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A B S T R A C T

Based on compressed sensing theory and TDI CCD driving mode, a collaborative coding method founded on
TDI CCD charge transfer and random exposure is proposed in this paper, which breaks through the limitation
of pixel size and achieves the improvement of one-dimensional image resolution. By extending this method,
an orthogonal dual detector super-resolution imaging system is established, which realizes the improvement
of two-dimensional image resolution. Further, the convex optimization algorithm and the proportional fusion
algorithm are proposed as the two-dimensional image fusion algorithm. Theoretical modeling and simulation
results demonstrate the effectiveness of the proposed imaging method and system, which provide an innovative
approach of system implementation for super-resolution imaging based on compressed sensing theory.

1. Introduction

The Nyquist–Shannon sampling theorem specifies that if a signal is
to be completely sampled without any loss of information, it is required
to use a sampling frequency at least twice the signal bandwidth. In the
actual optical imaging system, the enhancement of imaging resolution
depends on two factors: the front-end optical system and the back-
end image detector. The front-end optical system is limited by the
diffraction limit, and the back-end detector sampling is constrained
by the Shannon sampling theorem. For high-resolution and large-scale
imaging, a detector with smaller pixel size and larger number of pixels is
needed, which is difficult to achieve due to the limitation of the detector
manufacturing process. Meanwhile, massive data brings a heavy burden
to the data storage and transmission of the hardware system.

The compressed sensing (CS) theory proposed by E. J. Candès, J.
Romberg, T. Tao and D. L. Donoho et al. in 2006 provides a new path
to solve this problem [1–5]. E. J. Candès et al. proved that if a signal is
sparse in a transform domain, the original signal can be recovered with
a high probability through a small amount of projection of the signal in
other unrelated transform domain. This breaks through the limitation
of Nyquist–Shannon sampling theorem, subverts the traditional one-to-
one imaging mode, and greatly reduces the hardware requirements of
the signal acquisition devices. Therefore, it has been widely concerned
in the fields of remote sensing, medical imaging, radar imaging and
wireless communication in recent years [6–9].
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In order to meet the demand of signal aliasing sampling in the
compressed sensing theory, several hardware implementations have
been proposed by scholars, including single pixel camera based on
Digital Micro-mirror Device (DMD) [10–15], Complementary Metal
Oxide Semiconductor (CMOS) image sensor with compressed sensing
sampling mode [16,17], coded aperture [18–20], random active illumi-
nation [21,22], moving random exposure and so on [23].

As one of the most typical applications of compressed sensing theory,
single pixel camera based on DMD uses single pixel detector instead of
image sensor to complete the image acquisition, which greatly reduces
the cost and the complexity of the hardware design [10,11]. However,
when large-scale imaging is performed, the number of coding increases,
resulting in a sharp increase in the time of observation. As an improve-
ment of the above system, John P. Dumas and A. Sankaranarayanan
proposed an architecture for plane-coded computational imaging that
is based on a highly parallel version of the single pixel camera which
reduces the encoding time, thus improving real-time performance of
the system [12,13]. Further, a complementary modulation to improve
the performance of the observation matrix was proposed by Wen-Kai
Yu, thereby improving the quality of image restoration [14]. However,
the above methods are all based on DMD for encoding. Although the
requirements for detector pixel size and number of pixels are reduced,
they are passed on to the DMD and the resolution of the image depends
on the DMD, where there are also constraints on the size and number of
micro-mirrors.
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L. Jacques presented a CMOS imager to perform compressed sensing
coding by random convolution, which is achieved by a shift register
set in a pseudo-random configuration [16]. In order to reduce the
complexity of the pseudo-random sequence generating circuits and
reconstruction algorithm, the whole system was divided into several
sub blocks by Huixian Ye, each of which contains a single sigma-delta
Analog to Digital Converter (ADC) [17]. However, the encoding method
based on CMOS sensor is essentially the compressed processing of the
output signal, which surely reduces the burden on the subsequent ADC
and data transmission and storage. But it has no effect on the front-end
detector and therefore cannot solve the problem from the source.

Computational imaging based on multi-aperture optics turns the
encoding in the time dimension into the spatial dimension, which
greatly shortens the encoding time. But the system with complicated
structure is difficult to implement [18]. Pawan K. Baheti presented
a compressed imaging system based on the use of structured light,
where illumination patterns are defined using binary-valued random
vectors [21]. Milad I demonstrated that binary illumination based on
spatially random distributions provides superior imaging capabilities
at high compression ratios [22]. Nevertheless, its applications may
be limited because of the random active illumination. Edson Mojica
presented a method for the design of high-resolution coded apertures
for compressive sensing computed tomography [23]. M. Marquez aimed
at reconstructing a high-resolution (HR) spectral images from low-
resolution (LR) compressive measurements by solving a single convex
optimization problem based on the fusion of CS and super-resolution
techniques [24]. Guangming Shi introduced a high-resolution imaging
method based on moving random exposure. Compressive measurements
are made by a low-resolution camera with randomly fluttering shutter,
which achieves the improvement of one-dimensional resolution [25].

