group of experiments,
the appearance of Fig. 14(g) is similar to that of the IR image.
Fig. 14(d) has the disadvantage that the transition of the gray value
is not uniform in the background. Fig. 14(e) is too dark, and the
contrast is low. Fig. 14(c) has white pseudo-noise along the coast-
line. Regarding the eighth group of experiments, Fig. 15(d) and
Fig. 15(g) are close to the IR images, and Fig. 15(c) and Fig. 15(f)
are close to the VI images. Therefore, none of the four abovemen-
tioned fusion algorithms fully combines the characteristics of the
two source images. The appearance of Fig. 15(e) is close to that
of the proposed algorithm, but the details of the texture are as good
as those shown in Fig. 15(i). Compared with those yielded by the
abovementioned algorithms, the fused images generated by our
algorithm have the highest contrast ratio and can fuse the IR target
and background information in the human visual field. Further-
more, the proposed algorithm does not lose edge detail informa-
tion in the fusion process; thus, its performance is the best.
5.2. Objective evaluation

Image fusion results are usually evaluated subjectively and
objectively. Fusion results often present limited differences. Cor-
rectly and subjectively evaluating fusion results can be difficult.
Thus, the fusion effect is frequently determined via objective qual-
ity evaluations. The following five objective quality indexes are
selected as the evaluation criteria: (1) AVG [29], (2) information
entropy (IE) [30], (3) edge retentiveness (QAB/F) [31], and (4) stan-
dard deviation (SD) [32].

The results of detailed quantitative evaluation of the five groups
of IR and VI images are shown in Tables 1–3. The values in bold
font represent the best results.

The AVG and IE values of the proposed algorithm are higher
than those of the other algorithms for each group of experiments.
Thus, the textural features and edge details of the proposed algo-
rithm are well restored, and the content of the fused image is
abundant. In the first group of experiments, the parameters of
the proposed algorithm are all higher than those of the other algo-
rithms, which show that the fusion effect of this algorithm is the
best and agrees with actual perception. In the second experiment,
the QAB/F value of the proposed algorithm is slightly lower than
that of the CNN algorithm, whereas the values of other parameters
are high. In the third experiment, the QAB/F value is also slightly
lower than that of the IFE-VIP algorithm. In the fourth, sixth, and
eighth experiments, the values of the evaluation parameters of
the algorithm are higher than those of other algorithms, in good
agreement with the previous subjective evaluation. In the fifth
and seventh experiments, the SD of the proposed algorithm is
lower than that of the NSST-PCNN because the NSST-PCNN algo-
rithm produces many black artifacts in the fusion. These artifacts
lead to an abnormal increase in the gray value. Thus, the SD is
unrealistic. Based on the objective evaluation parameters, the final
result is the same as that of the subjective evaluation. The pro-
posed algorithm is superior to the other algorithms in terms of
the image gray value distribution, edge detail, and clarity.



Fig. 14. Seventh group of fusion experiments.

Fig. 15. Eighth group of fusion experiments.
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Table 1
Objective evaluation results of the first three groups of fused images.

Group Fusion methods Evaluation index

AVG IE QAB/F SD

1 NSST-PCNN 3.3474 7.2022 0.5686 6.9689
GFF 2.8348 7.1193 0.5831 6.1894
CNN 3.3754 7.1753 0.5005 7.0172
IFE-VIP 3.2863 7.1574 0.5659 6.8684
GTF 3.4752 7.1932 0.4952 7.0242
FT 4.5490 7.1456 0.4832 7.0065
LNSST-PCNN 3.8907 7.1456 0.4755 6.9543
NSST-ID-PCNN 5.0531 7.3145 0.5987 8.3477
Proposed 5.1420 7.3522 0.6193 8.5655

2 NSST-PCNN 5.1420 6.6522 0.5193 8.5655
GFF 5.6612 6.8422 0.5514 9.7923
CNN 5.7914 6.9653 0.5598 10.2403
IFE-VIP 6.7687 6.7255 0.4969 11.6890
GTF 5.9627 6.6752 0.4216 11.5228
FT 7.0831 6.9876 0.5314 12.7657
LNSST-PCNN 5.4731 6.7580 0.5076 9.8901
NSST-ID-PCNN 7.3214 7.0145 0.5231 12.1156
Proposed 7.3764 7.1396 0.5484 13.2142

3 NSST-PCNN 9.3850 7.2819 0.5355 41.1616
GFF 9.5599 7.2261 0.5605 40.8538
CNN 9.5616 7.2835 0.6018 44.2468
IFE-VIP 9.9535 7.3017 0.6188 42.1068
GTF 9.4752 7.1932 0.4952 41.9325
FT 9.7890 7.1145 0.5781 43.2310
LNSST-PCNN 9.3670 7.1765 0.5123 42.1234
NSST-ID-PCNN 9.9671 7.2090 0.5965 44.1783
Proposed 10.0521 7.3159 0.6081 46.1198

Table 2
Objective evaluation results of the middle three groups of fused images.