In this paper, a collaborative coding method based on Time Delay
Integration (TDI) Charge Coupled Device (CCD) charge transfer and
random exposure is proposed. Compared with the moving random
exposure method proposed in Ref. [25], the charge transfer driving
is used instead of the camera motion control to achieve more flexible
and accurate control. By adjusting the driving timing and random
exposure of TDI CCD, one-dimensional compressed sensing imaging
under different super-resolution indexes can be realized. Based on the
above imaging method, we present an orthogonal dual detector super-
resolution imaging system. And two image fusion algorithms based
on this system are proposed to achieve the two-dimensional super-
resolution image restoration. Two significant innovations are presented
in this paper:

(1) Based on compressed sensing theory and TDI CCD driving mode,
a collaborative coding method founded on TDI CCD charge transfer
and random exposure is proposed in this paper, which breaks through
the limitation of pixel size and achieves the improvement of one-
dimensional image resolution.

(2) By expanding the above method, an orthogonal dual detector
super-resolution imaging system is established, which realizes the im-
provement of two-dimensional image resolution. In the part of two-
dimensional image fusion algorithm, we propose the convex optimiza-
tion algorithm and the proportional fusion algorithm.

Theoretical modeling and simulations demonstrate the effectiveness
of the proposed imaging method and system, which provide an inno-
vative approach of system implementation for super-resolution imaging
based on compressed sensing theory.

2. Compressed sensing theory

Compressed sensing theory is based on the signal sparsity within
a transform domain. Because most of the natural scenes have sparse
characteristics in a specific transform domain, the subsampled recon-
struction of the original signal can be realized by this theory, which
lays a theoretical foundation for super-resolution imaging.

The signal processing flow of the compressed sensing theory is shown
in Fig. 1, wherein 𝑋 is the original signal, which can be sparsely

Fig. 1. The signal processing flow of the compressed sensing theory.

expressed as 𝛼 under the transform base 𝜓 , 𝛷 is the measurement
matrix, and 𝑌 is the observation result. The whole process can be di-
vided into two stages: compressed sensing and original signal recovery.
Compressed sensing process can be expressed as:

𝑌 = 𝛷𝑋 = 𝛷𝛹𝛼. (1)

After the observation result 𝑌 is obtained, the sparse representation 𝛼
of the original signal needs to be iteratively calculated by the restoration
algorithm, and the product of the sparse representation 𝛼 and transform
basis 𝜓 is the original signal. This process is called original signal
recovery. The restoration algorithm is usually implemented by solving
the following optimization problem [1–4]:

�̂� = argmin ‖𝛼‖1 𝑠.𝑡. 𝑌 = 𝛷𝛹𝛼 (2)

where the symbol ‖ ‖1 represents the 𝑙1 norm. The following mainly
focuses on the system implementation method of compressed sensing
process.

3. Coding method based on TDI CCD charge transfer and random
exposure

3.1. TDI CCD charge transfer mode

Compared with the traditional linear array CCD, TDI CCD adopts
the method of time delay integration, which realizes multiple exposures
to the same target by driving the charge transfer in synchronization
with the target image motion. Therefore, the exposure time has been
effectively increased, making TDI CCD has the advantages of high
sensitivity and wide dynamic range, so it has been widely applied in
space remote sensing, glimmer night vision and other related fields
[26–28].

TDI CCD can be divided into two-phase, three-phase and four-phase
according to its charge transfer driving mode, all of which have the
same basic working principle. The internal structure diagram of the
three-phase TDI CCD is shown in Fig. 2, in which the driving signal
is mainly composed of the vertical transfer signal CI, the horizontal
readout signal CR, and the transfer gate signal TCK. When TDI CCD is
used for imaging, the line frequency of the charge transfer is calculated
based on the current image motion parameter, so as to realize image
motion matching. Then the vertical transfer of charge is accomplished
by the signal CI according to the line frequency above. When a row of
charge is completely transferred to the horizontal shift register, it will
be quantized and output one by one, driven by the signal CR.

The transfer process of the charge between adjacent rows is imple-
mented in multiple steps. Assuming that the TDI CCD is an 𝑛-phase
device, it will take a total of 2𝑛 steps to complete the transfer of a row
of charge if single and dual step driving method is used in a line period.
Taking three-phase TDI CCD for example, the timing of the driving signal
is shown in Fig. 3. Compared with the traditional burst transfer mode,
Fig. 3 shows a new continuous transfer mode, in which the charge
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Fig. 2. The internal structure diagram of the three-phase TDI CCD.

Fig. 3. The timing diagram of three-phase TDI CCD.

Fig. 4. The charge transfer displacement curves of TDI CCD.

transfer image motion is effectively reduced, and therefore has been
widely used in recent years.

On the premise of image motion matching, the charge transfer
displacement curves of TDI CCD are shown in Fig. 4 when the con-
tinuous transfer mode is applied. Wherein the dotted line is the target
displacement curve, and 𝑇 is the line period of charge transfer. It can
be seen from the figure that when an 𝑛-phase TDI CCD is used, a
total of 2𝑛 steps of charge transfer is needed in a line period 𝑇 , and
the displacement of each charge transfer step is 1∕2𝑛 pixel size, which
provides the possibility of sub-pixel super-resolution imaging.

3.2. Collaborative coding method

In traditional applications, each charge packet in TDI CCD moves
synchronously with the target scene. A transfer charge packet is all
exposed to the same target point throughout the process, thus the
final output is the image information of this specific point. While
the compressed sensing theory requires coding and observation of the
target, for completing the aliased sampling of the target information.
Therefore, the observation process requires two conditions: random
coding and relative motion.

Compared with traditional applications, TDI CCD is used here for
gaze imaging mode instead of push-broom imaging mode, where the
detector remains relatively stationary with the target scene, so that the
vertically transferred charge packet has relative motion with the target
scene. Random coding is implemented with the fast flash exposure of the

Fig. 5. The diagram of random exposure sequence with 0 and 1.

Fig. 6. The system block diagram of the collaborative coding method.

electronic shutter, which enables binary coding of 0 and 1. The random
exposure sequence is shown in Fig. 5, where ‘‘On’’ indicates the shutter
is open, then the corresponding element of the measurement matrix is 1,
and ‘‘Off’’ indicates the shutter is closed, then the corresponding element
of the measurement matrix is 0.

It is necessary to coordinate the charge transfer with the shutter
exposure during the whole compressed coding process. Fig. 6 shows
the system block diagram of the collaborative coding method. The
driving of the detector is mainly realized by the TDI CCD charge transfer
control module and the random exposure control module, where both
of them need to be synchronized and coordinated under the control
of the imaging command. Synchronized control means that the charge
is exposed once when one or multi step of the charge transfer is
executed.

3.3. Mathematical model established

Assuming that the TDI CCD is an 𝑛-phase device with the integral
number 𝑚, and a total of 𝑘 rows of observed data are read out during
the entire observation process. The total process can be subdivided into
𝑅 steps based on a row of charge transfer needs 2𝑛 steps:

𝑅 = 2𝑛 ⋅ (𝑚 + 𝑘) − 1. (3)

The schematic diagram of the collaborative coding process based on
charge transfer and random exposure is shown in Fig. 7. For simplified
analysis, a column of pixels in the detector is taken as an example, where
𝛥𝑡 is the time required for one step of charge transfer. Once the charge
is transferred one step, the shutter is exposed once for encoding, and the
whole process lasts for a period of 𝑅×𝛥𝑡. At the beginning of the charge
transfer, the output data is discarded due to the fact that the whole scene
is not completely exposed to the readout charge, resulting in insufficient
information contained in the charge. After the time 2𝑛×𝑚×𝛥𝑡, the data
starts to be effectively processed. Each interval of 2𝑛 × 𝛥𝑡 time, one row
of charges is completely removed and the data is quantified and read
out once. The process continues until [2𝑛× (𝑚+𝑘)−1]×𝛥𝑡 moment, and
a total of 𝑘 rows of effective data are read out, and the entire coding
observation process is completed.

The above description is the case of one step of charge transfer
corresponding to one exposure of the shutter. In practical process, it
can be the charge transfers one step corresponding to once exposure, or
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Fig. 7. The schematic diagram of the collaborative coding process based on
charge transfer and random exposure.

Table 1
The values of parameter p that can be selected for different phase number 𝑛 of
TDI CCD.
𝑛 𝑝 2𝑛∕𝑝

2 1, 2, 4 4, 2, 1
3 1, 2, 3, 6 6, 3, 2, 1
4 1, 2, 4, 8 8, 4, 2, 1

the charge transfers 𝑝 steps corresponding to once exposure. In order to
achieve the matching of charge transfer and exposure control, the value
of parameter 𝑝 depends on the phase number 𝑛 of TDI CCD. Where 𝑝
can take 1, 2 and 4 for two-phase TDI CCD, 𝑝 can take 1, 2, 3 and 6 for
three-phase TDI CCD, and 𝑝 can take 1, 2, 4 and 8 for four-phase TDI
CCD. The specific correspondences are shown in Table 1.

The 2𝑛∕𝑝 in the above table indicates the number of exposures
corresponding to the charge transfer process within one-pixel size range.
Therefore, the number of random exposures 𝑆 during the whole process
can be expressed as:

𝑆 = 2𝑛
𝑝

⋅ (𝑚 + 𝑘) − 1. (4)

It is assumed that the matrix 𝐸 for controlling the random exposure of
the shutter is:

𝐸 =
[

𝑒1 𝑒2 ⋯ 𝑒𝑆−1 𝑒𝑆
]

(𝑒𝑖 = 0, 1). (5)

Then according to the above coding process, the measurement matrix 𝛷
can be expressed as equation given in Box I.

If the original signal is 𝑋 and the observation result is 𝑌 , then the
whole process can be abstractly expressed as:

𝑌 = 𝛷𝑋 (7)

where 𝑋 is a matrix with 2𝑛 ⋅ 𝑚∕𝑝 rows and 1 column, 𝑌 is a matrix
with 𝑘 rows and 1 column, and 𝛷 is a matrix with 𝑘 rows and 2𝑛 ⋅ 𝑚∕𝑝
columns. In theory, the imaging resolution can be increased up to 2𝑛∕𝑝
times compared to the traditional method.