Group Fusion methods Evaluation index

AVG IE QAB/F SD

4 NSST-PCNN 4.3398 6.9941 0.4344 39.4377
GFF 4.1216 6.8889 0.6072 34.3422
CNN 4.8633 7.1839 0.5074 51.8397
IFE-VIP 4.2545 7.1547 0.5324 49.3352
GTF 4.3243 6.8742 0.4634 50.8255
FT 4.8467 7.0981 0.5891 52.8045
LNSST-PCNN 4.5671 7.1145 0.5435 50.8931
NSST-ID-PCNN 4.8901 7.3045 0.6076 55.4367
Proposed 4.9107 7.3250 0.6268 57.2323

5 NSST-PCNN 15.6851 7.8985 0.4039 64.0592
GFF 16.6480 7.7788 0.4803 60.0111
CNN 17.0325 7.9565 0.5435 62.8997
IFE-VIP 16.4775 7.7707 0.4761 60.5765
GTF 15.5789 7.5675 0.4189 60.7524
FT 16.8760 7.8876 0.5281 60.7340
LNSST-PCNN 15.9231 7.8765 0.5087 60.6541
NSST-ID-PCNN 16.8901 7.9760 0.5323 61.1090
Proposed 17.0062 8.0003 0.5521 62.7661

6 NSST-PCNN 2.7707 5.9209 0.5654 19.8795
GFF 2.4447 5.4152 0.5568 20.4683
CNN 1.9172 5.9175 0.5704 19.4387
IFE-VIP 2.4104 5.7929 0.4641 19.8898
GTF 2.0647 5.4326 0.5089 17.7524
FT 3.1300 5.4133 0.5699 16.9300
LNSST-PCNN 2.0432 5.3456 0.5255 17.4567
NSST-ID-PCNN 2.8789 5.9345 0.6022 21.4590
Proposed 2.9062 6.0003 0.6221 22.7661
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6. Conclusion

This paper presents an adaptive fusion framework for IR and VI
images based on saliency detection and the improved dual-channel
PCNN in the LNSST domain. Our method uses the LNSST as a multi-
scale decomposition tool for images based on the NSST. To improve
the effect of fused images, an improved algorithm based on FT sal-
iency extraction is adopted to guide the adaptive weighted fusion
of low-pass sub-images, and an ID-PCNN model is used as the
fusion rule for high-pass sub-images. Five different scenarios are
used to verify fusion performance. The results show that our algo-
rithm can fuse visible light and IR images effectively with high con-



Table 3
Objective evaluation results of the last two groups of fused images.

Group Fusion methods Evaluation index

AVG IE QAB/F SD

7 NSST-PCNN 5.0978 6.2414 0.4732 25.0885
GFF 4.8765 6.1547 0.4948 19.3435
CNN 4.8633 6.0839 0.4574 18.8397
IFE-VIP 5.2898 6.4205 0.4446 21.6111
GTF 5.2327 6.3752 0.4216 21.8340
FT 5.9468 6.3167 0.4981 21.2330
LNSST-PCNN 4.5671 6.2145 0.5235 18.8931
NSST-ID-PCNN 5.8901 6.4035 0.5076 55.4367
Proposed 6.0764 6.5396 0.5584 22.6234

8 NSST-PCNN 4.4945 7.0940 0.5900 45.7099
GFF 4.3337 7.2006 0.5991 40.9522
CNN 4.0325 7.0565 0.5435 42.8997
IFE-VIP 4.2179 7.0110 0.6361 48.5090
GTF 4.2327 7.0752 0.4216 42.8340
FT 4.8720 7.0651 0.6034 48.4107
LNSST-PCNN 4.5231 7.0765 0.6087 40.6541
NSST-ID-PCNN 4.8901 7.1760 0.6323 48.1090
Proposed 4.9976 7.2736 0.6483 49.3437
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trast while retaining a wealth of textural and detail information
without any artifacts. The experimental results of the subjective
and objective evaluation indicate that our algorithm exhibits better
fusion performance than typical fusion techniques do.
Conflict of interest

No conflict of interest.
Acknowledgements

The authors would like to thank the anonymous reviewers and
editors for their invaluable suggestions. The paper is jointly sup-
ported by the National High-tech R&D Program of China (NO.
863-2-5-1-13B).
References

[1] Jufeng Zhao, Guangmang Cui, Xiaoli Gong, Yue Zang, Shuyin Tao, Daodang
Wang, Fusion of visible and infrared images using global entropy and gradient
constrained regularization, Infrared Phys. Technol. 81 (2017) 201–209.