Because of the compressed observation, there is 𝑘 ≤ 2𝑛 ⋅ 𝑚∕𝑝, where
𝑘 = 2𝑛 ⋅ 𝑚∕𝑝 corresponds to the uncompressed observation. The ratio of
the amount of observed data to the mount of original data is defined as
the observed compression ratio 𝐷, which can be expressed as:

𝐷 =
𝑘 ⋅ 𝑝
2𝑛 ⋅ 𝑚

(0 ≤ 𝐷 ≤ 1). (8)

As an important system parameter, the observed compression ratio 𝐷
determines the total amount of data stored and transmitted by the
system, and also has a significant impact on the quality of image
restoration.

A column of pixels in the direction of TDI CCD charge transfer is
modeled and analyzed above. Other columns are processed in the same
way, and then they are integrated into a complete two-dimensional

image. It can be seen from the above analysis that the imaging method
breaks through the limitation of the Nyquist–Shannon sampling theo-
rem, which subject to the pixel size in traditional imaging and realizes
sub-pixel super-resolution imaging. However, it only completes the
super-resolution imaging in the one-dimensional direction of the charge
transfer, and there is still the traditional imaging mode in the orthogonal
direction. Therefore, the obtained image has a one-dimensional image
resolution improvement, which provides limited improvement on hu-
man visual perception.

4. Orthogonal dual detector super-resolution imaging system

In order to achieve the improvement of two-dimensional image
resolution, an orthogonal dual detector super-resolution imaging system
is proposed based on the above imaging method. The composition and
working process of the system are shown in Fig. 8. The system adopts
dual TDI CCD detector hardware architecture, of which two detectors
are installed perpendicular to each other, and the same target scene
is compressed sensing imaging at the same time. The beam splitter
divides the target scene into two beams, which are incident on the
detector 𝛼 and detector 𝛽, respectively. The charge transfer and random
exposure of the two detectors are achieved through the control and
data acquisition circuit, which also completes the acquisition of the
two detectors’ original image data and transmits them to the upper
computer. The image restoration algorithm and two-dimensional image
fusion process are mainly accomplished by the upper computer for its
powerful computing capability.

The charge transfer of the detector 𝛼 is performed along the 𝑥-axis,
and the super-resolution imaging in the 𝑥-axis direction is achieved by
the above method. Likewise, the charge transfer of the detector 𝛽 is
performed along the 𝑦-axis, and the super-resolution imaging in the
𝑦-axis direction is achieved by the above method. After obtaining the
super-resolution images in the direction of 𝑥-axis and 𝑦-axis respectively,
a specific image fusion algorithm is finally required to recover the two-
dimensional super-resolution image.

5. Two-dimensional image fusion algorithm

Based on the above model, the target scene covered by one-pixel
size is taken as the analysis object. The resolution of super-resolution
imaging is 4𝑛2∕𝑝2, while the number of equations that can be established
from one-dimensional super-resolution images in both directions is 4𝑛∕𝑝.
Since there is 4𝑛∕𝑝 ≤ 4𝑛2∕𝑝2, taking the equal sign when 2𝑛∕𝑝 = 2,
it is necessary but not sufficient problem to merge two orthogonal
one-dimensional super-resolution images into a two-dimensional super-
resolution image, and there are infinite solutions. Therefore, we need
to find a specific image fusion algorithm to optimally recover the two-
dimensional super-resolution image.

5.1. Convex optimization algorithm

The problem of two-dimensional image fusion can be regarded as
image restoration problem in compressed sensing theory, and the super-
resolution reconstruction of the image is thus transformed into the
convex optimization problem, where the 𝑙1 norm method is still used, as
shown in Eq. (2). If the super-resolution image data of the target scene
covered by a pixel size is integrated into the column vector 𝑋′, and
two one-dimensional super-resolution image data are integrated into the
column vector 𝑌 ′, then there is:

𝑌 ′ = 𝛷′𝑋′ (9)

where 𝑋′ is a matrix with 4𝑛2∕𝑝2 rows and 1 column, 𝑌 ′ is a matrix
with 4𝑛∕𝑝 rows and 1 column, and 𝛷′ is a matrix with 4𝑛∕𝑝 rows and
4𝑛2∕𝑝2 columns. It is assumed that the element in the matrix 𝛷′ is 𝛷′

𝑖,𝑗 ,
where 𝑖 is the row number and 𝑗 is the column number, which satisfies
the following conditions:

173



Y.-H. Li et al. Optics Communications 426 (2018) 170–181

𝛷 =

⎡

⎢

⎢

⎢

⎣

𝑒1 + 𝑒2 +⋯ + 𝑒2𝑛∕𝑝 𝑒2 + 𝑒3 +⋯ + 𝑒2𝑛∕𝑝+1 ⋯ 𝑒2𝑚𝑛∕𝑝 + 𝑒2𝑚𝑛∕𝑝+1 +⋯ + 𝑒(𝑚+1)⋅2𝑛∕𝑝−1
𝑒2𝑛∕𝑝+1 + 𝑒2𝑛∕𝑝+2 +⋯ + 𝑒4𝑛∕𝑝 𝑒2𝑛∕𝑝+2 + 𝑒2𝑛∕𝑝+3 +⋯ + 𝑒4𝑛∕𝑝+1 ⋯ 𝑒(𝑚+1)⋅2𝑛∕𝑝 + 𝑒(𝑚+1)⋅2𝑛∕𝑝+1 +⋯ + 𝑒(𝑚+2)⋅2𝑛∕𝑝−1

⋮ ⋮ ⋱ ⋮
𝑒(𝑘−1)⋅2𝑛∕𝑝+1 + 𝑒(𝑘−1)⋅2𝑛∕𝑝+2 +⋯ + 𝑒𝑘⋅2𝑛∕𝑝 𝑒(𝑘−1)⋅2𝑛∕𝑝+2 + 𝑒(𝑘−1)⋅2𝑛∕𝑝+3 +⋯ + 𝑒𝑘⋅2𝑛∕𝑝+1 ⋯ 𝑒(𝑚+𝑘−1)⋅2𝑛∕𝑝 + 𝑒(𝑚+𝑘−1)⋅2𝑛∕𝑝+1 +⋯ + 𝑒(𝑚+𝑘)⋅2𝑛∕𝑝−1

⎤

⎥

⎥

⎥

⎦

. (6)

Box I.

Fig. 8. The composition and working process of the orthogonal dual detector super-resolution imaging system.

𝛷′
𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 (𝑖 = 1, 𝑗 = 1, 2,… , 2𝑛
𝑝
)

1 (𝑖 = 2, 𝑗 = 2𝑛
𝑝

+ 1, 2𝑛
𝑝

+ 2,… , 4𝑛
𝑝
)

⋮ ⋮

1 (𝑖 = 2𝑛
𝑝
, 𝑗 = 2𝑛

𝑝
× ( 2𝑛

𝑝
− 1) + 1, 2𝑛

𝑝
× ( 2𝑛

𝑝
− 1) + 2,… , 4𝑛

2

𝑝2
)

1 (𝑖 = 2𝑛
𝑝

+ 1, 𝑗 = 1, 2𝑛
𝑝

+ 1,… , 2𝑛
𝑝

× ( 2𝑛
𝑝

− 1) + 1)

1 (𝑖 = 2𝑛
𝑝

+ 2, 𝑗 = 2, 2𝑛
𝑝

+ 2,… , 2𝑛
𝑝

× ( 2𝑛
𝑝

− 1) + 2)

⋮ ⋮

1 (𝑖 = 4𝑛
𝑝
, 𝑗 = 2𝑛

𝑝
, 4𝑛
𝑝
,… , 4𝑛

2

𝑝2
)

0 (Others).

(10)

For the intuitive expression of the above formula, parameter 2𝑛∕𝑝 is
taken as 2 and 3 for instantiation:

𝛷′ =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(2𝑛∕𝑝 = 2) (11)

𝛷′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2𝑛∕𝑝 = 3). (12)

Although the matrix 𝛷′ has the same number of rows and columns
at 2𝑛/𝑝 = 2, the matrix is singular at this time, and the convex opti-
mization algorithm is still needed for iterative calculation. Therefore,

Fig. 9. The schematic diagram of the proportional fusion algorithm.

the super-resolution image reconstruction within the pixel is achieved
by a specific iterative algorithm of convex optimization, and then the
super-resolution images of each pixel are spliced into a complete two-
dimensional image.

5.2. Proportional fusion algorithm

The image restoration method based on compressed sensing theory
is based on the sparse characteristics of natural images. When the target
scene covered by one-pixel size is subdivided, the integrity of the image
is degraded, which leads to the deterioration of the sparseness, thus
resulting in poor results of image restoration.

Based on the similarity of local regions, a proportional fusion
algorithm is proposed here. In this method, one dimensional super-
resolution imaging data is used as the basic element, and the other
one-dimensional data is used as the proportional factor to complete the
proportionate distribution of the former.

The schematic diagram of the algorithm is shown in Fig. 9. Still the
target scene covered by one-pixel size is taken as the analysis object. The
super-resolution imaging data in the 𝑥-axis and the 𝑦-axis directions are
𝑅𝑥 and 𝑅𝑦 respectively, and the grayscale value of each super-resolution
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Fig. 10. The restored images of Lena. (a) Original image with the resolution of 512 × 512. (b) Traditional imaging method with the resolution of 64 × 64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

point in the figure is 𝑞𝑖,𝑗 (𝑖, 𝑗 = 1…2𝑛∕𝑝). If the data in the direction of
the 𝑥-axis is the basic element, and the data in the direction of the 𝑦-axis
is the proportional factor, the gray value of the super-resolution points
is calculated as follows:

𝑞𝑖,𝑗 =
2𝑛
𝑝

⋅ 𝑅𝑦 2𝑛
𝑝 −(𝑖−1) ⋅

𝑅𝑥𝑗
∑

2𝑛
𝑝
𝑚=1 𝑅𝑥𝑚

(𝑖, 𝑗 = 1… 2𝑛
𝑝
). (13)

If the data in the direction of the 𝑦-axis is the basic element, and the
data in the direction of the 𝑥-axis is the proportional factor, the gray
value of the super-resolution points is calculated as follows:

𝑞𝑖,𝑗 =
2𝑛
𝑝

⋅ 𝑅𝑥𝑗 ⋅
𝑅𝑦 2𝑛

𝑝 −(𝑖−1)

∑

2𝑛
𝑝
𝑚=1 𝑅𝑦𝑚

(𝑖, 𝑗 = 1… 2𝑛
𝑝
). (14)

After completing the super-resolution reconstruction of the target
scene covered by one-pixel size, other parts are processed in the same
way and finally they are spliced into a completed two-dimensional
image.