[2] Xiangzhi Bai, Morphological center operator based infrared and visible image
fusion through correlation coefficient, Infrared Phys. Technol. 76 (2016) 546–
554.

[3] Jiayi Ma, Chen Chen, Chang Li, Jun Huang, Infrared and visible image fusion via
gradient transfer and total variation minimization, Inf. Fusion 31 (2016) 100–
109.

[4] Xiangzhi Bai, Fugen Zhou, Bindang Xue, Infrared image enhancement through
contrast enhancement by using multiscale new top-hat transform, Infrared
Phys. Technol. 54 (2011) 61–69.

[5] Xiangzhi Bai, Xiaowu Chen, Fugen Zhou, Zhaoying Liu, Bindang Xue, Multiscale
top-hat selection transform based infrared and visual image fusion with
emphasis on extracting regions of interest, Infrared Phys. Technol. 60 (2013)
81–93.

[6] Xiangzhi Bai, Gu. Shuhang, Fugen Zhou, Bindang Xue, Weighted image fusion
based on multi-scale top-hat transform: algorithms and a comparison study,
Optik 124 (2013) 1660–1668.

[7] Pan Zhu, Xiaoqing Ma, Zhanhua Huang, Fusion of infrared-visible images using
improved multi-scale top-hat transform and suitable fusion rules, Infrared
Phys. Technol. 81 (2017) 282–295.

[8] S. Li, X. Kang, J. Hu, Image fusion with guided filtering, IEEE Trans. Image
Process. 22 (2013) 2864–2875.

[9] Yu Liu, Shuping Liu, Zengfu Wang, A general framework for image fusion based
on multi-scale transform and sparse representation, Inf. Fusion 24 (2015) 147–
164.

[10] Yu Liu, Xun Chen, Hu Peng, Zengfu Wang, Multi-focus image fusion with a
deep convolutional neural network, Inf. Fusion 36 (2017) 191–207.

[11] M.N. Do, M. Vetterli, The contourlet transform: an efficient directional
multiresolution image representation, IEEE Trans. Image Process. 14 (12)
(2005) 2091–2106.
[12] A.L. Da Cunha, Zhou Jianping, M.N. Do, The nonsubsampled contourlet
transform: theory, design, and applications, IEEE Trans. Image Process. 15
(10) (2006) 3089–3101.

[13] I. Selesnick, R. Baraniuk, N. Kingsbury, The dual-tree complex wavelet
transform, IEEE Signal Process. Mag. 22 (6) (2005) 123–151.

[14] G. Easley, D. Labate, W. Lim, Sparse directional image representations using
the discrete shearlet transform, Appl. Comput. Harmon. Anal. 25 (1) (2008)
25–46.

[15] W.Q. Lim, The discrete shearlet transform: a new directional image
representation and compactly supported shearlet frames, IEEE Trans. Image
Process. 19 (5) (2010) 1166–1180.

[16] Jufeng Zhao, Qiang Zhou, Yueting Chen, Huajun Feng, Xu. Zhihai, Qi Li, Fusion
of visible and infrared images using saliency analysis and detail preserving
based image decomposition, Infrared Phys. Technol. 56 (2013) 93–99.

[17] R. Achanta, S. Hemami, F. Estrada, et al., Frequency-tuned Salient Region
Detection, Computer Vision and Pattern Recognition, 2009, in: Proceedings of
the IEEE Conference on CVPR 2009, 2009, pp. 1597–1604.

[18] Fu. Zhizhong, Xue Wang, Xu. Jin, Ning Zhou, Yufei Zhao, Infrared and visible
images fusion based on RPCA and NSCT, Infrared Phys. Technol. 77 (2016)
114–123.

[19] Zhanwen Liu, Yan Feng, Yifan Zhang, Xu Li, A fusion algorithm for infrared and
visible images based on RDU-PCNN and ICA-bases in NSST domain. Infrared
Phys. Technol. 79 (2016) 183–190.