Similar to bilinear interpolation, the algorithm itself does not im-
prove the resolution. However, compared with the traditional bilinear
interpolation, this method is based on the super-resolution imaging
data that has been acquired by the previous steps. The sub-pixel image
information has been contained in the basic data, and the fusion
algorithm mainly implements the integration of two-dimensional data.
Therefore, it is of significance for super-resolution imaging, which can
also be proved in the following simulation results.

6. Simulation verification and analysis

The above theoretical model will be verified by the following
simulation. The optical system used for experiments works in the visible
light band with an f-number of 2. The pixel size of the detector is 30 μm,
and the filling factor is 100%. Based on the above system parameters,
the influence of the optical diffraction limit can be ignored, and the
pixel size of the detector is a determinant of the spatial resolution of
the whole system. It is assumed that the pixel numbers 𝑐 of TDI CCD
is 64, the integral numbers 𝑚 is 64, then the resolution of the target
scene in traditional imaging mode is 64 × 64 under this condition. If the
above super-resolution imaging system is adopted, the corresponding
theoretical resolutions are 128 × 128, 192 × 192, 256 × 256, 384 × 384 and
512 × 512 respectively when 2𝑛∕𝑝 is 2, 3, 4, 6 and 8.

To meet the highest super-resolution parameter requirements, the
resolution of the target scene is selected as 512 × 512. The quality
of super-resolution imaging is evaluated by Peak Signal-to-Noise Ra-
tio(PSNR), Structural Similarity Index (SSIM), and Feature Similarity
Index(FSIM) [29–31]. The reference standard was the original image
with the resolution of 512 × 512.

The full-reference image quality evaluation is based on the same
resolution of the restored image and the original image. When the
system imaging resolution was lower than that, the nearest neighbor
interpolation algorithm will be used to extend to the scale of resolution,
wherein orthogonal matching pursuit algorithm (OMP) is adopted in
the horizontal and vertical one-dimensional super-resolution restoration
algorithm, and it is also adopted in the convex optimization algorithm
of two-dimensional image fusion [32–34].

6.1. Universal serviceability analysis

In order to fully cover images of different types and features as much
as possible, Lena, Mandrill, Peppers, Zebra and two Remote sensing
images are selected as target scenes, which can be divided into portraits,
scenery and remote sensing images by type. Among them, Mandrill
and Zebra contain more texture features, of which Zebra’s black and
white stripes are the best samples for visually observing super-resolution
images. The six images above are selected for simulation, of which
2𝑛/𝑝 = 6 and 𝐷 = 0.8 are taken as preconditions. Based on the set
of parameters, the resolution is 64×64 in traditional imaging mode, and
the imaging resolution can reach 384 × 384 under the system proposed
in this paper. The simulation results are shown in Figs. 10–15.

It can be clearly seen from the simulation results that the system
and method proposed in this paper can significantly improve the image
resolution, compared with traditional imaging method. For different
types of target images, the proportional fusion algorithm is generally
superior to the OMP algorithm. Table 2 shows the quantitative results
of the restored images with different super-resolution imaging methods,
where PF stands for proportional fusion.

From the data in Table 2, we can see that the imaging quality of
the system proposed in this paper is better than that of the traditional
imaging method, which is consistent with the subjective observations.
Moreover, the PSNR, SSIM, and FSIM indexes are consistent in the
assessment results of the image quality, so the PSNR will be directly
taken as the representation of the image quality evaluation standard in
the following text.
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Fig. 11. The restored images of Mandrill. (a) Original image with the resolution of 512×512. (b) Traditional imaging method with the resolution of 64×64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

Fig. 12. The restored images of Peppers. (a) Original image with the resolution of 512×512. (b) Traditional imaging method with the resolution of 64×64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

Table 2
The quantitative results of the restored images with different super-resolution imaging methods.

Images Traditional imaging
method

Our method with OMP
fusion algorithm

Our method with PF
fusion algorithm

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Lena 25.48 dB 0.9500 0.8412 26.21 dB 0.9569 0.8895 28.58 dB 0.9746 0.9343
Mandrill 20.35 dB 0.8010 0.7351 21.05 dB 0.8418 0.8744 22.08 dB 0.8708 0.9008
Peppers 25.58 dB 0.9528 0.8488 26.29 dB 0.9590 0.8914 29.58 dB 0.9803 0.9450
Zebra 16.43 dB 0.8652 0.7053 19.23 dB 0.9331 0.8286 20.84 dB 0.9531 0.8801
Remote1 22.33 dB 0.9103 0.7790 23.95 dB 0.9389 0.8774 25.18 dB 0.9532 0.9031
Remote2 19.62 dB 0.8383 0.7222 21.42 dB 0.8976 0.8643 22.32 dB 0.9153 0.8944

6.2. Parametric analysis

The above simulations are performed only for a specific set of
parameters. In the system proposed in this paper, the parameters 2𝑛∕𝑝
and the observed compression ratio 𝐷 are taken as two significant

parameters, and the influence of which on the image quality will be
analyzed respectively, based on the image Zebra. Firstly, the influence
of observed compression ratio 𝐷 on image quality is analyzed. When
the parameter 2𝑛∕𝑝 is 6, the restored images with different observed
compression ratio 𝐷 are shown in Fig. 16.

176



Y.-H. Li et al. Optics Communications 426 (2018) 170–181

Fig. 13. The restored images of Zebra. (a) Original image with the resolution of 512×512. (b) Traditional imaging method with the resolution of 64×64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

Fig. 14. The restored images of Remote1. (a) Original image with the resolution of 512×512. (b) Traditional imaging method with the resolution of 64×64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

It can be seen from the above figure that the image quality is
gradually improved with the increase of the observed compression ratio.
Furthermore, the relationship between PSNR and observed compression
ratio 𝐷 when 2𝑛∕𝑝 has different values are plotted in Fig. 17, in which
OMP stands for orthogonal matching pursuit algorithm, and PF stands
for proportional fusion algorithm. From the overall trend, the PSNR is
improved with the increase of observed compression ratio 𝐷, which is
due to the greater the 𝐷, the more the amount of data collected by
the system, so that the better quality of restored image is obtained. In
general, the PF algorithm is slightly better than that of the OMP fusion
algorithm.

Secondly, the influence of parameter 2𝑛∕𝑝 on image quality is also
analyzed. When the observed compression ratio 𝐷 is 0.8, the restored
images with different parameter 2𝑛∕𝑝 are shown in Fig. 18.

It can be seen from the above figure that the image quality improves
first and then degrades with the increase of 2𝑛∕𝑝. For quantitative anal-
ysis, the relationship between PSNR and 2𝑛∕𝑝 when 𝐷 takes different
values is shown in Fig. 19, where the maximum point is obtained when
2𝑛∕𝑝 is 6. The quality of restored image improves with the increase
of 2𝑛∕𝑝 generally, which can be explained as the larger the 2𝑛∕𝑝, the
greater the theoretical resolution of the system, and the quality of
restored image is therefore improved. However, the improvement of
image quality slows down with the increase of 2𝑛∕𝑝, and the image
quality degrades instead generally when 2𝑛∕𝑝 varies from 6 to 8.
On one hand, the increase of 2𝑛∕𝑝 will lead to the improvement of
the quality of two one-dimensional super-resolution images. On the
other hand, in the process of two-dimensional image fusion, more
data needs to be recovered with less data with the increase of 2𝑛∕𝑝,
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Fig. 15. The restored images of Remote2. (a) Original image with the resolution of 512×512. (b) Traditional imaging method with the resolution of 64×64. (c) Vertical
super-resolution restored image with the resolution of 64 × 384. (d) Horizontal super-resolution restored image with the resolution of 384 × 64. (e) Two-dimensional
super-resolution image restored by OMP algorithm with the resolution of 384 × 384. (f) Two-dimensional super-resolution image restored by proportional fusion
algorithm with the resolution of 384 × 384.

Fig. 16. The simulation results with different compression ratio 𝐷. (a) 𝐷 = 0.4 with OMP algorithm. (b) 𝐷 = 0.4 with PF algorithm. (c) 𝐷 = 0.5 with OMP algorithm.
(d) 𝐷 = 0.5 with PF algorithm. (e) 𝐷 = 0.6 with OMP algorithm. (f) 𝐷 = 0.6 with PF algorithm. (g) 𝐷 = 0.7 with OMP algorithm. (h) 𝐷 = 0.7 with PF algorithm. (i)
𝐷 = 0.8 with OMP algorithm. (j) 𝐷 = 0.8 with PF algorithm. (k) 𝐷 = 0.9 with OMP algorithm. (l) 𝐷 = 0.9 with PF algorithm.

resulting in a degradation in the quality of restored image. Due to
the comprehensive effect of the above two factors, the quality of
restored image improves first and then degrades with the increase of
2𝑛∕𝑝.

The imaging system based on compressed sensing theory proposed
in this paper needs the optimized iterative algorithm in the process of
image restoration, so we must consider the consumption time of image

restoration, so as to objectively evaluate the real-time performance of
the system. Fig. 20 indicates that the system time-consuming increases
with the increase of the parameters 2𝑛∕𝑝 and 𝐷. Therefore, improving
the image quality by increasing the values of 2𝑛∕𝑝 and 𝐷 will inevitably
lead to an increase in the time-consuming of the system, resulting in a
decrease in real-time performance. Therefore, comprehensive consider-
ation is required in practical applications.
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Fig. 17. The relationship between PSNR and observed compression ratio 𝐷 in
different 2𝑛∕𝑝.