[20] Xu. Xinzheng, Dong Shan, Guanying Wang, Xiangying Jiang, Multimodal
medical image fusion using PCNN optimized by the QPSO algorithm, Appl. Soft
Comput. 46 (2016) 588–595.

[21] Ashraf K. Helmy, Gh. S. El-Taweel, Image segmentation scheme based on SOM–
PCNN in frequency domain, Appl. Soft Comput. 40 (2016) 405–415.

[22] Liu Qiong, Ma Yide, A new algorithm for noise reducing of image based on
PCNN time matrix, Electron. Inform. Technol. 8 (2008) 1869–1873.

[23] Jungong Han, Eric J. Pauwels, Paul de Zeeuw, Fast saliency-aware multi-
modality image fusion, Neurocomputing 111 (2013) 70–80.

[24] Jinlei Ma, Zhiqiang Zhou, Bo Wang, Hu.a. Zong, Infrared and visible image
fusion based on visual saliency map and weighted least square optimization,
Infrared Phys. Technol. 82 (2017) 8–17.

[25] Tianzhu Xiang, Li Yan, Rongrong Gao, A fusion algorithm for infrared and
visible images based on adaptive dual-channel unit-linking PCNN in NSCT
domain, Infrared Phys. Technol. 69 (2015) 53–61.

[26] Weiwei Kong, Longjun Zhang, Yang Lei, Novel fusion method for visible light
and infrared images based on NSST–SF–PCNN, Infrared Phys. Technol. 65
(2014) 103–112.

[27] Yu Zhang, Lijia Zhang, Xiangzhi Bai, Li Zhang, Infrared and visual image fusion
through infrared feature extraction and visual information preservation,
Infrared Phys. Technol. 83 (2017) 227–237.

[28] Guangmang Cui, Huajun Feng, Xu Zhihai, Qi Li, Yueting Chen, Detail preserved
fusion of visible and infrared images using regional saliency extraction and
multi-scale image decomposition, Opt. Commun. 341 (2015) 199–209.

[29] Xiangzhi Bai, Infrared and visual image fusion through feature extraction by
morphological sequential toggle operator, Infrared Phys. Technol. 71 (2015)
77–86.

[30] Yong Ma, Jun Chen, Chen Chen, Fan Fan, Jiayi Ma, Infrared and visible image
fusion using total variation model, Neurocomputing 202 (2016) 12–19.

[31] Xiangzhi Bai, Yu Zhang, Fugen Zhou, Bindang Xue, Quadtree-based multi-focus
image fusion using a weighted focus-measure. Information Fusion 22 (2015)
105–118. Infrared Physics & Technology 54 (2011) 61–69.

[32] Ming Yin, Puhong Duan, Wei Liu, Xiangyu Liang, A novel infrared and visible
image fusion algorithm based on shift-invariant dual-tree complex shearlet
transform and sparse representation, Neurocomputing 226 (2017) 182–191.

http://refhub.elsevier.com/S1350-4495(17)30781-8/h0005
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0005
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0005
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0010
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0010
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0010
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0015
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0015
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0015
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0020
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0020
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0020
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0025
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0025
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0025
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0025
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0030
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0030
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0030
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0035
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0035
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0035
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0040
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0040
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0045
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0045
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0045
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0050
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0050
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0055
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0055
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0055
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0060
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0060
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0060
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0065
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0065
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0070
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0070
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0070
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0075
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0075
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0075
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0080
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0080
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0080
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0090
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0090
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0090
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0100
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0100
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0100
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0105
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0105
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0110
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0110
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0115
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0115
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0120
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0120
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0120
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0125
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0125
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0125
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0130
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0130
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0130
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0135
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0135
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0135
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0140
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0140
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0140
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0145
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0145
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0145
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0150
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0150
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0160
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0160
http://refhub.elsevier.com/S1350-4495(17)30781-8/h0160

	Adaptive fusion framework of infrared and visual image using saliency detection and improved dual-channel PCNN in the LNSST domain
	1 Introduction
	2 LNSST
	3 Relevant theory
	3.1 Frequency-tuned salient region detection
	3.2 Improved dual-channel PCNN model

	4 Fusion method
	4.1 Fusion framework
	4.2 Fusion rule of low-pass sub-images
	4.3 Fusion rule of high-pass sub-images

	5 Experimental results and analysis
	5.1 Subjective evaluation
	5.2 Objective evaluation

	6 Conclusion
	Conflict of interest
	Acknowledgements
	References