6.3. Optimization analysis of data quantity

With the improvement of restored image quality, the total amount
of data collected by the system increases gradually, which further
aggravates the data storage and transmission pressure of the system.
Therefore, it is significant to analyze how to obtain higher image quality
with a limited amount of data. It is assumed that the total amount of
data collected by the system in the super-resolution imaging process is
𝐷𝑡, which can be expressed as:

𝐷𝑡 = 2 ⋅ 𝑐 ⋅ 𝑘 = 2 ⋅ 𝑐 ⋅ 𝑚 ⋅𝐷 ⋅
2𝑛
𝑝

(15)

Fig. 19. The relationship between PSNR and 2𝑛∕𝑝when𝐷 takes different values.

where there is 𝑐 = 64 and 𝑚 = 64 under the current simulation
parameters. It can be seen from the above equation that the observed
compression ratio 𝐷 is inversely proportional to 2𝑛∕𝑝 on the premise
that the total amount of data 𝐷𝑡 is fixed. Taking image Zebra as the
example, the PSNR of restored image with different 𝐷𝑡 are shown in
Table 3, of which the amount of data 𝐷𝑡 ranges from 14 746 to 58 982,
and ‘‘/’’ indicates that there is no such situation.

As a whole, the PSNR of the restored image increases with the
increase of 𝐷𝑡. In the same amount of data, the smaller the 2𝑛∕𝑝, the
higher the PSNR. However, because of the limitation of the observed
compression ratio 𝐷, the smaller the 2𝑛∕𝑝, the lower the maximum

Fig. 18. The simulation results with different parameter 2𝑛∕𝑝. (a) 2𝑛/𝑝 = 2 with OMP algorithm. (b) 2𝑛/𝑝 = 2 with PF algorithm. (c) 2𝑛/𝑝 = 3 with OMP algorithm.
(d) 2𝑛/𝑝 = 3 with PF algorithm. (e) 2𝑛/𝑝 = 4 with OMP algorithm. (f) 2𝑛/𝑝 = 4 with PF algorithm. (g) 2𝑛/𝑝 = 6 with OMP algorithm. (h) 2𝑛/𝑝 = 6 with PF algorithm.
(i) 2𝑛/𝑝 = 8 with OMP algorithm. (j) 2𝑛/𝑝 = 8 with PF algorithm.
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Table 3
The PSNR of the restored images with different 𝐷𝑡 and 2𝑛/𝑝 combinations(dB).
𝐷𝑡 Fusion algorithm 2𝑛/𝑝 = 2 2𝑛/𝑝 = 3 2𝑛/𝑝 = 4 2𝑛/𝑝 = 6 2𝑛/𝑝 = 8

𝐷 = 0.9 𝐷 = 0.6 𝐷 = 0.45 𝐷 = 0.3 𝐷 = 0.225

14 746 OMP 18.50 18.04 17.70 17.94 17.62
PF 19.19 18.82 18.67 18.59 17.98

/ 𝐷 = 0.9 𝐷 = 0.675 𝐷 = 0.45 𝐷 = 0.3375

22118 OMP / 18.92 18.74 18.57 18.30
PF / 20.07 19.88 19.46 18.77

/ / 𝐷 = 0.9 𝐷 = 0.6 𝐷 = 0.45

29491 OMP / / 19.38 19.13 18.97
PF / / 20.61 20.20 19.41

/ / / 𝐷 = 0.9 𝐷 = 0.675

44237 OMP / / / 20.60 19.66
PF / / / 21.24 20.07

/ / / / 𝐷 = 0.9

58982 OMP / / / / 19.76
PF / / / / 20.18

Fig. 20. The relationship between time-consuming and observed compression
ratio 𝐷 when 2𝑛∕𝑝 takes different values.

amount of data that can be selected. Therefore, a larger 2𝑛∕𝑝 and a larger
𝐷𝑡 are required to obtain a higher PSNR in general. But in particular,
the maximum point in the table is located at 𝐷𝑡 = 44 237, 2𝑛/𝑝 = 6, and
it has been explained in the above analysis.

7. Conclusions

Based on compressed sensing theory, a collaborative coding method
based on TDI CCD charge transfer and random exposure is proposed
in this paper, which breaks through the limitation of pixel size and
achieves the improvement of one-dimensional image resolution. By ex-
panding the above method, an orthogonal dual detector super-resolution
imaging system is established, which realizes the improvement of two-
dimensional image resolution. In the part of two-dimensional image
fusion algorithm, we propose the convex optimization algorithm and
the proportional fusion algorithm. The simulation results show that
the imaging system can indeed improve the quality of two-dimensional
image, and the image quality of the proportional fusion algorithm is
slightly better than that of the convex optimization algorithm. From the
overall trend, the quality of restored image improves with the increase of
observed compression ratio. And in the same amount of data, the smaller
the subdivision, the higher the image quality. The proposed method and
system provide an innovative approach of system implementation for
super-resolution imaging based on compressed sensing theory.
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